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Intrauterine stress exposure is associated with offspring health. DNA methylation (DNAm) is a putative underlying mechanism, but
large population-based studies reported limited associations between prenatal stress and DNAm. Recent research has shown that
environmental factors in interaction with genetic variants are better predictors of DNAm than environment or genotype alone. We
investigated whether interactions of maternal prenatal stress with genetic variants are associated with DNAm at birth. We
examined 2963 mother-child pairs from the population-based Generation R Study and Avon Longitudinal Study of Parents and
Children, using a harmonized, comprehensive cumulative prenatal stress measure. We tested genome-wide genotype-by-prenatal
stress interactions on epigenome-wide DNAm (GxEmodel), and models including only genetic variants (Gmodel) or prenatal stress
(Emodel) as predictors. Follow-up analyses included Gene Ontology analyses and mediation analyses of prenatal alcohol intake,
smoking, gestational age, and birth weight. We report two independent gene-by-prenatal-stress interactions on DNAm after
multiple testing correction, including five genetic variants in CHD2 and ORC5, and two DNAm sites in EPPK1. By comparison, the
Gmodel showed 691,202 associations and the Emodel showed three associations in genes AHRR, GFI1, and MYO1G, which could
largely be explained by prenatal smoking. Genes linked to suggestive GxEmodel results were often involved in neuronal
development. Our results provide some support of interaction of prenatal stress with the child’s genome on DNAm of genes related
to neuronal development. Based on these models, genetic main effects on DNA methylation at birth were much more abundant
than gene-by-prenatal stress interactions were.
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INTRODUCTION
In utero stress exposure has been associated with adverse
offspring mental and physical health outcomes, including inter-
nalizing symptoms [1], adiposity [2], asthma, and allergies [3], and
has been hypothesized to put children in a disadvantaged
position from early life onwards. Differential DNA methylation
(DNAm) has been suggested as a putative mechanism underlying
these associations, as DNAm has been linked to prenatal
exposures such as maternal smoking [4], postnatal psycho-social
stress [5], and to child outcomes such as body mass index [6],
asthma [7] and cortisol reactivity [8]. Several multi-cohort studies
have probed epigenome-wide associations of maternal prenatal
stress with offspring DNAm, with varying results [9–11]. The
largest study to date, including 5496 children from 12 cohorts,
reported limited associations for DNAm sites located in genes that

have been implicated in neurodegeneration, immune and cellular
functions, and epigenetic regulation [10].
A growing body of research, however, shows that environ-

mental factors in interaction with genetic variants are better
predictors of DNAm than environmental factors or genetic
variants alone, when looking into CpG sites within variably
methylated regions (VMRs). For example, Teh, Pan [12] studied
genome-wide interactions of 19 prenatal factors, including
gestational age, maternal smoking and maternal depression, on
highly variable neonatal DNAm sites. For 75% of the sites, DNAm
was better predicted by the interaction between genotype and
the environment than by either genotype or environment alone.
Environment-only was never the best predictor of DNAm in that
study. Similarly, a study by Czamara, Eraslan [13] in four cohorts,
examining 10 prenatal factors, showed that gene-environment

Received: 20 November 2024 Revised: 18 September 2025 Accepted: 15 October 2025
Published online: 24 October 2025

1Department of Adolescent and Child Psychiatry and Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 2Generation R Study Group,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 3Department of Psychology, University of Bath, Bath, UK. 4Department of Internal Medicine,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. 5MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School,
University of Bristol, Bristol, UK. 6Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany. 7Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
8German Center for Mental Health (DZPG), Mannheim, Germany. 9Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands. 10Dimence Institute for Specialized
Mental Health Care, Dimence Group, Deventer, The Netherlands. 11Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
12Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands. 13Department of Pediatrics, Erasmus MC,
University Medical Center Rotterdam, Rotterdam, The Netherlands. 14These authors contributed equally: Esther Walton, Charlotte A. M. Cecil, Janine F. Felix.
✉email: E.Walton@bath.ac.uk

www.nature.com/mpMolecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-025-03312-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-025-03312-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-025-03312-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-025-03312-6&domain=pdf
http://orcid.org/0000-0002-2382-1704
http://orcid.org/0000-0002-2382-1704
http://orcid.org/0000-0002-2382-1704
http://orcid.org/0000-0002-2382-1704
http://orcid.org/0000-0002-2382-1704
http://orcid.org/0000-0002-9776-735X
http://orcid.org/0000-0002-9776-735X
http://orcid.org/0000-0002-9776-735X
http://orcid.org/0000-0002-9776-735X
http://orcid.org/0000-0002-9776-735X
http://orcid.org/0000-0002-2715-9930
http://orcid.org/0000-0002-2715-9930
http://orcid.org/0000-0002-2715-9930
http://orcid.org/0000-0002-2715-9930
http://orcid.org/0000-0002-2715-9930
http://orcid.org/0000-0002-0261-5063
http://orcid.org/0000-0002-0261-5063
http://orcid.org/0000-0002-0261-5063
http://orcid.org/0000-0002-0261-5063
http://orcid.org/0000-0002-0261-5063
http://orcid.org/0000-0001-6163-7484
http://orcid.org/0000-0001-6163-7484
http://orcid.org/0000-0001-6163-7484
http://orcid.org/0000-0001-6163-7484
http://orcid.org/0000-0001-6163-7484
http://orcid.org/0000-0002-0935-2200
http://orcid.org/0000-0002-0935-2200
http://orcid.org/0000-0002-0935-2200
http://orcid.org/0000-0002-0935-2200
http://orcid.org/0000-0002-0935-2200
http://orcid.org/0000-0002-2389-5922
http://orcid.org/0000-0002-2389-5922
http://orcid.org/0000-0002-2389-5922
http://orcid.org/0000-0002-2389-5922
http://orcid.org/0000-0002-2389-5922
http://orcid.org/0000-0002-9801-5774
http://orcid.org/0000-0002-9801-5774
http://orcid.org/0000-0002-9801-5774
http://orcid.org/0000-0002-9801-5774
http://orcid.org/0000-0002-9801-5774
https://doi.org/10.1038/s41380-025-03312-6
mailto:E.Walton@bath.ac.uk
www.nature.com/mp


interactions best predicted DNAm in variably methylated regions
in 38-60% of analyses, while genotype-only models were best in
11-30% and environment-only models were best in only <1-4%.
However, while these studies analyzed which type of model
worked best, they did not aim to identify specific genetic variants,
environmental variables or DNAm sites. Knowing which genetic
variants interact with prenatal stress in relation to DNA methyla-
tion would help to better understand the biological pathways
underlying the gene-environment effects on health.
We therefore aimed to study genome-wide interactions

between genetic variants and cumulative prenatal stress in
relation to epigenome-wide DNAm at birth. We also aimed to
test the hypothesis that DNAm is better predicted by the
interaction of genetic variants and stress than by either factor
alone. We used a comprehensive cumulative measure of psycho-
social maternal stress during pregnancy, which has previously
been related to suboptimal neurodevelopmental, mental, and
cardiovascular outcomes [14–16]. We meta-analyzed data from
two population-based cohorts, the Generation R Study in the
Netherlands (Generation R) and the Avon Longitudinal Study of
Children and Parents (ALSPAC) in the United Kingdom and
followed up associations to study unique stress domain contribu-
tions, as well as running mediation analyses of maternal prenatal
smoking, alcohol use, gestational age and birth weight. Lastly, we
performed enrichment analyses to gain insight into potential
biological pathways.

METHODS
Setting
We used three non-overlapping datasets from two prospective population-
based cohorts: two datasets from Generation R and a third dataset from
ALSPAC.
In the Generation R Study, pregnant women residing in the study area of

Rotterdam in the Netherlands with an expected delivery date between
April 2002 and January 2006 were invited to participate in the study [17].
The Generation R Study is conducted in accordance with the World
Medical Association Declaration of Helsinki and has been approved by the
Medical Ethics Committee of Erasmus MC, Rotterdam. Informed consent
was obtained for all participants.
In ALSPAC, pregnant women resident in Avon, UK with expected dates of

delivery between 1st April 1991 and 31st December 1992 were invited to take
part in the study [18, 19]. The ALSPAC website contains details of all the data
that are available through a fully searchable data dictionary and variable
search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical
approval for the ALSPAC study was obtained from the ALSPAC Ethics and
Law Committee and the Local Research Ethics Committees. Informed
consent for the use of data collected via questionnaires and clinics was
obtained from participants following the recommendations of the ALSPAC
Ethics and Law Committee at the time. Consent for biological samples has
been collected in accordance with the Human Tissue Act (2004).

Study Population
The full selection procedure is described in the Supplemental Information.
In Generation R, 9778 pregnant mothers gave birth to 9749 live-born
children and in ALSPAC, the initial number of pregnancies enrolled was
14,541. Participants were selected based on availability of genetic data
(nGeneration R= 7502; nALSPAC= 8797), as well as cumulative prenatal stress
information (nGeneration R= 5684; nALSPAC= 7483), and DNAm data as
measured with the Infinium HumanMethylation450 BeadChip (Illumina
Inc., San Diego, CA) in Generation R (GENR 450 K) and ALSPAC (ALSPAC
450 K) or with the Infinium MethylationEPIC v1.0 Beadchip in Generation R
(GENR EPIC) (nGENR 450K= 1231; nGENR EPIC= 986; nALSPAC= 793). Addition-
ally, one of each pair of children with cryptic relatedness (IBD > 0.15) were
removed, based on data availability or otherwise randomly. As a result,
GENR 450 K included 1224 children, GENR EPIC included 949, and ALSPAC
450 K included 790 – for a total of 2963 children.

Genotyping
In the Generation R Study, children were genotyped with the Illumina
HumanHap 610 or 660 quad chips. A full description has been published

previously [20]. Data were imputed to the 1000 genomes reference panel
(Phase 1 version 3). Phasing was done using MACH software, and
imputation using Minimac software. The ALSPAC children have been
genotyped with the Illumina HumanHap 550 quad chip [21]. The data were
imputed to a phased version of the 1000 genomes references panel (Phase
1 version 3) from the Impute2 reference data repository.
In all (sub-)cohorts, we used best-guess genotypes. Quality control was

done with PLINK 1.90 [22]. Autosomal variants were selected and variants
with SNP call rates of <95%, with evidence for violation of Hardy-Weinberg
equilibrium (p < 1×10-07), with a minor allele frequency <5%, or with low
imputation quality (Rsq<0.3 in Generation R and info scores <0.8 in
ALSPAC, according to local practices [20, 21]) were removed. Insertions,
deletions, and multi-allelic positions were also removed. Samples were
excluded in the case of sex mismatches, minimal or excessive hetero-
zygosity, or a sample call rate of <97.5%.
This quality control procedure resulted in 5,584,862 SNPs in GENR 450 K;

5,627,497 SNPs in GENR EPIC; and 5,797,754 SNPs in ALSPAC 450 K. To
reduce the multiple testing burden, SNPs were pruned based on linkage
disequilibrium and haplotype blocks (window size=50 SNPs, step size=5
SNPs, VIF= 2) in the largest subcohort, GENR 450 K, which resulted in
447,713 SNPs. Of these, a final set of 374,152 SNPs was common to all
three (sub-)cohorts.

Cumulative prenatal stress
The cumulative prenatal stress score was computed from ~50 stress-
related items measured during pregnancy. The full item list and a detailed
description of the score calculation can be found elsewhere (https://
github.com/SereDef/cumulative-ELS-score [15, 16]). Briefly, in order to
maximize data harmonization across cohorts, stress items were selected
(based on closest item-similarity), dichotomized (0 = no risk; 1 = risk) and
assigned to one of four stress domains: life events (e.g. death of a relative),
contextual risk (e.g. financial problems), personal stress (e.g. depression),
and interpersonal stress (e.g. family conflict). Stress domain scores (ranging
from 0 to 1) were then computed by averaging items within each domain.
A total prenatal stress score was obtained by summing all domain scores
(range: 0 to 4). Individuals with >50% of all stress items missing were
excluded. Missing data were imputed at the individual item level using
predictive mean matching with 60 iterations, as implemented by the mice
package [23] in R version 4.0 [24]. Within the selected samples of each
(sub-)cohort, cumulative prenatal stress scores were standardized. To
reduce the influence of extreme outliers, we winsorized values outside the
range of (25th percentile - 3*interquartile range (IQR)) to (75th percentile +
3*IQR).

DNA methylation
For both cohorts, DNA extracted from cord blood was bisulfite converted.
Samples were processed with the Illumina Infinium HumanMethylation450
BeadChip (Illumina Inc., San Diego, CA) in GENR 450 K and ALSPAC 450 K
and with the Infinium MethylationEPIC v1.0 Beadchip in GENR EPIC.
In GENR 450 K and GENR EPIC, the CPACOR workflow [25] was applied for

quality control. Arrays with observed technical problems such as failed
bisulfite conversion, hybridization or extension as well as arrays with a sex
mismatch were removed. Arrays with a call rate >95% per sample were
carried forward into normalization.
In ALSPAC 450 K, quality control was done using the meffil package [26]

in R version 3.4.3. Samples with mismatched genotypes, mismatched sex,
incorrect relatedness, low concordance with samples collected at other
time points, extreme dye bias and poor probe detection were removed
and carried before normalization.
In order to minimize cohort effects, the data from GENR 450 K and

ALSPAC 450 K have been previously normalized as a single dataset [27] and
data from GENR EPIC were normalized using the same procedure.
Functional normalization was performed (using 10 control probe principle
components with slide included as a random effect) with the meffil
package in R [26]. Probes were excluded if they had a detection p > 0.01 or
low bead count (<3) in >10% of the samples. In total, 472,450 autosomal
methylation sites (CpGs) passed these quality control filters in GENR 450 K
and ALSPAC 450 K. To reduce the computational burden of the genome-
wide analyses on the methylome, only probes that were previously
identified as having epigenome-wide significant (p < 1×10-7) inter-
individual variation in DNAm at birth in these cohorts were carried
forward into analyses, leaving 100,687 CpGs [27]. Of these, cross-reactive
probes (n= 14,451 CpGs) were removed [28]. Last, only probes present
and passing quality control on both array types were selected, resulting in
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a final set of 86,236 CpGs (sample-size weighted median MAD-[median
absolute deviation]-score [IQR]= 0.04 [0.03-0.06]; range=0.001-0.641).
DNAm levels were represented as beta values, indicating the ratio of
methylated signal relative to the sum of methylated and unmethylated
signal per CpG. To reduce the influence of extreme outlying values, beta
values of each CpG outside the range of (25th percentile - 3*interquartile
range (IQR)) to (75th percentile + 3*IQR) were winsorized.

Covariates
All models were adjusted for sex of the child as determined at birth, the
first 5 genetic principle components, estimated blood cell composition
(CD4 + T-lymphocytes, CD8 + T-lymphocytes, natural killer cells, B-lympho-
cytes, monocytes, granulocytes, and nucleated red blood cells) as based on
a cord blood reference panel [29], and DNAm batch effects (25 sample
plates in GENR 450 K, 12 sample plates in GENR EPIC, and 20 surrogate
variables in ALSPAC 450 K [26, 30]).

Statistical analyses
Analyses were performed with an adapted version [16] of the GEM
software package [31] in R [24] version 4.0.5. This package applies large
matrix operations allowing for fast analysis of genome-wide SNPs and
CpGs and enabling us to test the following models: (i) a GxEmodel – our
primary model of interest – in which the interaction effect of each SNP
with cumulative prenatal stress was iteratively regressed on DNAm at each
CpG site. For comparative purposes, we also tested (ii) a Gmodel, in which
each SNP was iteratively regressed on DNAm at each CpG site, and (iii) an
Emodel, in which cumulative prenatal stress was iteratively regressed on
DNAm at each CpG site. A dominant model was applied to the GxEmodel
and Gmodel, meaning that heterozygous and homozygous minor
genotypes were contrasted against homozygous major genotypes, in
order to make the models more robust against outlying values. The three
models were performed in each (sub-)cohort separately, and results were
meta-analyzed using inverse-variance weighted fixed effects with METAL
[32]. The significance threshold of the meta-analyses was Bonferroni-
corrected for the number of tests. For the GxEmodel and Gmodel
(nSNPs= 374,152, nCpGs= 86,236: 32,265,371,872 tests) the threshold was
set to p < 1.55×10-12, and for the Emodel (86,236 tests), the threshold was
set to p < 5.80×10-07. To assess heterogeneity between (sub-)cohort results,
the I2 statistic was used, with 75% taken as indication of considerable
heterogeneity [33].

Model comparisons
First, we compared the occurrence of cis- versus trans-effects among
suggestive findings (p < 5×10-08; i.e. genome-wide threshold) in the
Gmodel and the GxEmodel. Second, earlier studies tested SNP-by-
environment interactions with CpGs only among SNPs or CpGs for which
an association was found in a genotype-only model. We tested whether
SNPs/CpGs that showed suggestive associations in the Gmodel or Emodel
had a higher chance of being part of a suggestive association in the
GxEmodel. Associations in the Gmodel and the GxEmodel with p < 5×10-08

(i.e. genome-wide threshold), and associations in the Emodel with
p < 1×10-05 were considered suggestive. We performed enrichment
analyses comparing suggestive versus non-suggestive SNPs and CpGs
using Fisher’s exact tests (significance threshold: p < 0.05).
As a sensitivity analysis, we performed similar enrichment analyses to

assess if suggestive SNPs and CpGs had been identified in an earlier large-
scale methylation quantitative trait locus (meQTL) study [34].

Follow-up analyses
Multiple follow-up analyses were performed. Since the Gmodel has been tested
extensively previously in search of methylation quantitative trait loci (meQTLs)
[21, 34], we only followed-up results from the GxEmodel and Emodel. First, we
looked up significant CpGs in the GxEmodel and/or Emodel in the EWAS Catalog
for previously reported associations [35]. Second, we looked up genes annotated
to significant SNPs and CpGs in the GxEmodel and/or Emodel via phenome-wide
association studies (PheWASs) using the online GWAS Atlas tool (https://
atlas.ctglab.nl/PheWAS) [36], including 4756 GWASs, using a Bonferroni corrected
p<1.05×10-05. Annotation of SNPs and CpGs was performed using ANNOVAR
linking variants reported in the 1000 Genomes Project and SNPdb [37] and the
Illumina HumanMethylation450 v1.2 Manifest (Illumina Inc.), respectively. Third,
significant associations in the GxEmodel (p<1.55×10-12) and/or Emodel
(p<5.80×10-07) were followed up with linear regressions containing the effects
of the four stress domains (life events, contextual risk, personal stress, and

interpersonal stress) in onemodel to identify unique associations of each of these
stress types, independent of the other types. Here, associations with p<0.05were
interpreted as a unique contribution to the GxE association on DNAm for that
stressor. Fourth, significant associations in the GxEmodel and/or Emodel were
tested for potential mediation of prenatal stress effects on DNAm by maternal
prenatal smoking, maternal prenatal alcohol intake, gestational age, and birth
weight (each modeled separately), using the Lavaan package in R [38]. Mediation
was deemed to be significant if the AB path (predictor -> mediator, mediator ->
outcome) has a p-value below a Bonferroni-corrected threshold of 0.0125
(corrected for the number of mediators). Last, functional enrichment analysis of
associated biological pathways was performed with Gene Ontology for models
for which results could not be explained by a mediator. Genes annotated to
suggestive unique SNPs and CpGs were interrogated using the GOfuncR
package [39] in R. The GOfuncR package compares associated pathways of
candidate versus background genes using hypergeometric testing and a family-
wise error rate correction for multiple testing. Genes annotated to all non-
suggestive SNPs and CpGs included in the main analyses were used as the
background set.

Mediators
In Generation R, mothers reported on prenatal tobacco smoking and alcohol
consumption via questionnaires in the first, second, and third trimester. In
ALSPAC, mothers reported via questionnaires on tobacco smoking in the
second and third trimester and on alcohol consumption in the first and
second trimester. For both cohorts, gestational age at birth was determined
using fetal ultrasound examinations or last menstrual period, and birth
weight was obtained from midwife and hospital registries.

RESULTS
GENR 450 K, GENR EPIC, and ALSPAC 450K included 49.9%, 47.7%,
and 49.1% boys, and mothers were 32.2, 32.0, and 29.7 years
old at birth, respectively. After winsorizing, mean cumulative
prenatal stress scores were 0.36 (SD= 0.28, min=0.00,
max=1.48), 0.44 (SD= 0.35, min=0.00, max=1.48), and 0.51
(SD= 0.28, min=0.00, max=1.69), respectively, with a theore-
tical maximum score of 4 (Supplemental Fig. 1). There were
differences between the (sub-)cohorts, as cumulative prenatal
stress was higher on average in ALSPAC than in the GENR
subcohorts (specifically contextual risk and personal risk; life
events and interpersonal risk were highest in GENR EPIC),
gestational age and weight at birth were somewhat lower in
ALSPAC, as was maternal age at birth (Table 1).

GxEmodel: SNP by prenatal stress interactions and DNA
methylation
Five SNP-by-prenatal-stress interactions on DNAm were identified
after Bonferroni correction, including five unique SNPs and two
unique CpGs. Firstly, an association in cis of rs12901653 in CHD2 in
interaction with cumulative prenatal stress was found for DNAm at
a nearby (64862 bp) cg24317086 (B= -0.026, SE= 0.003,
p= 4.07×10-16), for which CHASERR, or CHD2 Adjacent Suppressive
Regulatory RNA is the nearest gene. Secondly, trans-associations of
4 SNPs in or near ORC5 in interaction with cumulative prenatal
stress were found for DNAm at cg06592260, which is located in
EPPK1 (rs7642426: B= -0.013, SE= 0.002, p= 1.12×10-13;
rs10279675: B= -0.012, SE= 0.002, p= 2.76×10-13; rs2188287:
B= -0.013, SE= 0.002, p= 1.85×10-13; rs10251976: B= -0.012,
SE= 0.002, p= 7.32×10-13). The adjusted R2 of the significant
SNP-by-prenatal-stress interaction terms ranged between 0.02 and
0.03 and had a median (IQR) of 0.02 (0.02-0.02). As these SNPs
were in high LD (>0.9 in all [sub-]cohorts), they were not
independent (Supplemental Fig. 2). Results are depicted in Table 2
and Fig. 1. For all associations except the interaction of
rs12901653 with cumulative prenatal stress on cg24317086,
heterogeneity between (sub-)cohorts was low (I2= 0.0).
Rs12901653 showed considerable heterogeneity (I2= 93.5), as
associations for GENR 450 K and GENR EPIC were negative, whereas
it was positive (although p > 0.05) for ALSPAC 450 K (forest plot in
Supplemental Fig. 3).
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Gmodel: SNPs and DNA methylation
In the Gmodel, after Bonferroni correction, we found 691,202
associations between SNPs and DNAm, including 181,133 unique
SNPs and 54,809 unique CpGs. As such, nearly half of all
investigated SNPs (48%) could be marked as meQTLs, and more
than half (59%) of the examined CpGs are under genetic control.
In these results we find evidence of both polygenicity, i.e. multiple
SNPs affecting the same CpG, as well as pleiotropy, i.e. the same
SNP affecting multiple CpGs. Furthermore, 91% of SNP-CpG
associations were in cis, 9% were in trans (distance of
>1,000,000 bp; mean [SD] distance 136,731 [170,197] bp). The
adjusted R2 of the significant prenatal stress terms ranged
between 0.02 and 0.95 and had a median (IQR) of 0.04 (0.02-
0.06). For 28% of associations, heterogeneity between (sub-)cohort
results was considerable (I2 > 75).

Emodel: Cumulative prenatal stress and DNA methylation
Three DNAm sites at birth were associated with exposure to
cumulative prenatal stress after Bonferroni correction, including
cg05575921 (B= -0.009, SE= 0.001, p= 3.81 × 10-18), located in
AHRR, cg09935388 (B= -0.016, SE= 0.002, p= 2.79 × 10-11) in
GFI1, and cg04180046 (B= -0.007, SE= 0.001, p= 6.73 × 10-08) in
MYO1G (Table 3; Fig. 2). The adjusted R2 of the significant prenatal
stress terms ranged between 0.02 and 0.03 and had a median
(IQR) of 0.02 (0.01-0.02). For cg05575921, there was considerable
heterogeneity between (sub-)cohort results (I2= 78.1), for
cg09935388 and cg04180046 no heterogeneity was detected
(I2= 0.0; forest plot in Supplemental Figure 4).

Enrichment of cis- and trans- associations
Suggestive findings in the GxEmodel (3327 associations with 3248
unique SNPs and 2613 unique CpGs) and Gmodel (1,088,683
associations with 223,254 unique SNPs and 62,826 unique CpGs) were

compared to test whether GxEmodel and Gmodel results differed in
distance between associated SNP and CpGs. Among suggestive
GxEmodel findings, only 1% was in cis (mean [SD] distance 17,767
[256,557] bp), whereas 89% of suggestive Gmodel was in cis (mean
[SD] distance 155,089 [183,495] bp). This difference was significant
(OR= 1498.2 [95% CI= 983.0-2915.3], p < 2.23×10-308).

Enrichments of main effect model associations in GxEmodel
Suggestive SNPs and CpGs in the GxEmodel and Gmodel were
compared to test whether a suggestive association in the Gmodel
increased the chance of a suggestive association in the GxEmodel.
This did not seem to be the case, as suggestive SNPs in the
Gmodel were as likely to have been identified in the GxEmodel as
other SNPs were (1 vs 1%; OR= 0.9 [95% CI= 0.9-1.0], p= 0.13).
Similarly, suggestive CpGs in the Gmodel were as likely to be
identified in the GxEmodel as other CpGs were (3 vs 3%; OR= 1.0
[95% CI= 0.9-1.1], p= 0.74). As a sensitivity analysis, we also
checked for enrichment of SNPs and CpGs associated with
meQTLs identified by others [34], and similarly found that
suggestive SNPs and CpGs in the GxEmodel were as likely or
even less likely to have been linked to an meQTL, whereas
suggestive hits in the Gmodel were more likely to have previously
been linked to an meQTL (Supplemental Results S1).
Furthermore, suggestive CpGs in the Emodel were as likely to

have been identified as a suggestive CpG in the GxEmodel (7%) as
other CpGs were (3%; OR= 2.5 [95% CI= 0.1-16.4], p= 0.35),
although it should be noted that the number of suggestive
findings for the Emodel was low with only 14 CpGs.

CpG look-ups
From the GxEmodel, variation at cg24317086 has been previously
associated with gestational age [40], age in childhood [27, 41],
tissue type [42], Down syndrome [43], and C-reactive protein

Table 1. Sample characteristics.

GENR 450 K GENR EPIC ALSPAC 450 K p*

N 1224 949 790

Cumulative prenatal stress (mean (SD)) 0.36 (0.28) 0.44 (0.35) 0.51 (0.28) <0.001

Life events domain (mean (SD)) 0.10 (0.09) 0.11 (0.09) 0.09 (0.09) 0.001

Contextual risk domain (mean (SD)) 0.16 (0.18) 0.20 (0.20) 0.25 (0.14) <0.001

Personal risk domain (mean (SD)) 0.03 (0.07) 0.05 (0.09) 0.11 (0.12) <0.001

Interpersonal risk domain (mean (SD)) 0.07 (0.09) 0.09 (0.13) 0.05 (0.09) <0.001

Child sex, boys (n (%)) 611 (49.9) 453 (47.7) 388 (49.1) 0.599

Gestational age at birth, weeks (mean (SD)) 40.2 (1.5) 40.1 (1.4) 39.6 (1.5) <0.001

Gestational weight at birth, grams (mean (SD)) 3557 (506) 3529 (507) 3495 (479) 0.026

Maternal age at birth, years (mean (SD)) 32.2 (4.2) 32.0 (4.3) 29.7 (4.4) <0.001

Maternal tobacco smoking during pregnancy (n (%))†

Never smoked during pregnancy 857 (70.0) 665 (70.1) Never a smoker 481 (60.9)

Smoked until pregnancy was known 109 (8.9) 78 (8.2) Former smoker 219 (27.7)

Continued smoking in pregnancy 159 (13.0) 146 (15.4) Current smoker 90 (11.4)

Maternal alcohol consumption during pregnancy (n (%))†

Never drank during pregnancy 351 (28.7) 302 (31.8) <1 Glass per week >357 (>45.2)

Drank until pregnancy was known 170 (13.9) 136 (14.3) 1+ Glass per week 170 (21.6)

Continued drinking occasionally 551 (45.0) 381 (40.1) 1-2 Glasses per week 11 (1.4)

Continued drinking frequently (1+ glass/week for 2+
trimesters)‡

152 (12.4) 130 (13.7) >3 Glasses per week <5 (<0.6)

*Groups were compared using ANOVA testing.
†Maternal alcohol consumption and tobacco smoking was applied as continuous average score over two trimesters. Shown here as categorical for descriptive
purposes.
†Where needed, approximate cell sizes are shown to ensure that exact cell sizes <5 (which may include zero) cannot be recovered from other information
provided in this figure, in line with ALSPAC requirement.
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levels [44]. Variation at cg06592260 has been associated with age
in childhood [27] and tissue type [42].
Full results for the lookup of the previously reported EWAS

associations for the three CpGs found in the Emodel can be found
in Supplemental Table 1. In brief, variation at cg05575921,
cg09935388, and cg04180046 was related to maternal smoking
during pregnancy with reported associations stemming from 6, 8
and 9 studies, respectively, and to smoking behavior (not in
pregnancy) with reported associations in 27, 19, and 10 studies,
respectively. Other associations were found, among others, for age
in childhood [27], tissue type [42], alcohol consumption [45–47],
maternal educational attainment during pregnancy [48], lung
function [49–52] and post-traumatic stress syndrome [53, 54].

Annotated gene look-up
The full results of the PheWASs are depicted in Supplemental
Figures 5 to 10. In brief, genetic variants at CHD2 were related to
use of sun/UV protection, resting heart rate, free thyroxine levels,
educational attainment, measures of body composition, uric acid
levels, processed meat intake, pork intake, napping during the
day, (standing) height, and schizophrenia. Genetic variants at
ORC5 have been related to risky behaviors, left and right
entorhinal cortex volume, and drinking behavior. Genetic variants
in or close to EPPK1 (annotated to several CpGs of the significant
GxEmodels) have been related to resting heart rate, skin tanning,
body composition measures, and height.
Genetic variants at AHRR were related to skin colour, hair colour,

male balding patterns, ulcerative colitis, hematocrit, hemoglobin,
aspartate, fat measures, and height. Genetic variants annotated to
GFI1 were related to coronary artery disease, white blood cell
measures, fat measures, multiple sclerosis, being a morning
person, height, lung function, and asthma, eczema, and allergy
related measures. Genetic variants at MYO1G were related to
thyroid function, white blood cell measures, and height.

Stress-domain-specific results
In the GxEmodel, none of the individual stress domains (life events,
contextual risk, personal risk, interpersonal risk) provided a unique SNP-
by-prenatal-stress contribution (p< 0.05) to the associationwith DNAm,
over and above co-occurring domains (Supplemental Table 2). In the
Emodel, contextual risk provided a unique contribution to DNAm at
cg05575921 (AHRR, B= -0.008, SE= 0.001, p= 4.42x-14), cg09935388
(GFI1, B= -0.015, SE= 0.003, p= 6.18×10-09), and cg04180046 (MYO1G,
B= 0.005, SE= 0.001, p= 7.36×10-05). In addition, interpersonal
risk provided a unique contribution to cg05575921 (B= -0.003,
SE= 0.001, p= 7.53×10-03) and cg09935388 (B= -0.007, SE= 0.003,
p= 5.44×10-03). Life events and personal risk did not provide unique
contributions in the significant Emodel associations (Supplemental
Table 3).

Mediation
In the GxEmodel, none of the significant SNP-by-prenatal-stress
associations with DNAm were mediated by maternal tobacco
smoking or alcohol consumption during pregnancy, gestational
age, or birth weight. In the Emodel, all three cumulative
prenatal stress associations with DNAm were mediated by
maternal prenatal smoking (cg05575921: Bindirect= -0.007, 95%
CI= -0.008;-0.006, p= 4.17×10-60; cg09935388: Bindirect= -0.010,
95% CI= -0.011;-0.008, p= 3.21×10-30; cg04180046: Bindirect= -
0.006, 95% CI= -0.005;-0.007, p= 8.94×10-40), and not by any of
the other mediators (Fig. 3).

Pathway enrichments
A Gene Ontology analysis of 3248 suggestive (p < 5×10-08) SNPs in
the GxEmodel yielded 145 overrepresented pathways and 12
underrepresented pathways (Supplemental Table 4). The over-
represented pathways were predominantly linked to neuronal
development and synaptic transmission. The underrepresentedTa
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pathways were linked, amongst others, to DNA repair processes. A
Gene Ontology analysis of 2613 suggestive CpGs in the GxEmodel
yielded 35 overrepresented pathways (Supplemental Table 5),
among which neuronal development-related pathways were
predominant.

DISCUSSION
In this study, we investigated SNP-by-prenatal-stress interactions
on DNAm at birth, for the first time at the genome- and
epigenome-wide level. From the GxEmodel, we report five SNP-
by-prenatal-stress interactions on DNAm after multiple testing
correction, including five unique, of which two independent, SNPs
in CHD2 and ORC5, and two unique CpGs near CHASERR and in

EPPK1. By comparison, the Gmodel yielded 691,202 associations of
SNPs and DNAm, including 181,133 unique SNPs (48% of
investigated SNPs) and 54,809 unique CpGs (59% of investigated
CpGs), and the Emodel identified three associations between
cumulative prenatal stress and DNAm at CpGs in AHRR, GFI1, and
MYO1G, which are known DNAm loci for smoking exposure.
Together, these results show that genetic main effects are by far
stronger than prenatal stress effects alone or gene-by-prenatal
stress interactions.
Significant results for the GxEmodel were scarce, which might in

part be explained by the stringent Bonferroni multiple testing
correction in which analyses were considered as independent.
Due to the scale of the analyses, this resulted in a very low p-value
threshold. However, a Bonferroni threshold might be overly

Fig. 1 Scatterplots of genome- and epigenome-wide associations of SNP-by-prenatal-stress interactions and DNA methylation.
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stringent as there was a correlational structure among SNPs and
among CpGs, and we also tested the same SNP 86,236 times, and
the same CpG 374,152 times. Using a suggestive (genome-wide)
significance threshold, Gene Ontology analyses pointed to
enrichment of neuronal development related pathways. This
may indicate that prenatal stress interacts with the child’s genome
in many small ways to affect neuronal development, but that
these associations only become visible with a less stringent
threshold or a more powerful analysis. Moreover, previous GWASs
have associated variation in ORC5, in or near which four of the
associated SNPs were located with entorhinal cortex volume [55],
an area important for memory processing, bordering the
hippocampus and particularly rich in corticoid receptors [56].
These findings fit the developmental origins of health and disease
perspective [57], which poses that the prenatal environment
programs organ structure and function (in this case in interaction
with the offspring genotype), as well as findings from our own lab
that cumulative prenatal stress is related to childhood subcortical
brain volumes [16], and that prenatal stress, beyond postnatal
stress, predicts internalizing symptoms in childhood [15].
In contrast to the GxEmodel, significant associations in the

Gmodel were abundant, indicating that many common SNPs are
involved in epigenetic programming and in turn, that DNAm is
under strong genetic control. This confirms earlier meQTL studies,
which also identified numerous genetic effects on the epigenome
[21, 34]. The abundance of genetic effects and far fewer GxE

associations are contrary to the notion put forward by other
studies that gene-environment interaction studies perform better
than studies of genetic main effects alone in terms of predicting
DNAm [12, 13, 58]. This may be explained by the different
approaches to statistical inference used by these studies. In
previous studies of genetic interaction effects with multiple
prenatal environments [12, 13] and with adverse childhood
experiences [58], G, E, and GxE models directly were compared
for each CpG, using Akaike Information Criterion or R2, without
adjustment for multiple testing. In contrast, we did not directly
compare the different model fit per CpG. Instead, we compared
the amount of Bonferroni-corrected significant results. It might
therefore be possible that while GxE terms explain more DNAm
variance than G- or E- main effect models do, these GxE effects are
not large enough to survive the Bonferroni-correction applied
here. However, Czamara et al. Czamara, Eraslan [13] also noted
that ‘GxE models appear to be winning by a significantly lager AIC
margin over the next best model, when compared to the other types
of winning models’. If this had been the case for the current study,
one might expect that the GxEmodel would have produced more
hits than the Gmodel. Czamara, Eraslan [13] however, looked at a
range of prenatal variables, so it may be that our findings are
specific to prenatal stress.
What emerges from our results, however, is that the GxEmodel

yields different results than when looking at genetic or environ-
mental main effects alone. Follow-up analyses showed that SNPs

Fig. 2 Scatterplots of epigenome-wide associations of cumulative prenatal stress and DNA methylation.

Table 3. Epigenome-wide associations of cumulative prenatal stress and DNA methylation.

CpG CHR:BP B (SE) p adjusted R2 direction I2 gene

cg05575921 5:373378 -0.0086 (0.0010) 3.810×10-18 0.03 --- 78.1 AHRR

cg09935388 1:92947588 -0.0161 (0.0024) 2.788×10-11 0.02 --- 0.0 GFI1

cg04180046 7:45002736 0.0070 (0.0013) 6.732×10-08 0.02 +++ 0.0 MYO1G

Direction indicates direction of estimate for GENR 450 K, GENR EPIC, and ALSPAC 450 K, respectively.
Adjusted R2 represents a sample-size weighted average over the (sub-)cohorts.
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and CpGs brought forward by the GxEmodel were not more likely
to have been identified as, or related to an meQTL. For future GxE
studies on DNAm, this means that only testing GxE interactions
among significant findings in the Gmodel [12], would reduce the
multiple testing burden, but might result in selective findings and
may miss true GxE effects.
The Emodel yielded limited evidence of associations between

cumulative prenatal stress and DNAm, which is in line with previous
studies [9–11]. Moreover, whereas associations in the GxEmodel did
not seem to be related to prenatal smoking and drinking behavior,
gestational age or birthweight, the Emodel associations all could be
largely explained by smoking behavior of the mother during
pregnancy. Indeed, the look-up of related CpGs showed that these
are top-hits in smoking EWASs [59–61]. Furthermore, whereas the
GxEmodel results could not be explained by one of the types of
stressors in particular, thereby ascribing to the notion that
associations were due to the cumulative nature of prenatal stress
rather than to the unique contribution of a specific stressor,
contextual risk and interpersonal risk provided unique contributions
to the results from the Emodel. These results fit with a recent EWAS
meta-analysis of maternal educational attainment, often taken as an

indicator of socio-economic position, which was also enriched for
CpGs related to prenatal smoking [48] as well as an EWAS on
victimization stress in children, of which results could also largely be
explained by smoking [62]. It may be that prenatal stress in
population-based samples does not provide enough variation to
find true associations with DNAm at birth beyond those related to
prenatal smoking, or simply that larger sample sizes are necessary to
find small effect sizes. Alternatively, it may be that prenatal stress
has limited direct effects on DNAm, but rather that its associations
with DNAm are hidden in their dependency on genetic variation,
meaning that interaction models are necessary to identify these
associations. Our GxEmodel brought forward a similarly low amount
of associations with DNAm, but potentially was burdened by a strict
multiple testing correction. Again, larger sample sizes would be
necessary to overcome the burden of multiple testing. Taken
together, we conclude that our Emodel prenatal maternal stress
associations with the offspring epigenome are not independent of
maternal smoking behavior.
Results of this study should be interpreted in light of several

limitations. First, effect sizes were small and Gene Ontology
enrichment analysis of suggestive hits seemed to indicate that

Fig. 3 Mediation of cumulative prenatal stress associations with DNA methylation by maternal tobacco smoking during pregnancy (prenatal
smoking).
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subthreshold findings are informative – hence larger sample sizes
will likely be necessary to identify relevant gene-by-prenatal stress
interactions with greater statistical power. Another method to
improve statistical power would be to study a cohort with higher,
or more variable stress levels, as the occurrence of prenatal stress
was relatively low in the population-based samples used in the
current study. However, to the best of our knowledge, this is the
largest effort thus far to identify gene-by-prenatal stress effects on
the epigenome. Moreover, we included a comprehensive measure
of cumulative prenatal stress, capturing multiple domains of stress
that often co-occur together – which has been uniquely
harmonized between Generation R and ALSPAC, making it difficult
to include a larger sample size at this time point. Second, there
was heterogeneity between the (sub-)cohorts in the GxE
association of a SNP in CHD2 with a nearby CpG, which reduces
the robustness of the finding. This finding was mainly driven by
the results of the Generation R subcohorts, as the result in ALSPAC
was nominally non-significant and even in the opposite direction.
However, the finding was strong and consistent between the two
Generation R subcohorts, that this still resulted in an overall
significant finding. Moreover, as the I2 measure that was used for
heterogeneity is relatively sensitive, this does not necessarily
mean the finding is a false positive. Future studies are needed to
examine this association in more detail, preferably in multiple
cohorts. Third, whereas SNPs and CpGs included in these models
span the full genome, we reduced the number of probes based on
intercorrelation and/or variability to minimize the burden of
multiple testing. This does mean, however, that it is possible that
we missed associations. Fourth, since we took a genome-wide
approach, including not only cis- but also trans-associations
between SNPs and CpGs, we were computationally constrained
and did not, as others [13, 58], include a G+Emodel with SNP and
prenatal stress main effects. Given the weak evidence for
associations in the Emodel, it is unlikely that a G+Emodel would
have produced results too dissimilar from the Gmodel with only
SNP main effects. Fifth, DNA methylation is tissue-specific and
interactive effects of prenatal stress and offspring genotype on
DNA methylation may differ between blood, which we used as an
easily accessible tissue in population-based studies, and other,
potentially more relevant tissues, such as brain – however, even in
blood we found an epigenetic pattern of neurodevelopmental
pathways. Sixth, the Generation R and ALSPAC are populations are
generally selected towards being slightly healthier and more
affluent than the general population, which may affect the
generalizability of findings. It may also have reduced variation in
prenatal stress and thereby the power to detect true associations.
Also, as the epigenetic samples only include children of European
ancestry, generalizability to populations of other ancestries may
be limited. In the future, studies in populations of other ancestries
are necessary to understand how genotype-by-prenatal-stress
associates with DNAm at birth across different populations. Last,
this is an observational study. Intervention studies on reducing
prenatal stress [63–65] might help understand the degree to
which gene-by-prenatal stress associations are causal in nature.
Furthermore, more research would be necessary to understand
the consequences of genotype-by-prenatal-stress associations
found. The enrichment analyses indicated that neuronal develop-
ment might be involved, yet more research is necessary to
understand for which aspects of neuronal development this would
be the case and to what degree.
In conclusion, in this comprehensive study of genotype-by-

prenatal stress interactions on DNAm, we report suggestive
findings that cumulative prenatal stress interacts with the child’s
genome on DNA methylation in or close to genes related to
neuronal development. Importantly, we found few significant
associations in our environmental main effect model and our
gene-by-prenatal stress interaction model, contrasting the many
associations identified in our genetic main effect model. These

results do not support the idea that gene-environment interac-
tions on the epigenome are more abundant than gene effects
alone, at least in the case of prenatal stress and when comparing
the number of significant hits between different models. In the
future, larger studies and studies including participants of
different genetic ancestries are needed to identify associations
with smaller effect sizes and generate results that are more
generalizable.

CODE AVAILABILITY
The code that was produced to run the analyses is available at https://github.com/
rosamulder/GxE-project.
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