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Neuroimaging-based subtyping is increasingly used to explain heterogeneity in psychiatric disorders. However, the clinical utility of
these subtyping efforts remains unclear, and replication has been challenging. Here we examined how the choice of neuroimaging
measures influences the derivation of neuro-subtypes and the consequences for clinical delineation. On a clinically heterogeneous
dataset (total n = 566) that included controls (n = 268) and cases (n = 298) of psychiatric conditions, including individuals
diagnosed with post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), and comorbidity of both (PTSD&TBI), we
identified neuro-subtypes among the cases using either structural, resting-state, or task-based measures. The neuro-subtypes for
each modality had high internal validity but did not significantly differ in their clinical and cognitive profiles. We further show that
the choice of neuroimaging measures for subtyping substantially impacts the identification of neuro-subtypes, leading to low
concordance across subtyping solutions. Similar variability in neuro-subtyping was found in an independent dataset (n = 1642)
comprised of major depression disorder (MDD, n = 848) and controls (n = 794). Our results suggest that the highly anticipated
relationships between neuro-subtypes and clinical features may be difficult to discover.
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INTRODUCTION

Psychiatric disorders labeled with a specific DSM diagnosis are
often marked by wide heterogeneity in symptom profiles [1]. For
example, post-traumatic stress disorder (PTSD), as defined in DSM-
5, includes thousands of distinct patterns across reexperiencing,
avoidance, mood and cognition, and hyper-arousal symptoms [2,
3]. At the neurobiological level, there has been an intense search
for neuroimaging patterns that differentiate diagnosed cases from
healthy controls. Much knowledge has been gained with these
case-control studies towards understanding neurobiology in
different psychiatric disorders, including but not limit to PTSD
[4-6], major depression disorder [7, 8], and anxiety disorders
[9, 10]. But limited insight has been gained towards translating
this knowledge into clinical utility, either for advancing diagnostics
or optimization of clinical care and outcomes. This gap can be
attributed to many factors, one of the most prominent being the
high heterogeneity of psychiatric disorders [11, 12]. Delineating
homogeneous clusters from clinically heterogeneous samples and
developing neurobiological markers for them could facilitate our
understanding of psychopathology and advance precision
treatment.

Because of this failure of translation of neurobiology to clinical
outcomes, recent efforts have been refocused on delineating this
connection in two ways. One is to search for clinical subtypes and
relate these to underlying neurobiological mechanisms [13, 14].

In this approach, subtypes are often defined using the partici-
pants’ clinical measures based on theory-driven methods (e.g.,
using psychological knowledges [13, 15]), or data-driven methods
using clinical measures for clustering analysis [14]. The neurobio-
logical differences between these defined subtypes are then
examined. The second approach is to create biologically defined
subtypes and then determine if these bio-subtypes are associated
with clinically meaningful clusters of patients [11, 12]. While the
second approach is often data-driven—using biological measures
as clustering features to define subtypes, note that hybrid
approaches which combining both theory-driven and data-
driven approaches are also proposed in the literature [11, 16].
Recently, there has been an increase in efforts with emphasis on
the second approach noted above; with studies combining
neuroimaging data and machine learning tools to generate
biologically-defined subtypes that would provide mechanistic
explanations and differentiate patterns of clinical symptoms
[11, 12, 17, 18]l. Using structural and functional magnetic
resonance imaging (fMRI) data, previous studies have identified
neuro-subtypes of PTSD [19, 20], major depression disorder (MDD)
[21, 22], schizophrenia [23, 24], and many other psychiatric
disorders [12]. These identified neuro-subtypes were shown to
exhibit distinct clinical/cognitive characteristics, facilitate case-
control discrimination, or respond differently to treatments,
suggesting potential clinical utilities of the neuroimaging-based
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subtyping. Despite this progress, however, promising reports of
clinically meaningful neuro-subtypes of MDD [21], PTSD [19], and
trauma-related resilience [25] were not replicated, or only partially
replicated, across studies. For example, in multiple attempts of
conceptional nonexact replications, Dinga et al. [26] did not
replicate MDD subtypes reported in Drysdale et al. [21], Esterman
et al. [27] did not replicate PTSD subtypes reported in Etkin et al.
[19], and Ben-Zion et al. [28] did not replicate trauma-related
resilience subtypes reported in Stevens et al. [25].

Identifying and reproducing clinically meaningful subtypes
across studies can be challenging. On the one hand, the identified
subtypes may not be internally validated and thus hard for
external generalization. Internal validation is critical for clustering
analysis since most clustering algorithms will generate cluster
solutions even when there are no underlying cluster structures
[26, 28, 29]. Some replication studies have demonstrated that
statistically significant subtypes may not be identified using
similar methodology as the original studies [26, 28]. Even if
significant subtypes are identified, further validations about the
clinical utility are required. Many studies identified subtypes with
distinct biological measures (which is expected since the subtypes
were defined based on these measures) but similar phenotypic
profiles (e.g., see [12] for review). And there is a trend that studies
demonstrating clinical utility tended to use less stringent
reproducibility validation strategy [12], suggesting the complexity
of the identification of clinically meaningful neuro-subtypes.

Another factor that can contribute to the difficulties in
replications is the variability of biological features used for the
clustering analysis [18, 30]. Different imaging modalities are
commonly collected in neuroimaging studies. And different
feature types from the same modality can be ascertained as
clustering features. For example, cortical thickness or brain
volumes from structural images, different white matter metrics
from diffusion tensor imaging, functional connectivity or Regional
Homogeneity (ReHo) [31] from resting-state fMRI data, activation
patterns of different contrasts from task fMRI data. In the
subtyping literature, a variety of features were used across studies,
usually without clear justifications [12]. These differences of
clustering features make it hard to compare results across studies.
How can we tell whether subtypes reported in two different
studies are capturing similar axis of heterogeneity of a psychiatric
disorder? To answer this question, it is important to know to what
degree does the choice of modalities and feature types impact the
identification of subtypes. One may argue that it is a truism that
different modalities and different measures from the same
modality have different clustering solutions. However, there is
clear evidence demonstrating links between different modalities,
e.g., structure-function coupling [32], and similarities between
measures derived from the same modality [33]. Therefore, it is
nontrivial to examine the concordance between subtypes
identified using different features. From the view of reproduci-
bility, a low concordance between subtyping solutions will inform
us to match clustering features as much as possible in replication
studies. However, to our knowledge, there is no study that has
systematically examined the impact of imaging features on the
identification of subtypes within the same sample.

In this study, we aimed to provide answers to the following
questions: 1) could internally valid subtypes be defined for
different neuroimaging modalities? 2) Do the modality-specific
subtypes have different clinical and cognitive profiles? 3) Is there
concordance in the identified subtypes? And 4) do alternative
clustering methods lead to similar observations? To answer these
questions, we conducted multiple analyses on a clinically
heterogeneous neuroimaging dataset (n = 566) to examine how
the choice of neuroimaging measures influences the derivation of
subtypes and investigated the clinical characteristics of the
identified subtypes. We performed similar analyses on an
independent imaging dataset (n=1642) of participants with
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Major Depressive Disorder (MDD) to examine whether the answers
to the questions listed above on this dataset are similar with those
we observed on the main dataset.

MATERIALS AND METHODS

Participants

We analyzed a clinically heterogeneous neuroimaging dataset that
includes a total of 566 participants from the NYU Cohen Veterans Center
cohort [19, 20]. The dataset included individuals with no current psychiatric
diagnosis (healthy controls, n =268) and cases (n =298) diagnosed with
the trauma-related conditions of PTSD (n = 79), traumatic brain injury (TBI,
n = 168), or comorbidity of both (PTSD&TBI, n = 51). The participants were
recruited at New York University (n=356) and Stanford University
(n=210). All participants were combat veterans. All participants provided
informed consent before their participation and procedures were
approved by both institutions’ Institutional Review Boards. Subsets of
the dataset were used in our previous studies with different research
objectives. Specifically, Etkin et al. [19] used the data as a validation set for
the identified memory-deficit PTSD subgroup, and Maron-Katz et al. [20]
used the data to define PTSD subtypes using abnormal resting-state
functional connectivity. The objective of this study is different from the
previous studies. Here, we examined the validities of different modality-
specific subtypes, and impact of analysis choices on the identified
subtypes.

Neuroimaging data acquisition and preprocessing

Participants underwent multiple scanning runs including a resting-state
run, a task-fMRI run, and a structural run. During the resting-state run
(which lasted 8 min), the participants were instructed to remain awake and
look at a fixation on the screen. During the task-fMRI run, the participants
underwent a well-established emotional conflict paradigm [34, 35]. During
the structural run, a high-resolution T1-weighted structural scan was
acquired. Participants were scanned either using a 3.0 Tesla Siemens
Magnetom Skyra scanner at NYU or a GE 750 scanner at Stanford
University using the same scanning parameters (see Supplementary
Materials). The structural images were preprocessed using the Computa-
tional Anatomy Toolbox (CAT12) [36], and the functional images were
preprocessed using fMRIPrep 20.0.2 [37] (see Supplementary Materials).

Feature extraction for clustering

Structural measures. Regional volumes were extracted using the neuro-
morphometrics atlas in CAT12. This atlas comprises 134 regions of interest
(ROIs) from grey matter, white matter, and cerebrospinal fluid. The total
intracranial volume (TIV) was regressed out from the regional values. These
extracted values were concatenated to a 134-dimensional vector for
clustering analysis.

Task-fMRI  measures. Participants underwent a validated emotional
conflict paradigm during fMRI scanning [34, 35]. The contrast map of
conflict detection was used for the clustering analysis (see Supplementary
Materials). The contrast was defined as the incongruent trials (‘I') versus
congruent trials (‘C’). To reduce the feature number, we used regional
activations instead of voxel activations as features. A 442-region whole-
brain parcellation consisting of 400 cortical regions [38], 32 subcortical
regions [39], and 10 cerebellum regions [40] was used to extract regional
activation measures. We used this combination of atlases because they
provide good spatial resolution in reflecting the functional boundaries
across brain regions and are widely used in the literature. Therefore, a 442-
dimensional vector from each subject was used for clustering.

Resting-state measures. For each participant, the mean time series were
extracted based on the above mentioned 442-region whole-brain
parcellation. Pearson correlation was calculated between the time series
of every two regions, which resulted in a 442 x 442 functional connectivity
(FC) matrix for each participant. The matrixes were transformed using
Fisher's r-to-z transformation and then averaged across rows to obtain
regional connectivity values. This resulted in a 442-dimensional vector
representing a whole-brain resting-state FC pattern for each participant,
which was used for clustering.

Covariates correction.  Since the neuroimage data were collected from two
different sites, we further used the ComBat harmonization method [41] to
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correct the effect of sites on each data modality. The ComBat
harmonization method is widely used for correcting site effects in
neuroimaging studies. It was initially introduced for diffusion tensor
imaging measures [41] and subsequently been applied to structural and
functional MRI data [42, 43]. ComBat harmonization was separately
conducted for structural, task-fMRI, and resting-state measures across the
entire dataset (i.e., including all controls and cases). The biological variates
that were protected for during the removal of site effects including
diagnosis, age, and sex. An empirical Bayes procedure with parametric
priors was performed for the harmonization model estimation. We also
regressed out the age and sex effects from the features before conducting
clustering analysis.

Subtyping with K-means clustering

K-means. The K-means clustering algorithm from scikit-learn toolbox [44]
was used to cluster participants into subtypes based on their structural
measures, task-fMRI measures, or resting-state measures. Clustering was
separately run on features from each modality, with the cluster number k
varying from 2 to 9. The final cluster number for the analysis was
determined using the Calinskin-Harabasz score and silhouette score [45].

Significance of the subtypes. The K-means algorithm will generate a
clustering solution even if there is no underlying cluster structure. Thus it is
important to test if the identified subtypes can be observed in
unstructured data. We used the SigClust approach proposed by Liu et al.
[29] to test the significance of the subtypes. This approach uses a Monte
Carlo procedure to test if the observed data can be modeled as coming
from a single multivariate Gaussian distribution. This method assumes
under the alternative that the data are distributed as a mixture on
multivariate normal distributions, each component of the mixture
corresponding to a cluster. The null hypothesis is that the data is not a
mixture- it is a single multivariate normal distribution. Failing to reject the
null implies there are no underlying clusters.

Stability of subtypes. A stable clustering solution should be robust to small
perturbations of the dataset, such as removing a subset of subjects from
the clustering procedure. We evaluated the stability of the subtypes by
resampling the data, reidentifying the clusters, and examining the effect of
the data perturbation on the cluster memberships. Specifically, we
randomly selected 80% of participants from the whole dataset, and rerun
the K-means clustering with the same settings to cluster participants into
2 subtypes. We repeated the procedure 100 times to produced different
subtyping solutions. We then calculated the adjusted rand index (ARI) and
adjusted mutual information (AMI) between every two subtyping solutions
within the participants that occurred in both resampled sets. The ARI and
AMI are standardized measures usually ranging from 0 to 1. The values of
both measures that are close to 1 represents a high concordance between
the two clustering solutions, i.e., two individuals in the same cluster in one
clustering solution have a high probability of being together in the other
clustering solution. The values close to or smaller than 0 represent that the
two clustering solutions do not have this property. Note that the ARI and
AMI values can be related to the degree of data perturbation, where larger
data perturbation usually results in lower ARI/AMI values.

Separability of clusters. We used a recently proposed selective inference
approach [46] to test the separability of the identified subtypes. This
approach tests the difference in means between clusters identified via
K-means. A significant difference in means between subtypes suggests
that the subtypes are distinct from each other in their neuroimaging
patterns. It is biased to test the difference in means of clusters using
classical statistical methods because the clusters are not random samples
from predefined populations. Rather, they are produced by the K-means
algorithm. The Chen and Witten method [46] corrects for this issue.

Feature differentiation. We conducted a post-clustering difference test to
examine the subtype differences feature by feature, i.e., which features
were significantly separate the identified subtypes from each other for
each modality. A classical statistical test, e.g., two-sample t-test, is also
biased in this situation, because the double use of the data (features were
used for clustering and feature-level statistical test) leads to the failure of
controlling the Type | error rate. We used a recently proposed post-
clustering difference testing procedure that accounts for the clustering
process, and better controls the Type | error rate than classical statistical
methods [47].

SPRINGER NATURE

Differences in clinical and cognitive measures between
subtypes

We examined 31 different psychometric measures, including 20 clinical-
related measures, and 11 neurocognitive measures estimated using
participants’ behavioral metrics across multiple tasks [48]. We used the
two-sample t-test to compare the clinical and cognitive measures between
subtypes. Different from the neuroimaging features, the clinical and
cognitive measures were not used for defining the subtypes, the two-
sample test was non-biased here. Multiple comparisons were corrected
using the false discovery rate (FDR) correction. The confidence intervals of
effect sizes (Cohen'’s d) were estimated using bootstrap resampling (1000
times).

We further examined the clinical/cognitive profiles using continuous
subtyping assignments, a strategy similar to previous study [49]. The
rationale behind this analysis is that continuous assignments may better
capture individual variations than discrete assignments of individuals to
one of the subtypes. For example, for individuals whose features lie near
the boundary of the two different subtypes, a small change of their feature
patterns may alter their discrete subtype assignments. In contrast, the
continuous assignment scores which measure the similarities between
these feature patterns and the subtype centroids will remain relatively
stable. The procedure of this analysis is as follows. First, we obtained the
mean pattern of each subtype (i.e, centroid of each clustering group)
using K-means clustering. Second, we calculated Pearson’s correlation
between each participant’s feature pattern (e.g. regional volumes for
structural-based clustering) and the centroid of each subtype. This
provided a subtype score that quantified the similarity between the
participant’s feature pattern and the corresponding subtype pattern/
centroid. The subtype score is a continuous measure ranges from —1to 1,
where —1 indicates the participant’s feature pattern is totally different
from the subtype centroid, and 1 indicates a perfect match with the
subtype centroid. Since we identified two subtypes for each modality, we
obtained 2 subtype scores (one for subtype 1, one for subtype 2) for each
participant. Third, we calculated the correlation between each subtype
score and clinical/cognitive measure across participants. A significant
correlation indicates that similarity to the subtype is associated with the
corresponding clinical/cognitive measure. We separately conducted the
above procedure for each modality.

In addition to analyzing clinical and cognitive profiles between subtypes,
we also examined whether subtyping could enhance performance in
distinguishing cases from healthy controls using neuroimaging measures
(See Supplemental Materials for details).

Consistency of subtypes defined using different feature types
For participants that were assigned to the same cluster/subtype based on
one modality (e.g. structural volume), we examined the percentage of
them that were still assigned to the same cluster based on another
modality (e.g., task-fMRI activation, or resting-state FC). We further
calculated the ARI and AMI between clustering solutions obtained using
features from two different modalities. A high ARI/AMI value (close to 1)
indicates that participants were similarly clustered across modalities.

Similar analyses were conducted between clustering solutions based on
different features extracted from the same data modality. For the structural
data, instead of using the regional volumes extracted via CAT12, we used
another feature type that was commonly used in the literature—cortical
thicknesses extracted via Freesurfer 5.0 to define two subtypes. For the
task-fMRI activation data, we used another activation contrast that was
used to examine neural mechanisms of conflict resolution for the
clustering. The contrast was defined as the incongruent trials preceded
by incongruent trials (‘il') versus incongruent trials preceded by congruent
trials (‘cl’). For resting-state FC, we used another nuisance regression
strategy before connectivity estimation. In addition to the nuisance
regressors used in the main analysis, we included the mean whole-brain
signal as a nuisance regressor in the analysis. The inclusion of this global
signal regression (GSR) step is debated in resting-state fMRI literature
[50, 511, while many studies suggested that GSR may provide advantages
over preprocessing without GSR (e.g., [52, 53]).

Similar analysis on another dataset

We conducted additional analyses on another large neuroimaging dataset
from the REST-meta-MDD Project [54]. The objective of the analysis was
not to directly compare subtypes identified from different datasets or
disorders, but to examine if the main observations from the main dataset
still hold on another dataset. These observations include: 1) limited
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difference in clinical measures between subtypes; 2) low concordances
between clustering solutions using different features. We used the REST-
meta-MDD dataset because 1) The heterogeneity of MDD is well-
documented and there are many subtyping studies for MDD; 2) The
REST-meta-MDD dataset contains a large number of participants; 3) The
REST-meta-MDD dataset provides data preprocessed with a standardized
pipeline, significantly reducing the computational load.

We focused on the participants used in a previous study [55], which
including 848 MDD patients and 794 individuals without MDD (health
controls). Since no task-based fMRI were available, we only focused on
examining the impact of different features estimated using the resting-state
fMRI data. Future studies should examine the utility of different imaging
modalities. Three different kinds of features were extracted for the clustering
analysis: functional connectivity (Conn), ReHo [31], and fractional amplitude
of low-frequency fluctuations (fALFF) [56]. The Harvard-Oxford atlas was used
to extract regional feature values for the K-means clustering. Note that we
did not use the 442-region atlas as in the main dataset because the REST-
meta-MDD dataset only provided estimated functional connectivity matrixes
rather than raw data, so we could not use the 442-region atlas. Only data
from the MDD patients were used in the clustering analysis. We identified
two subtypes based on Conn, ReHo, or fALFF features, respectively. The
cluster number was set to two because a previous subtyping study [22] on
the REST-meta-MDD dataset suggested that two was the optimal cluster
number. For clinical measures, we focused on the Hamilton Depression

A D
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0.8
0.6

04

Score value

0.2

Structure-based subtype

0.0

Z. Wen et al.

Rating Scale (HAMD), a widely used depression assessment scale. The HAMD
was the primary clinical measure in the REST-meta-MDD dataset, with data
available from the majority of MDD patients. We also examined the Hamilton
Anxiety Rating Scale (HAMA) and illness duration for a subset of patients
whose data were available.

RESULTS

Can internally valid subtypes be defined for different
neuroimaging modalities?

We first examined if internally valid bio-subtypes could be derived
from each of those neuroimaging modalities: 1) structural data, 2)
task-fMRI data, and 3) resting-state fMRI data. We constructed the
subtypes based on the cases population (n=298) as most of
previous unsupervised subtyping studies did [12]. We set the
cluster number to 2 as suggested by the Calinskin-Harabasz score
and silhouette score (Figure S1). The K-means algorithm identified
two subtypes for structural features (labeled S1 and S2), task-
fMRI features (labeled T1 and T2), and resting-state features
(labeled R1 and R2), respectively. These modality-specific subtypes
were comprised of a similar proportion of the three diagnostic
groups (PTSD, TBI, or PTSD&TBI; Fig. 1A-C): ST (28%, 52%, 20%),

Diagnosis Subtype 1.0
0.8
0.6

04

Score value

0.2

Task-based subtype

0.0

ARI

N
AMI 04  Cohen'sd 1.2

Diagnosis Subtype 10
08

0.6

0.4

Score value

0.2

Rest-based subtype

0.0

ARI

—
AMI 00  Cohen'sd 14

ARI

AMI

E—
04  Cohen’sd 238

Fig. 1 Subtypes identified use a single modality of neuroimaging data. A-C Diagnoses distribution across the modality-specific subtypes.
For each modality, the Sankey diagram depicts subtype assignments for participants from the three diagnose groups (PTSD, TBI, and
PTSD&TBI). D-F Stability measures of the modality-specific subtypes. For each modality, the adjusted rand index (ARI) and adjusted mutual
information (AMI) values were estimated between clustering solutions on resampled data (80% participants, without replacement, 100 times).
Bounds of the box represent the 1st (25%) and 3rd (75%) quartiles, the central line represents the median, the whiskers represent the values
within 1.5 times of the interquartile range, the flier points represent outliers falling beyond the whiskers. G-l. Differences in the modality-
specific patterns between the two subtypes. For each regional measure, the statistical difference between the two subtypes was tested using
the post-clustering difference testing procedure proposed by Hivert et al. [47]. The effect size (Cohen’s d) of each region was reported.
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S2 (25%, 60%, 15%), T1 (27%, 53%, 20%), T2 (26%, 60%, 14%), R1
(26%, 57%, 17%), R2 (28%, 56%, 16%).

Next, we examine the internal validity of the identified
modality-specific subtypes from four different aspects. First, we
assessed the ‘significance of clustering’ using the SigClust
approach [29]. This analysis showed a preference for the existence
of subtypes for all 3 modalities (prpr< 0.001). Second, we tested
the stability (or reproducibility) of the subtypes using a resampling
and re-clustering approach. All three modalities resulted in high
ARl and AMI across the resampling procedure (Fig. 1D-F),
suggesting that the constituents within each of the subtypes are
stable under perturbations to the data. Note that stability does not
imply separability, it is possible to get very stable clustering
solutions from continuous data that are not separatable. Third, we
tested the separability of clusters using a selective inference
approach [46]. This test showed that the multivariate mean
vectors of the two clusters were significantly different for all 3
modalities (structure-based: prpr = 0.0015; task-based: prpr = 4.7
E-25; rest-based: prpr = 7.4E-70). Fourth, we examined the feature
differentiation between subtypes using a post-clustering differ-
ence testing [57]. This analysis demonstrated that the modality-
specific subtypes significantly differed across most of the regions
examined (pgpr< 0.05; 90% regions for S1 vs. S2; 99% regions for
T1 vs. T2; 100% regions for R1 vs. R2; Fig. 1G-I). Overall, these
analyses suggest that the identified neuro-subtypes are internally
valid and likely reflect the heterogeneity of the neuroimaging
data. Note that because of the limitations of the testing methods,
e.g., required assumptions may not be fully met, these analyses
only provided evidence but do not guarantee the separability of
the identified subtypes. Internal validations of clustering results
are challenging in settings without ground truth, the external
validations with measures not used in the clustering analysis are
needed.

Do the modality-specific subtypes have different clinical and
cognitive profiles?

We compared 31 different clinical and/or cognitive features
between modality-specific subtypes. For the structure-based sub-
types (Figure S2A), we found significant differences between S1 and
S2 in their Beck Depression Inventory scores (BDI, Puncorrected =
0.024) and Emotion ldentification scores (Puncorrected = 0.039). For
the task-based subtypes (Figure S2B), we found significant
differences between T1 and T2 in physic abuse scores on the Early
Trauma Inventory (ETI_Phy_Abuse, puncorrected = 0.026). For the rest-
based subtypes (Figure S2C), we found significant differences
between R1 and R2 in their total scores of Early Trauma Inventory-
Self Report (ETISR, puncorrected = 0.046), general trauma scores on
the Early Trauma Inventory (ETI_Gen_Trauma, Puncorrected = 0.005),
BDl  (Puncorrected=0.037), and Sustained Attention scores
(Puncorrected=0.045). However, none of the above-mentioned mea-
sures survived correction for multiple comparisons (prpg> 0.10).
Comparing the measures between subtypes only within individuals
with PTSD or TBI resulted in similar findings (prpr> 0.10).

We further explored if continuous rather than discrete subtype
assignments better capture the associations between neuroima-
ging data and clinical/cognitive profiles (Figure S2D). In this
analysis (Figure S2E), we found significant correlations between
S1-score and BDI (r=—0.14, Puncorrected = 0.043), T1-score and
Emotion Identification score (r=0.13, Puncorrected = 0.033), R2-
score and Flexibility score (r=0.16, puncorrected = 0.010). But as
before, none of the above-mentioned measures survived correc-
tion for multiple comparisons. (prpr>0.10). We conducted a similar
analysis across the whole sample (all cases). Specifically, we
calculated the centroid by averaging feature patterns of the whole
sample, and then calculated Pearson’s correlation between the
centroid and each participant's feature pattern. This similarity
score was used to assess its correlation with clinical/cognitive
measure across participants. The analysis did not reveal significant
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correlations for any modality (all p-values > 0.05 without multiple
comparison corrections). In addition, the classification analyses
suggested that subtyping did not improve the ability to
distinguish cases from controls (Figure S3).

Is there concordance in the identified subtypes?

First, we examined whether the participants clustered into the
same subtype in one modality (e.g., structural measure) were also
clustered together in another modality (e.g., task-fMRI). The
compositions of the subtypes were quite different across
modalities (Fig. 2A). For example, 44% and 56% of individuals in
task-based subtype 1 (T1) were clustered as structure-based
subtype 1 (S1) and structure-based subtype 2 (S2), respectively.
And Individuals in rest-based subtype (R1) were almost evenly
composed of individuals from T1 (50%) and T2 (50%). To
quantitatively measure the concordance of different modality-
specific subtypes, we calculated the ARl and AMI between subtype
assignments across every two modalities. We observed that both
ARl and AMI values were near zero in all scenarios (Fig. 2B),
suggesting low concordance of the identified subtypes across
modalities. The results remained consistent when using cortical
thickness instead of regional volume to identify structure-based
subtypes (Figure S4).

Second, we further investigated how the choice of features
within a modality could impact the subtyping results. For the
structural data, instead of using the regional volumes, we used
cortical thicknesses to define two subtypes (labeled St1 and St2).
Interestingly, the components of St1 and St2 did not match the
subtypes defined using regional volumes (ST and S2), with St1
(St2) composed of 47% (38%) individuals from S1 and 53% (62%)
individuals from S2 (Fig. 2C). The ARl and AMI measures between
the two different subtyping solutions were less than 0.1, indicating
low concordance. Similarly, for subtyping using task activations, a
different task contrast from the same task paradigm also led to
different subtypes (labeled Tr1 and Tr2), as demonstrated by the
low to moderate ARl and AMI measures (<0.25, Fig. 2D). For
subtyping using resting-state functional connectivity, we again
observed inconsistent subtypes across the two processing options
(with or without GSR), with the ARl and AMI measures below 0.1
(Fig. 2E). These results suggest that even using data from the same
neuroimaging modality, selecting different feature types as input
for the cluster algorithm could lead to very different subtypes.

Do alternative clustering methods lead to similar observations
of limited concordance across subtypes?

We used K-means as the main clustering algorithm. Although
K-means is widely used in neuroimaging-based subtyping, a
downside of this approach is that it does not incorporate the
diagnosis information into the model. To address this limitation
and potentially identify diagnosis-related subtypes, we conducted
additional analyses using a recently proposed semi-supervised
clustering method—Heterogeneity through Discriminative Analy-
sis (HYDRA) [58, 59]. Instead of directly clustering cases based on
their neuroimaging data, HYDRA clusters cases by maximizing the
separation between healthy controls and the case subtypes. We
conducted HYDRA-based clustering on each of the three
modalities (see Supplementary Material). As shown in Fig. 3A,
HYDRA achieved moderate to high ARI/AMI across the resampled
data, suggesting stable subtyping solutions. In addition, HYDRA-
based subtypes showed moderate to high concordance to those
subtypes identified using K-means (ARI/AMI>0.45, Fig. 3B),
suggesting good consistency across clustering methods within
each modality. However, similar to the solutions of K-means, the
between-modality consistencies of the HYDRA-based subtypes
were low between every two modalities (ARI/AMI < 0.1, Fig. 3C).
We did not observe significant differences in clinical/cognitive
measures between subtypes identified using each of the modality
data after multiple comparison corrections (all pgpg > 0.10).
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Fig. 2 Low consistency of subtyping solutions between and within data modalities. A Subtype solutions across modalities. The Sankey
diagram depicts different subtype assignments across clustering solutions for the three data modalities. B Between modalities consistency of
the identified subtypes. The adjusted rand index (ARI) and adjusted mutual information (AMI) values were estimated between clustering
solutions derived using different data modalities. C-E Consistency of the subtypes using two different feature types from the (C) structural, (D)
task-based, or (E) resting-state data. For each data modality, the ARI and AMI values were estimated between clustering solutions derived
using two different clustering features. Bounds of the box represent the 1st (25%) and 3rd (75%) quartiles, the central line represents the
median, the whiskers represent the values within 1.5 times of the interquartile range, the flier points represent outliers falling beyond the
whiskers.
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Fig.3 Subtyping using alternative methods. A Consistency of subtyping solutions for each modality of data by using Heterogeneity through
Discriminative Analysis (HYDRA). For each modality, the adjusted rand index (ARI) and adjusted mutual information (AMI) values were
estimated between clustering solutions on resampled data (80% participants, without replacement, 100 times). B Consistency of subtypes
between K-means and HYDRA. The ARI and AMI values were estimated between clustering solutions derived using K-means and HYDRA.
C Consistency across data modalities for HYDRA-based subtypes. The ARI and AMI values were estimated between clustering solutions
derived using different clustering features. Bounds of the box represent the 1st (25%) and 3rd (75%) quartiles, the central line represents the
median, the whiskers represent the values within 1.5 times of the interquartile range, the flier points represent outliers falling beyond the
whiskers.

Qualitative confirmation from an independent dataset

We have shown that different modalities/features separately
identify internally valid subtypes with similar clinical/cognitive
profiles, and the concordance between subtypes derived from
different modalities/features was low. Are these observations
specific to the dataset we examined? We qualitatively replicated
these findings using data from the REST-meta-MDD Project [54].
We separately identified subtypes using three different feature
types: Conn, ReHo, or fALFF, and compared their available clinical
measures. The HAMD measures were not significantly different
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between the ReHo-based subtypes (p = 0.52, Cohen’s d = 0.05), or
between the fALFF-based subtypes (p =0.76, Cohen’s d = 0.02).
Although the HAMD measures were different between the Conn-
based subtypes (Fig. 4A, p=0.020, Cohen’s d=0.19), this
comparison did not survive the correction for multiple compar-
isons (corrected for three feature types, FDR-corrected p = 0.061).
For all feature types, the identified subtypes were not significantly
different in their HAMA and illness duration (all p-values > 0.12).
The subtypes were reproducible across data perturbations for
each feature type (Fig. 4B), while the consistency of subtype
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Fig. 4 Subtyping analysis on the external validation dataset. A Differences on the Hamilton Depression Rating Scale (HAMD) between
subtypes identified using variants of features extracted from resting-state data. B Stability of subtypes identified with each type of feature. For
each feature type, stability was estimated by calculating the adjusted rand index (ARI) and adjusted mutual information (AMI) between
clustering solutions on resampled data (80% participants, without replacement, 100 times). C Consistency of subtypes identified using
different types of features. The ARl and AMI values were estimated between clustering solutions derived using different clustering features.
Bounds of the box represent the 1st (25%) and 3rd (75%) quartiles, the central line represents the median, the whiskers represent the values
within 1.5 times of the interquartile range, the flier points represent outliers falling beyond the whiskers. *p < 0.05.

assignments between different feature types was low (ARI/
AMI < 0.2, Fig. 4C). We also conducted the classification analysis
on discriminating the two subtypes from healthy controls, which
indicated that subtyping did not improve classification perfor-
mance in this dataset (Figure S5). Overall, these results from this
completely independent dataset with a different diagnostic group
were consistent with those obtained from our main dataset.

DISCUSSION

We conducted subtyping analyses based on different neuroima-
ging features extracted from a sample of heterogeneous cases
diagnosed with PTSD and/or TBI and healthy controls. We
identified internally validated subtypes on the cases (i.e,
combination of PTSD, TBI, and PTSD&TBI) with good separation
and compactness from structural, task-based, and resting-state
features. Although neurobiologically distinct, the clinical and/or
cognitive profiles of these subtypes were not significantly different
after correcting for multiple comparisons, and the subtyping did
not improve case-control classification performance. Importantly,
the composition of cases within the subtypes identified using one
neuroimaging modality was very different from those identified
by another imaging modality. Moreover, different feature types
extracted from the same imaging modality led to distinct
subtypes. We observed similar patterns of results from another
independent dataset. Collectively, our results suggest that while
internally validated and neurobiologically distinct subtypes could
be generated using a given neuroimaging modality, the choice of
clustering input may lead to high variability in neuroimaging-
based subtyping.

Significance and stability of the clustering solutions are
important properties to be tested for internal validation of
subtyping analyses. Significance test assesses if the identified
subtypes can be observed even in unstructured data (i.e, no
underlying clusters). Stability test assesses if small perturbations of
the data will largely change the cluster solution. In our analyses, all
the identified subtypes met these internal validation criteria, and
the subtypes were consistent across clustering methods, suggest-
ing that these subtypes do capture the heterogeneity of the
neuroimaging data. However, these significant and stable
modality-specific subtypes showed very low consistency across
modalities or feature types, such that pairs of individuals in the
same subtype in one modality are not necessarily in the same
subtype in another modality. Furthermore, different feature types
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extracted from the same neuroimaging modality could lead to
distinct subtypes, which makes the identified subtypes highly
specific to the analytic strategy, and thus less reproducible. Similar
variabilities were observed in previous studies, where the authors
found that activations from different tasks [60], or functional
connectivity from different networks [49], resulted in variants of
subtypes in healthy controls and patients. Together, these results
highlight the importance of considering the variability in
neuroimaging-based subtyping analysis within the context of
reproducibility.

Clinical utility is a key aspect of subtyping [12, 61]. Distinct
subtyping solutions based on different features can be meaningful
if they capture different clinical aspects of data. On the other
hand, even for highly reproducible subtypes, their clinical utilities
are limited if they do not guide or inform clinical practices. In our
analyses, we observed limited differences in clinical and cognitive
profiles between subtypes identified using either data modality.
Although there were some between-subtypes differences in the
examined measures under liberal statistical thresholds, the effect
sizes were very small, which has limited potential impacts on
clinical practices. Similarly, we did not observe advantages of
subtyping to improve neuroimaging-based diagnostic accuracy in
distinguishing cases from controls. The limited clinical differences
between subtypes are not uncommon in the literature. The
reported associations between neuroimaging-based subtypes and
clinical profiles were usually small to moderate, and even weaker
on replication datasets [49]. These effect sizes may also be inflated
by publication bias [62], as studies do not replicate previous
results or do not find clinically meaningful subtypes are harder to
be published. As reviewed recently, only a small portion of
biologically identified subtypes in the literature showed potential
for their clinical utility [12]. With the increasing availability of
different data modalities, we have more analytical flexibility in our
subtyping strategies. This large variability of subtyping analysis
might increase the false positive rates in reporting clinical
differences between identified subtypes, which requires attention
and caution in interpreting subtyping results.

There are several potential explanations for the observed
subtyping variability and limited between-subtypes clinical
differences. First, the low reliability of neuroimaging-based
features may increase variability across modalities. Although the
anatomical measures are reliable across scanning sessions, the
test-retest reliabilities of functional connectivity and task-based
activations are much lower [63, 64]. Second, the clinical and
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cognitive measures could be noisy. Although clinical measures
from structured interview with clinicians (e.g., CAPS for PTSD) have
strong interrater and test-retest reliability, the reliability of both
self-report and cognitive task measures is imperfect [65, 66], which
will likely impact the detection of brain-behavior associations [67].
Third, we only examined a limited number of clinical/cognitive
measures, most of which were summary scores. It is possible that
the subtypes differed in some specific clinical/cognitive domains/
subdomains that were not captured by the measures we used.
Fourth, although the subtypes exhibited similar cross-sectional
clinical/cognitive profiles, they may diverge longitudinally. The
subtypes might also be different in their treatment responses (e.g.,
refs. [21, 68]), which could not be captured in cross-sectional
studies. Longitudinal studies with a wide range of symptom
trajectories (e.g., [69, 70]) are needed to advance our under-
standing of biologically identified subtypes. Fifth, clinically
relevant signals might be obscured by other factors such as
demographic differences and/or structured noise. These factors
may be difficult to identify and be removed, thus limit the ability
to delineate clinical-relevant heterogeneity in clustering analysis.
Sixth, the effect sizes of between-subtypes clinical differences can
be small, necessitating larger samples from a more diverse source,
such as different trauma types of PTSD, to detect the biological-
clinical associations. Although the sample sizes we used here are
comparable or larger than most neuroimaging-based subtyping
studies, recent study has demonstrated that thousands of
individuals may be required in some cases to estimate reprodu-
cible brain-behavior associations [71]. The objective of this study is
not to dispute the existence of neuro-subtypes; rather, we aimed
to demonstrate the difficulty in identifying clinically meaningful
subtypes in two representative datasets, and the significant
variability in neuroimaging-based subtyping analysis.

To move forward, several aspects can be considered for
identifying biotypes with potential utility. First, hybrid analytic
methods, which integrate a prior hypothesis (i.e., theory-driven)
with data-driven clustering methods, may provide more insights.
Considering the significant impact of clustering features on the
subtyping results, it would be beneficial to use theoretical
hypotheses to restrict the exploration spaces. For example, PTSD
is characterized by abnormal structural volumes [72, 73], func-
tional connectivity [74, 75], and task-based activations [76, 77] in
the literature. This knowledge can potentially be used to
determine clustering features. Second, exact replication studies
are needed for testing the generalizability of reported subtypes.
Although many different subtypes have been identified across
studies, attempts to replicate these results are relatively sparse. A
few replication studies did not reproduce the reported subtypes
(e.g., refs. [26-28]). However, since these were usually “conceptual
nonexact replications”, it is difficult to determine the reasons for
the failures. Since slight differences in sample characteristics,
feature measures, or methodologies can significantly impact
subtyping solutions, exact replications of promising subtypes are
crucial for their clinical utility. Third, new methods with stringent
validations may facilitate the identification of subtypes. On the
one hand, new approaches such as individualized brain mapping
[78] and normative modeling [79] can provide more reliable and
informative features for clustering algorithms. On the other hand,
integrating features from different imaging modalities may better
capture the heterogeneity in patients [80]. Advanced multimodal
fusion algorithms from the machine learning field [81] may offer
advantages over traditional methods.

Several limitations of the present study should be considered.
First, only two commonly used clustering methods were used to
define subtypes. There are many other clustering methods in the
field, such as the 3 C Algorithm [16] and canonical correlation
analysis (CCA)-based approaches [21, 82] that combine both
biological and clinical measures for identifying subtypes. Whether
the observations in this study apply to these other methods
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should be tested in future research. In CCA-based approaches,
since biological measures and clinical measures are integrated to
derive clustering features, it is essential to be cautious when
comparing the clinical profiles between identified subtypes; only
measures not used in the clustering analysis should be compared
to avoid bias. Second, raw features extracted from each modality
were used for subtyping. Although this strategy was widely
applied in the literature, it might not be the optimal strategy for
feature extraction. Previous studies have shown the potential of
feature abnormality [20] or normative modeling [79] in the
subtyping procedure. It is unclear whether these feature extrac-
tion methods would improve the subtyping solutions by
decreasing variability and increasing clinical utility. Third, the
participants included in the main dataset were war-zone-exposed
veterans, which may not represent the general population. At the
same time, we observed similar variability on an independent
civilian MDD dataset, suggesting the generalizability of the
primary results. Future studies including different populations
should be conducted to confirm the results.

In summary, our results highlight that even if internally
validated subtypes are identified, the clinical and/or cognitive
profiles of these subtypes may largely overlap, limiting their
clinical utility. Therefore, caution is warranted in interpreting
neuroimaging-based subtyping results. Additionally, analysis
choices, such as clustering features, significantly impact the
identification of subtypes, which should be carefully considered
in future studies. Neuroimaging-based subtyping may be a
promising approach to advance precision psychiatry, but rigorous
validation of the subtypes grounded in clinical goals is needed.
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