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Studies using induced pluripotent stem cells (iPSCs) are gaining momentum in brain disorder modelling, but optimal study designs
are poorly defined. Here, we compare commonly used designs and statistical analysis for different research aims. Furthermore, we
generated immunocytochemical, electrophysiological, and proteomic data from iPSC-derived neurons of five healthy subjects,
analysed data variation and conducted power simulations. These analyses show that published case-control iPSC studies are
generally underpowered. Designs using isogenic iPSC lines typically have higher power than case-control designs, but
generalization of conclusions is limited. We show that, for the realistic settings used in this study, a multiple isogenic pair design
increases absolute power up to 60% or requires up to 5-fold fewer lines. A free web tool is presented to explore the power of

different study designs, using any (pilot) data.
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INTRODUCTION
Induced pluripotent stem cells (iPSCs) greatly facilitate the
investigation of human disease mechanisms, the characterization
of patient-specific phenotypes, and the development of new,
personalized treatments. For brain disorders, iPSC-based disease
modelling is particularly advantageous given the highly restricted
access to primary tissue. However, considerations regarding
choice and optimization of study designs remain underexposed
and consequently the impact of iPSC-based disease modelling on
scientific progress has probably not reached its full potential yet.
Various study designs are being applied in iPSC-based disease
modelling: classical case—control studies comparing unrelated
patients to controls, and gene-editing studies comparing known
genetic variants against isogenic controls, either by introducing
such variants in standard control lines or by repairing the disease
mutation in patient-derived iPSCs. These designs differ in the
research questions they address, generalizability to patient
populations, and applicability for polygenic/idiopathic cases. In
addition, they require different statistical approaches and different
sample sizes to obtain adequate statistical power. Suboptimal
study design choices, underpowered studies, and/or incorrect
statistical analyses all reduce the chance of detecting true effects,
and bias the estimates of true effects. In this way, the reliability of
study results is diminished and the potential impact of iPSC-based
studies is limited. Unfortunately, “power failure” is a general and
ubiquitous problem in neuroscience: meta-analyses indicate that
the majority of studies across neuroscience subfields has
inadequate statistical power [1, 2]. Additionally, statistical analyses

in many neuroscience studies violate essential assumptions [3-8].
Hence, optimizing study designs and associated statistical
analyses are crucial aspects for the optimal utilization of iPSC-
based disease modelling in neuroscience.

Furthermore, several features of typical iPSC-based studies
dictate specific adjustments of study designs and statistical
analyses that are less common in traditional disease modelling.
First, genetic heterogeneity between iPSC donors is much larger
than for disease modelling using inbred animal models or single
standard cell lines (for review, see [9]). Consequently, iPSC study
designs require larger cohort sizes, which massively increases
experimental burden (resources, time). In practice, however, many
iPSC-based brain disease modelling studies published over the last
five years are based on a very limited cohort sizes, as we will
demonstrate below. Optimizing study designs minimizes these
costs, while maintaining acceptable false positive/negative rates.
Second, in most iPSC-based studies, multiple inductions (culture
batches) are generated from each iPSC line and each batch
contains multiple neurons, resulting in multiple observations (i.e.,
individual measurements or recordings) from the same iPSC line
(i.e., individual). Such study designs generate clustered data,
where different data points are not truly independent. If not
statistically accounted for, such clustered data lead to severely
inflated false positive rates [5, 6, 8]. This is particularly damaging
for disease modelling, as false positive outcomes of preclinical
studies are doomed to fail translation to the clinic [10], a
conclusion that will often only be reached after expensive, risky,
yet futile clinical trials. To take all these considerations into
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account and select optimal study designs for specific research
questions, a systematic comparison of designs, and their
attainable power, is required.

In this study, we provide a framework to conceive optimal,
statistically rigorous iPSC-based studies. We discuss the applic-
ability of different study designs, their data structure and
appropriate statistical analysis, and present power estimations
and sample size calculations for typical iPSC study designs based
on real, representative data examples from iPSC-derived neurons
of five healthy individuals. Additionally, we developed a web tool
(https://jessiebrunner.shinyapps.io/App_PowerCurves/) to esti-
mate statistical power for different iPSC study designs, sample
sizes, and expected effect sizes. Together, these design considera-
tions, the power calculations, and the web tool promote optimal
iPSC study designs and statistically rigorous practices to maximize
the future impact of iPSC technology.

MATERIALS AND METHODS

Laboratory animals

Glia were prepared from newborn PO-P1 pups from female Wister rats
(Crl:wI, strain code 003). Animals were housed and bred according to
institutional, Dutch and U.S. governmental guidelines.

iPSC lines

Five iPSC lines from unrelated individuals with no diagnosed disease status
were used for this study. An additional iPSC line of the same genetic
background as line C2 was used, in which the NGN2 overexpression
cassette was engineered into a safe harbour-locus. Details for each line are
listed in the Supplementary Methods. iPSCs were routinely tested for
mycoplasma contamination. Prior to induction of NGN2, iPSCs were
subjected to SNP-array analysis and CNV calling as described in the
Supplementary Methods.

Generation of iPSC-derived neurons

Neuronal differentiation was induced as described previously [11] and
details are provided in the Supplementary Methods. From all iPSC lines,
neurons could reliably be induced, though line C5 produced a lower
neuronal yield, so that insufficient numbers of neurons could be produced
for electrophysiological and proteomic analyses. The induction process
was repeated several times generating several culture batches from which
data were acquired. After 39-45 days in vitro, at a time point where iPSC-
derived neurons reliably show mature synaptic transmission [12], samples
were obtained for proteomic profiling, coverslips with autaptic neurons
were fixed for morphological analysis, or patch-clamp electrophysiological
recordings were performed.

Mass spectroscopy

Neurons were harvested in PBS with protease inhibitor, spinned down and
resuspended in loading buffer. An SDS-PAGE LC-MS/MS approach was
used for protein identification as described previously [13] and detailed in
the Supplementary Methods.

A spectral library was made from pooled samples of all three lines, one
for each culture condition, collected at two different time points (DIV15
and DIV42). Additionally, a pooled sample glia cultured without neurons,
collected at DIV15 and DIV42, was included. Spectral library samples
were measured in DDA mode and analyzed using MaxQuant 1.6.3.4 [14].
The Uniprot human reference proteome database (SwissProt + TrEMBL,
version 2019-11) was used to annotate spectra. The minimum peptide
length was set to 6, with at most two miss-cleavages allowed.
Methionine oxidation and N-terminal acetylation were set as variable
modifications with cysteine Propionamide set as fixed modification. For
both peptide and protein identification a false discovery rate of 0.01
was set.

SWATH data were searched against the spectral library (peptides and
proteins identified from DDA data by MaxQuant) using Spectronaut 13.7
[15] with default settings. The resulting abundance values and qualitative
scores for each peptide in the spectral library were exported for further
downstream analysis. Data were analysed as described in the Supplemen-
tary Methods.
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Immunocytochemistry and morphological analysis

Neurons were fixed with 3.7% paraformaldehyde, permeabilized with 0.5%
Triton X-100 (Thermo Fisher #T/3751/08), and incubated in blocking buffer
(PBS containing 2% normal goat serum (NGS; Thermo Fisher #11540526)
and 0.1% Triton X-100) and stained with primary antibodies for 2 h at room
temperature (RT). Primary antibodies used: chicken anti-MAP2 (1:500,
Abcam Ab5392) and Synaptophysin 1 (1:1000, Synaptic Systems #101004).
After three washes with PBS, neurons were stained with secondary
antibodies Alexa Fluor (1:1000; Invitrogen) for 1h at RT. Coverslips were
washed three times with PBS and mounted on microscopic slides with
Mowiol-DABCO. Images were acquired on a Nikon Ti-Eclipse microscope
equipped with a confocal scanner model A1R+, using a 40X oil immersion
objective (NA=1.3; Carl Zeiss). Z stacks were acquired with 0.5puM
intervals. Confocal settings were kept constant between cultures. Z Stacks
were collapsed to maximal projections for image analysis. Images were
analysed in MATLAB with SynD [16]. Synapse detection settings were kept
constant between cultures.

Electrophysiology

Autaptic neurons were recorded in whole-cell voltage clamp mode
between DIV42-47. For a detailed description of devices and solutions
used, see Supplementary Methods. Resting membrane potential was
measured in current-clamp immediately after break-in of the membrane.
After this, neurons were maintained in voltage-clamp configuration at a
holding potential of —70 mV. Spontaneous activity was recorded first, with
a sampling frequency of 20 kHz (Bessel filter 5-6 kHz) to allow accurate
quantification of the kinetics parameters of the spontaneous events.
Subsequently, a series of stimulation protocols was recorded, as described
in the Supplementary Methods. Data analysis and exclusion criteria are
explained in the Supplementary Methods.

Analysis of variation and comparison to published autapse
datasets

Coefficient of variation (CoV) was calculated as standard deviation divided
by the mean value, for each morphological and electrophysiological
parameter of interest. For the proteomics data, the CoV was calculated for
each protein and the median CoV per iPSC line was compared to published
datasets. For comparison to the current dataset, values from several
published mouse autapse datasets were used, as outlined in the
Supplementary Methods. A Kruskal-Wallis ANOVA showed that there was
no significant difference between the mean CoVs of the four control lines
and the safe-harbor NGN2 line measured with electrophysiology in this
study (p =0.5194).

Analysis of explained variation

The proportions of variance explained by culture batch were calculated by
the R’marginal [17]. The R’marginal quantifies the proportion of variance
explained by fixed factors in the model (in our model, culture batch) in a
multi-level random effects model. For the proteomics data, proportions of
explained variance were calculated at the protein-level for both culture
conditions using the Bioconductor-package variancePartition in R [18]
(Fig. 30).

Quantification and statistical analysis

Graphs were generated using GraphPad Prism (v. 8). Unless otherwise
specified, boxplots show the median value, interquartile range, and
whiskers including all values within 1.5 times IQR from the median (Tukey-
style whiskers). Outliers, defined as values >3 standard deviations above or
below the group mean, were excluded prior to analysis. For statistical
analyses, data were standardized to meet the assumptions for linear
mixed-effects models. Linear mixed-effects models were fitted to the
standardized data using the Ime4 package in R (R version 3.6.3). Culture
batch was included as a fixed factor in the model. The relative proportions
of variance explained by the multilevel model were calculated using the
MuMIn R package. The conditional intraclass correlation coefficient
(conditional ICC, i.e,, the ICC obtained from the model in which the batch
effect is accounted for [17]; was calculated using the ‘icc’ function
(performance package in R). ICC values deviating from 0 suggest that the
variation in the total data set is at least partly due to the clusters having
different means (as expressed by a non-zero intercept variance). The
significance of the ICC was evaluated by testing the significance of the
intercept variance using a chi-square test of which the p-value is divided
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Fig. 1

iPSC study designs address different research questions. Design 1 (case—control) is characterized by including iPSC lines from

multiple independent donors per condition. For design 2A (single isogenic pair), an iPSC line derived from a single donor is gene-edited (or
treated), to create two iPSC lines that share the same genetic background and only differ at the gene locus of interest (or treatment). Design
2B is an extension of 2A, in which multiple variants (or treatments) are edited into the same genetic background. In Design 3, multiple
isogenic pairs are created. The table represents the ability of each design to answer the research questions described on the left. Green:

suitable; Orange: possible, but not optimal; Red: not possible.

by two (common when testing a variance term; [19]). For all tests, a was set
to 0.05.

Power analysis

Synapse density was selected as an example parameter for all power
simulations. Synapse density data measured in this study were corrected
for variation of culture batch, using a mean-centering method: each
datapoint within a batch was subtracted from the mean of that batch and
added with the overall mean of the dataset. This allowed simplifying the
statistical models as described in Supplementary textbox 2 by removing
the fixed factor “Batch” from the statistical model used in the power
simulations. All power curves were plotted using the ggplot2 R-package
[20]. The Supplementary Methods contain a detailed explanation of the
approach and settings for the power analyses performed for each design.

RESULTS

Differences between commonly used iPSC-based study
designs

Different study designs are currently used for iPSC-based disease
modelling. Figure 1 outlines the most common designs for
different research questions. Design 1 is a design that compares
multiple iPSC lines derived from two donor populations (typically
patients and controls). Designs 2A & 2B are isogenic comparisons
using gene-editing either by introducing genetic variants in
standard control lines or by repairing them in e.g., patient-derived
iPSCs. Design 2 is also applied in experiments that investigate
treatments (e.g., test a compound) in iPSC lines. Design 2A
involves a single gene-edit or treatment in one iPSC line. Design
2B expands this to a series of gene-edits or treatments within one
iPSC line. Lastly, Design 3 combines these features, comprising a
series of isogenic pairs of different (genetically heterogeneous)
individuals. Notably, these designs could be extended by
including multiple clonal iPSC lines. This could serve to control
for unwanted clone-specific aberrations that may occur during
reprogramming, gene editing or iPSC passaging. However, using
multiple clones inflates the false positive rate, and statistical

Molecular Psychiatry (2023) 28:1545-1556

power benefits are limited [21, 22]. Therefore, the current study
focuses on the use of a single clone per individual.

These different designs differ in (1) which types of disorders
they can model, (2) to what extent conclusions can be
generalized, (3) to what extent they can be applied for
personalized medicine, and (4) which data structures they
generate and statistical approaches they dictate. First, gene-
edited isogenic designs (Designs 2 A&B, 3) can model monogenic
disorders, but modelling polygenic disorders is challenging and
disorders for which the genetic component is not yet fully
elucidated (idiopathic/sporadic disorders) cannot be modelled.
Design 1 defines ‘cases’ based on diagnostic status and is
therefore suitable for mono- and polygenic disorders as well as
idiopathic disorders. Second, Designs 1, 2B, and 3 allow
generalization of conclusions to the gene of interest, genetic
background, and/or the patient population. Design 2B is
uniquely suited to study effects of different genetic variants in
one specific gene, but conclusions cannot be drawn beyond the
specific genetic background used. Conversely, Design 3 is
optimal to investigate the effect of a specific genetic variant in
different genetic backgrounds. Designs 1 and 3 can model
population-level genetic heterogeneity. Therefore, conclusions
can be generalized to the overall patient population. Third, iPSC-
based studies are also suited for personalized medicine:
especially Designs 2 A&B are suited to test a single (Design 2A)
or multiple (Design 2B) therapeutic options in a specific
individual patient. Fourth, different designs differ in the way
the data are collected. Consequently, data structures differ and
this has statistical ramifications (see Supplementary textbox
1&2). Taken together, study designs differ in many dimensions,
depending on research question and application. The choice
between different designs has drastic consequences for data
structure and statistical requirements. To assess how these
choices affect statistical power and required sample sizes, a
systematic analysis of variation sources and power is
indispensable.
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Fig.2 Culture batch and inter-individual variation contribute to the total variance. A Schematic overview of the study, indicating sources
of variation: inter-individual variation (i.e., variation introduced by including different individuals; orange box) and culture batch variation (i.e.,
variation introduced by acquiring data from different culture batches; purple box). Note that for this study, five iPSC-derived lines were used
for morphological characterization, four lines for electrophysiology, and three lines for proteomic analyses. For the proteomics analysis,
neurons were either cultured on a glia feeder layer (‘co-culture’) or on coating without glia (‘neuron-only’). B The contribution of different
sources of variance is assessed by plotting the proportion of variance explained by culture batch (purple) and line (orange) for each
parameter, as calculated following Nakagawa 2017 [17] for details, see Supplementary Methods). Values per parameter are included in
Supplementary Table 2. Together, the variance contributed by line and culture batch accounted for a median of 10% (IQR: 6.0-21%) of total
variance. C The explained variance calculated for all proteins in the proteomics dataset from neuron-glia co-cultures (top violin plot) and
neuron-only cultures (bottom violin plot). For co-cultures, median variance explained by culture batch is 14.8% and for line 9.4%. For neuron-
only cultures, the median variance explained by culture batch is 5.5% and 34.3% for line.

Estimation of the variance contributed by iPSC line and
culture batch

To obtain representative estimates of data variation, we quantified
variance in real experimental data obtained from three assays
commonly used in iPSC-based studies: mass spectrometry
proteomics (Fig. S1), morphological analyses using immunocyto-
chemistry (Fig. S2), and synapse physiology using patch-clamp
(Fig. S3). Measurements were taken from iPSC-derived neurons
from five different individuals (from here on referred to as ‘lines’)
and multiple culture batches. In a separate experiment, iPSC-
derived neurons that were differentiated by NGN2 expression
driven from a ‘Safe Harbour’ locus were recorded using patch-
clamp electrophysiology, which allows for controlled dosage of
NGN2 expression between neurons (Fig. S3, green boxplots).

Neurons were studied 6 weeks after differentiation. At this time
point, neurons had a mean dendrite length of 1107-1311 um, and
a mean synapse density of 0.0585-0.1146 synapses per um
(Fig. S2). Synapses were functional, showing spontaneous and
evoked responses as well as short-term plasticity (Fig. S3). Mass
spectrometry proteomics showed similar protein detection in both
culture conditions, with 4079 proteins detected in neurons of both
conditions, and 97% (4079 out of 4208) of the neuron-only
proteins detected in both conditions (Fig. S1C). After filtering for
synaptic proteins using SynGO [23], 658 out of 674 (i.e., 98%) of
synaptic proteins from neurons were detected in both conditions
(Fig. S1D).

Together, these datasets serve as pilot experiments to estimate
variance and subsequently perform power analyses to inform
future studies. The total variation per parameter was quantified by
the coefficient of variation (CoV, Supplementary table 1). A

SPRINGER NATURE

statistical comparison of the CoVs for all measured parameters in
neurons induced by lentiviral NGN2 expression or expression from
a ‘Safe harbour’ locus, revealed no significant difference in total
variation between these iPSC-lines (Fig. S4A). Figure S4 shows the
variance measured in the present study together with previously
published studies with similar culture methods and experimental
readouts for both mouse primary and iPSC-derived neuron
datasets (Fig. S4B-F).

We set out to quantify two known sources of variation in human
iNeuron studies: batch and line. The variation contributed by
multiple “culture batches” (Fig. 2A, B) was estimated as the
proportion of variance (R?) explained by culture batch [17]. For
morphological and synapse physiology parameters, the variance
contributed by culture batch varied substantially between
parameters, ranging from 0.2 to 13% (Fig. 2B; Supplementary
Table 2). For these datasets, glia feeder layers were included which
were previously shown to promote neuronal maturation [24-26].
However, glia feeder layers may also increase variance introduced
by culture batch. To assess this, neurons cultured with and without
glia were compared using proteomics. Indeed, PCA analysis
showed that 51% of the variance between the proteomics
samples was explained by culture conditions. Moreover, glia
feeders increased the variation contributed by culture batch
effects: with glia, culture batch R* was 15%, as opposed to 5.5%
without (Fig. 2C). Taken together, the different datasets show that
including multiple culture batches adds variation to the data (as
previously demonstrated: for review, see Volpato and Webber,
2020 [9]) and this source of variation should be considered in
statistical analyses (Supplementary textbox 1 and 2) by including
culture batch as covariate. In the context of a priori power

Molecular Psychiatry (2023) 28:1545-1556
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data, variance estimates can be obtained and used to calculate effect sizes. For Designs 1 and 3, intra-cluster correlation (ICC) values should be
taken into account. Power analyses for a wide range of study design scenarios can be performed using the freely available online application.

analyses, culture batch variation can be controlled for by mean-
centering the data before using the estimated (unknown) variance
to define the expected effect size (Fig. 3, Step 2&3), and including
culture batch as a covariate when estimating dependency in the
data (Fig. 3, Step 4).

Designs 1 and 3 include data from multiple independent donors
as another source of variation. As multiple neurons are derived
from the same donor, inclusion of multiple donors introduces
dependency in the data, i.e., dependency between data points
derived from the same donor (Supplementary textbox 1 and 2).
The degree of dependency is expressed as the intra-class or intra-
cluster correlation (ICC; Supplementary textbox 1). In our data
(Figs. S1-3), the ICC, i.e., the contribution of ‘iPSC line’ to the total
explained variance, differed substantially between data types and
specific parameters, ranging from 0.0 to 0.35 (Fig. 2B). Depending
on the number of observations taken from each iPSC line, even
limited dependency can result in inflated false positive rates or
lower power [5, 6]. Hence, including the estimated ICC in power
analyses is crucial to accurately determine the number of
independent iPSC lines to be included to achieve sufficient power
(Fig. 3, Step 4&5).

The variance estimates provided here for morphological,
electrophysiological, and proteomic parameters can be used as
a first guidance for power predictions of future iPSC-based studies.
As the contribution of independent iPSC lines and culture batches
to the total variance varies considerably between parameters,
assay types, and culture conditions, and may additionally vary as a
function of e.g., source material, donor characteristics, and
reprogramming methodology. Additionally, for certain assay
types, correction for multiple testing will affect the alpha level

Molecular Psychiatry (2023) 28:1545-1556

and thus alter the attainable statistical power. Thus, we created a
web tool delivering power curves for a wide range of parameter
settings. This tool enables iPSC researchers to perform a priori
power analyses using pilot data-derived parameter settings (Fig. 3,
Step 6) for each of these designs, while accounting for clustering
of the data points introduced by using multiple iPSC lines.
Additionally, the R-scripts used to perform our power simulations
can be downloaded from the web tool, allowing researchers to
tweak and add parameters to fit specific experimental circum-
stances and then perform customized power simulations for all
scenarios. In the next sections, examples of power calculations are
provided to illustrate the main determinants of statistical power
for the four different designs.

Power analysis for case-control designs

To predict the statistical power for Design 1, we performed power
simulations for a typical (hypothetical) case-control study: two
experimental groups with N number of independent iPSC lines
and n number of observations per independent iPSC line (Fig. 4A).
In a multilevel design, the power to detect mean differences on
the dependent variable between cases and controls depends not
only on N, n, and the effect size, but also on the ICC, i.e, the
similarity of observations taken from the same iPSC line [5]. To
select representative ICC values, the observed (batch-corrected)
ICCs from Fig. 3 were sorted in ascending order (Fig. 4B) and three
ICCs (low, medium, high) were chosen that cover the observed
range (0.01, 0.15, and 0.35). Effect sizes of the mean group
difference on the dependent variable were expressed as Cohen’s
d, which divides the difference between group means by the
pooled (batch-corrected) standard deviations. Notably, since effect
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size Cohen'’s d depends not only on the mean difference between
the two groups but also on the variation in the data, d can vary
considerably between experimental set ups and parameters. For
our power simulations, we selected effect sizes based on our
(batch-corrected) morphology data, specifically the parameter
‘Synapse Density’ corresponding to selected mean group differ-
ences of 15%, 50 and 70%. All power simulations were
subsequently performed using a simplified statistical model that
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Total # of observations

Total # of observations

did not include any covariates, i.e., as one would do for data which
are corrected for possible covariates like batch effects.

For each simulation scenario, the power to detect a mean
difference on the dependent variable between cases and controls
was estimated for an increasing number of total observations,
where the total number of observations is a function of the
number of independent iPSC lines N (either 2, 4, 6, 10, 20 or 50
lines per experimental group; Fig. 4C-K), and the number of
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Fig. 4 Power simulations to calculate statistical power of Design 1-type studies. A Schematic overview of the study design for the power
analysis. In this hypothetical scenario, two conditions (control and case) are compared. Within each condition, multiple individuals are
sampled. The statistical power is calculated by a simulation experiment (1000 simulations per scenario) varying the number of iPSC lines
(either 2, 4, 6, 10, 20 or 50 per group, i.e., 4, 8, 12, 20, 40 or 100 lines in total) and the number of observations per individual. To model a series
of scenarios, the simulations were performed for three representative ICC values. B ICC values (as shown in Fig. 3B) per parameter sorted in
ascending order. Three representative ICC values (reflecting low, medium and high clustering) were selected for the power simulation.
C-K Simulated power curves, showing the relationship between statistical power and the total number of observations (number of iPSC lines
times the number of observations per iPSC line).For each plot, the grey dotted line represents the cut-off value of 80% power. To assess
statistical power for a range of effect sizes, three scenarios were compared, in which the two groups showed a mean difference of 15% (small),
50% (medium) or 70% (large). Corresponding Cohen’s d values were calculated using these mean differences and measured variance of the
morphology parameter ‘Synapse Density’ (SD: 0.038) from the data example: 15% mean difference: d = 0.32; 50% mean difference: d =1.1;

70% mean difference: d = 1.54.
<

observations per line n. In each graph, the 80% power criterion is
indicated, as this is conventionally considered acceptable power.

As expected, simulations generally showed that the lower the
ICC and the larger the effect size, the higher the maximum power
with the same number of independent iPSC lines N and
observations n. In none of the scenarios, sufficient power was
reached to detect a mean difference of 15% based on our data
(Cohen'’s d of 0.32; Fig. 4C, F, I). Additionally, these simulations
indicate that studies with only 2 independent iPSC lines per
condition (dark red lines in Fig. 4C-K) are bound to fail to detect
real effects, except when dealing with (very) large effects and
parameters with low ICC values (ICC = 0.01; Fig. 4J, K). For medium
to high ICC values, in many instances the power has an asymptote
below 100% and thus reaches a point where adding more
observations n per line does not yield more power. Including more
independent iPSC lines (N) does, however, increase the maximum
attainable power, and sufficient power can be reached to draw
generalizable conclusions for disease modelling studies involving
genetically heterogeneous iPSC lines. The effect of increasing the
number of lines N is most noticeable for small effect sizes, but
observed for all effect sizes included: sufficient power to detect a
medium-sized effect in the context of a high ICC can only be
achieved by including a minimum of 10 independent lines per
condition, whereas with fewer lines, the power plateaus below
80% (Fig. 4D). Overall, and in line with previous studies (e.g [5]),
across all effect sizes and ICC values, the inclusion of more
independent iPSC lines N increases power more than inclusion of
more observations per line n. For the same total number of
observations (N*n), studies involving more lines consistently have
a higher power in all scenarios.

To assess the number of independent iPSC lines generally
included in iPSC-neuron case-control studies, we performed a
PubMed literature search in high-impact journals (Fig. S5). The
number of independent iPSC lines per condition ranged from 1 to
14, with a median of 3 independent iPSC lines per condition
(Fig. S5); 75% of the reviewed studies included 4 or less
independent iPSC lines per condition. Our power simulations
show that the majority of high-impact published iPSC
case-control studies have included a lower number of iPSC lines
than necessary to meet conventional power requirements.

Power analysis for isogenic designs

Next, power simulations were performed for Designs 2 A and B.
Similar to Design 1, (batch-corrected) data from synapse density
was used to apply realistic parameter settings for our simulations.
Since in these designs only a single founder iPSC line is included,
simulations were performed based on data both from the line
showing highest data variation (i.e., high variable line; C1 in
Figs. S1-3) and the line showing lowest variation (i.e., low variable
line; C2 in Figs. S1-3). The variance was kept equal between
experimental groups, based on the assumption that the variance
did not change due to experimental manipulations like the gene
editing process. For Design 2A, power was estimated for an
increasing number of observations between the two conditions
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showing a simulated mean difference of 15% (Cohen’s d of 0.29
for high and 0.43 for low variable line), 30% (Cohen'’s d of 0.58 for
high and 0.86 for low variable line) and 50% (Cohen’s d of 0.96 for
high and 1.43 for low variable line) (Fig. 5A-C). As expected, the
total number of observations required to reach 80% power
decreased when effect sizes increase. For the low variable line, 175
observations were required to achieve 80% power to detect a
mean difference of 15% (Cohen’s d of 0.43), and 35 observations
for a 50% mean difference (Cohen’s d of 1.43). The high variable
line required higher numbers of observations to reach the 80%
power cut-off, especially with smaller effect sizes; 400 observa-
tions for a 15% mean difference (Cohen’s d=0.29) and 100
observations for a 30% mean difference (Cohen’s d = 0.58). Thus,
power analysis in a single isogenic pair design scales with the
anticipated mean difference and with the intrinsic variability of
the founder iPSC line.

To illustrate the most important power considerations for
Design 2B, we performed simulations for a hypothetical design of
three conditions (e.g., control and two experimental conditions)
showing different combinations of mean effects. For a scenario in
which only one experimental condition had a 15% mean
difference to control, a total of 240 observations were required
for the low variable line (Fig. 5D). This was reduced to 60
observations for a 30% mean difference (Fig. 5E). When both
experimental conditions showed a 30% mean difference, the total
number of observations remained unchanged at 60 (Fig. 5F).
However, if one experimental group had a 15% mean difference,
in combination with a 30% mean difference for the other group,
the number of required observations increased to 80 (Fig. 5G),
which was higher than scenarios described in Fig. 5E and F. Thus,
in case of 3 conditions, inclusion of multiple groups that are
expected to show the same experimental effect size does not
change power, whereas including groups that are expected to
show differential effect sizes negatively impacts power to detect
an overall effect. As expected, a substantially higher number of
observations was required for the high variable line in all
scenarios. Thus, required observations to reach 80% power for
Design 2B did not only depend on the size of anticipated mean
differences and intrinsic iPSC line variability, as in Design 2 A, but
also on the pattern of mean differences between the experimental
groups.

Power analysis for multiple isogenic pairs

As shown above, experiments using isogenic lines (Designs 2 A
and 2B) are superior in terms of attainable power to case-control
designs (Design 1). However, because these Designs feature only 1
line, the results are limited in terms of generalizability of findings
compared to experiments using multiple genetically heteroge-
neous case and control iPSC lines. For example, the effect of a
genetic mutation can differ considerably between individuals as a
function of genetic background. As a paired design for multiple
isogenic lines, Design 3 combines the benefits of both approaches
(Fig. 6A). We performed simulations to assess the power for this
study design. Simulation parameters were selected that were
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Fig. 5 Power simulations to calculate statistical power of Design 2-type studies. A-C Design 2A describes a comparison within a single
isogenic pair. Simulated power curves are shown for three mean difference-scenarios. The corresponding Cohen’s d values were calculated for
an iPSC-line showing low variability (SDc; = 0.031; thick line) or high variability (SD¢; = 0.044; dashed). Corresponding Cohen’s d values: 15%
mean difference: d = 0.29 (high) and 0.43 (low); 30% mean difference: d = 0.58 (high) and 0.86 (low); 50% mean difference; d = 0.96 (high) and
1.43 (low). D-G For Design 2B, a hypothetical study was simulated with three experimental groups for the high- and low-variability iPSC lines,
as for Design 2A. Four scenarios were tested, comparing the impact of having a small (15%) or medium (30%) mean difference (D and E), and
the impact of including two groups with the same (F) or different (G) effect sizes.

previously used for the power simulations for Design 1: a high ICC
value (0.35), and either a medium (50% mean difference based on
our dataset; Cohen’s d = 1.1) or small (15% mean difference in our
dataset; Cohen’s d=0.32) effect size. Besides estimation of the
main effect of the introduction or repair of the genetic mutation
on the outcome variable, Design 3 allows the possibility to assess
whether the effect of the genetic mutation is the same in all lines,
or varies as a function of genetic background. Consequently, an
additional variance parameter can be estimated in this type of
design: the ‘slope variance’ (see Supplementary textbox 2), ie.,
variance in the effect of ‘Condition’ between different isogenic
pairs. To illustrate the effect of this variance parameter, four values
were included: a very small (almost negligible) variance (0.001); a
small (0.05) and a large (0.15) value, as previously used by (Aarts
et al,, [6]) based on guidelines of (Raudenbush and Liu, 2000 [27]),
and an extreme value (0.5). Simulation showed that for Design 3,
much higher power is achieved compared to Design 1 with a
limited number of iPSC lines. For instance, to detect a Cohen’s d of
1.1, 80% power can be achieved with 4 isogenic pairs even if the
slope variance is considerable (Fig. 6B-D), whereas power reaches
a plateau under the same input conditions in a Design 1 situation
even when a total of 12 lines (6 vs 6; Fig. 4D) is used. Thus, using
multiple isogenic pairs considerably improves statistical power
compared to a case—control design, limiting the number of lines
required to detect true differences. However, it should be noted
that this design does not improve power endlessly: to detect small
differences (e.g., a mean difference of 15%; Fig. 6F-I), power still
reaches a plateau, or a large number of observations is required to
reach sufficient power. Moreover, extreme values of slope variance
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compromise power substantially. However, such extreme slope
variation would likely compromise the interpretability of the
experiment as a whole, as it implies extreme differences in the
effects of the mutation in different genetic backgrounds. Our web
application includes a wider range of scenarios, paralleling the ICC
values and effect sizes also assessed for Design 1.

Statistical power considerations

Together, the power simulations in Figs. 4-6 illustrate several
general conclusions on the impact of different factors on statistical
power in iPSC-based disease modelling. First, of course the bigger
an effect size, the lower the number of independent iPSC-lines
and total observations needed to reach sufficient statistical power.
Second, including multiple iPSC-lines leads to dependency in the
data and results in a “power-plateau”: a point in the power curve
where adding more observations from the same lines does not
increase power (Fig. 4C—K). Instead, increasing the number of
independent iPSC-lines does increase the maximum attainable
power. Third, lower levels of dependency in the data (low ICC)
support a higher maximum attainable power with the same
number of iPSC-lines N and observations n (Fig. 4C-K). Impor-
tantly, including more lines increases not only the statistical power
to detect the experimental effect, but also the generalizability of
the results (Fig. 1). In contrast, in isogenic designs only one
founder iPSC-line is included. In this design, increasing the
number of total observations will increase statistical power but
generalization of findings is limited (Figs. 5A-C; 1). Fourth, in
isogenic designs, within-line variation should be taken into
account because higher within-line variability results in lower
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Fig. 6 Power simulations to calculate statistical power of Design 3-type studies. A Schematic overview of the study design. Several
independent iPSC lines are sampled and for each line, an isogenic ‘control’ is generated. Thus, two conditions (‘cases’ and ‘controls’) are
compared, while accounting for clustering in the data that is due to the use of multiple individual iPSC lines B-I The statistical power is
calculated by a simulation experiment (1000 simulations per scenario) as for Design 1 (Fig. 4), for the highest ICC value from Fig. 4 (0.35), the
high (SD¢; =0.044) and low (SD¢, = 0.031) variable lines as for Design 2 A, and two mean difference scenarios (50%: B-E; 15%: F-I). In
addition, four different slope variance values are tested: 0.001 (negligible); 0.05 (‘medium’; Aarts et al. 2015); 0.15 (‘high”: Aarts et al. 2015); 0.5

(‘extreme’).

statistical power for the same mean difference and sample size
(Fig. 5A-G). Fifth, for isogenic series, the statistical power is
affected by the pattern of means: inclusion of multiple groups that
are expected to show the same experimental effect size does not
affect power, whereas including groups with varying effect sizes
negatively impacts power to detect an overall effect (Fig. 5D-G).
Sixth, when using multiple isogenic pairs, the variance in the effect
of the experimental manipulation between different isogenic
pairs, such as gene editing, affects the statistical power. The lower
this random slope variance and the higher the effect size, the
higher the maximum power with the same number of indepen-
dent iPSC lines N and observations n (Fig. 6B-l). Lastly, for the
same ICC, number of observations, and effect size, using multiple
isogenic pairs results in substantially higher statistical power then
using a case—control design (Figs. 4, 6). Although the power
simulations presented here only cover a limited number of
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scenarios, these concepts are true for all possible combinations of
settings. Our online tool can be used to explore and visualize
these concepts for a wide range of scenarios.

DISCUSSION

In this study, we compared commonly used study designs for
iPSC-based disease modelling in terms of applicability for different
research questions, statistical analysis, and attainable power.
Variance estimates used in our power simulations were based
on original data from five independent healthy control lines for
immunocytochemistry, electrophysiology and proteomics. The
quantified variance was used to define the power analysis settings
by calculating effect sizes after mean-centering the data to correct
for culture batch variation (Fig. 3), determining a representative
range of ICCs for power analyses (Fig. 4B), calculating Cohen’s D's
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corresponding to selected mean-differences based on one
example parameter (namely, synapse density; Figs. 4-6), and to
determine representative within-line variances shown in Fig. 5.

Isogenic designs are very suitable to study effects of a particular
gene variant (Design 2A), or variants (Design 2B), while maintain-
ing the rest of the genetic background identical between
conditions, thus minimizing unsystematic variation and optimizing
the statistical power. These isogenic designs are especially suited
for, e.g., personalized medicine approaches, aimed at finding
customized treatments for individual patients in a clinical setting.
Moreover, a study based on isogenic lines may provide important
first insights into potentially relevant disease mechanisms that
may generalize to the broader patient population. As such,
isogenic experiments may serve as a case study to inform
subsequent studies aiming to generalize the conclusions to the
patient population. However, effects observed in a single genetic
background may not generalize to other circumstances. In order
to generalize to a patient group or population, inter-individual
variation needs to be incorporated in the study design.

Case-control study designs (Design 1) are suited for this
purpose, yet the clustering of data points introduced by obtaining
multiple measurements from different genetically heterogeneous
individuals has a considerable impact on the attainable statistical
power. Previously, gene expression studies indicated that donor-
specific differences account for a considerable proportion of the
overall variability [21, 28-34]. Consequently, several studies
conclude that iPSC-based studies benefit from including more
donors, rather than more clonal iPSC lines from the same
individual [21, 22, 29, 31, 35, 36]. Here, we extend the
characterization of variance contributions to functional synaptic
readouts and provide a quantification of the consequences of
inter-individual variance on statistical power for a range of
scenarios and study designs. In line with previous studies
[22, 36], we conclude that iPSC-based studies generally require a
high number of independent iPSC lines to observe true effects. If
the number of independent lines available is limited, there is a
constraint on the maximum effect size that can be reliably
detected. Importantly, adding more observations from a limited
number of independent lines does not improve statistical power
beyond a certain point. This observation has important ramifica-
tions for the feasibility of iPSC studies, since the addition of more
independent iPSC lines is typically (much) more costly and (much)
more difficult to realize than adding more observations per iPSC
line. In this light, analysing a series of isogenic pairs (Design 3)
within a study may prove an attractive novel approach. Because in
this design, the experimental effect is assessed within each iPSC
line, the variance between the iPSC lines does not impact the
power whereas it does for Design 1 studies, where the
experimental effect is assessed between iPSC lines. Thus, Design
3 capitalizes on the use of isogenic lines to reduce variation, thus
improving power on the one hand, while including multiple
genetic backgrounds to facilitate generalization on the other.
Taken together, iPSC studies can answer a range of research
questions and selection of the optimal study design is key to
optimizing the scientific impact of this technique.

The design considerations outlined in this paper and the web
tool and available R-scripts for a priori power estimation will help
researchers to choose the optimal design and statistical analysis
tailored to their research questions. Whilst the conclusions of this
study are tailored towards iPSC-based brain disease modelling
studies, the considerations regarding dependency in data and
statistical power also apply to other, non-iPSC-based experimental
designs, like experiments in vivo or in primary neuron cultures.
Performing a priori power analysis increases validity and
reproducibility of future experiments involving iPSC-derived
neurons and as such help realize the potential of this new
technique. The settings used for the power simulations presented
here, were based on variance analysis of several example data
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types obtained from a set of five heterogeneous iPSC lines.
Experiments using other data types or different cell types may
yield different statistical power, and thus may require researchers
to perform their own pilot studies to inform their study design.
Practical constraints may exist to the statistical power that can be
achieved. For instance, the use of a large number of iPSC lines or
the editing of multiple mutations may be challenging due to
limited resources (time, funding) or availability of iPSC lines. As the
field progresses, optimization of culturing and differentiation
protocols, customized matching of iPSC lines (on e.g. source
material, passage number, reprogramming method, donor age,
sex, ancestry) and implementation of standard operating proce-
dures, including quality controls, may reduce variation within and
between iPSC lines, thus improving attainable power. In addition,
accessibility of iPSC lines is increasingly facilitated by biobanking
initiatives, rendering large numbers of well-characterized, high-
quality iPSC lines widely accessible, facilitating researchers to use
iPSC lines that are optimally tailored to their research questions.
Such improvements are expected to reduce data variability and
increase scalability of iPSC-neuron experiments. Together with
rigorous study designs and appropriate statistical analyses, iPSC
technology can significantly advance scientific progress in brain
disorder modelling.

Limitations of the study

To inspire the power simulation settings in this study, we selected
five iPSC lines that differ in terms of source material, reprogram-
ming methodology and donor characteristics. More elaborate
experimental set-ups may include sets of donor iPSC lines
matched on these characteristics or characterize the contribution
of these different factors to overall power, or may involve a larger
number of iPSC lines. Nevertheless, the selected sample set
represents a likely scenario for the modelling of rare diseases, for
which access to patient donors may be limited, requiring
researchers to use previously sampled materials. The datasets
used here serve as a first guidance to estimate the relative
variance contributions, but after quantifying variance explained by
culture batch and line combined, more than 50% of the variance
in the data still remained unexplained. Therefore, additional
covariates could be identified and project-specific optimization
steps may be undertaken to reduce overall and between-line
variance, thus increasing statistical power. A wider range of
scenarios, including scenarios with lower variance, is represented
in our web tool. The power analyses in this study are based on the
specified statistical models, and assume data are corrected for
covariates and collected in a balanced fashion (i.e., acquiring equal
numbers of observations per iPSC-line). To allow researchers to
assess the attainable power for less frequently used study designs,
or for parameter settings different from the ones represented in
our web tool (e.g., different alpha-levels), the R scripts used for our
power simulations can be downloaded and customized.

DATA AVAILABILITY
The datasets (proteomics; confocal imaging; electrophysiology) are available from the
lead contact upon request.

CODE AVAILABILITY

The Matlab code used to analyse morphological data is publicly available via https://
www.johanneshjorth.se/files/SynD/ [16]. The in-house developed Matlab code used
for analysis of electrophysiological data and for the power simulations is available
upon request. MS-DAP 0.2.6.4 used for proteomics differential expression analysis
(DEA) is available at https://github.com/ftwkoopmans/msdap. The R code used to
perform the power curve simulations are available upon request. The web app,
including annotated scripts, described in this paper can be found at https:/
jessiebrunner.shinyapps.io/App_PowerCurves/.
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