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The psychedelic phenethylamine 25C-NBF, a selective 5-HT2A
agonist, shows psychoplastogenic properties and rapid
antidepressant effects in male rodents
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Psychedelics have garnered significant interest for their therapeutic potential in mental health conditions such as depression,
anxiety, and post-traumatic stress disorder. While research has primarily focused on well-studied psychedelics, phenethylamine
derivatives have also gathered interest for their potential therapeutic applications. Thus, this study aims to investigate the
pharmacological profile, safety and therapeutic potential of novel N-(2-fluorobenzyl) phenethylamine analogs (NBFs) of the 2C-X
series—25C-NBF, 25B-NBF, and 25I-NBF. NBFs displayed high affinity and selectivity for the 5-HT2A receptor and demonstrated bias
factors (defined in our study as the preference for Gq over β-arrestin pathways at 5-HT2A receptor) similar to that of 5-HT. Acute
administration induced moderate head-twitch responses without affecting locomotion or pre-pulse inhibition. Our studies revealed
no rewarding effects in mice nor reinforcing effects or changes in accumbal dopamine levels in rats after NBFs administration.
Further characterization of 25C-NBF revealed psychoplastogenic effects (dendritogenesis, spinogenesis and increased Bdnf mRNA
levels) both in vitro and in vivo. In addition, 25C-NBF reduced despair-like behavior in response to acute stress and exerted rapid
antidepressant effects in a model of anhedonia-like behavior induced by chronic corticosterone administration. Taken together,
these findings suggest that 25C-NBF, and further analogs, may hold potential as novel antidepressants with a rapid onset of action
and a favorable safety profile in terms of no abuse potential or sensorimotor gating deficits.
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INTRODUCTION
Psychedelics are a class of psychoactive compounds known for
their ability to alter perception, mood and consciousness [1].
These compounds have traditionally been associated with spiritual
practices, but have recently gained renewed attention for their
therapeutic potential in treating various mental health conditions
such as depression, anxiety, and post-traumatic stress disorder [2].
Research in psychedelic compounds has shown promising results,
leading to a growing interest in exploring their therapeutic effects
in controlled settings [3].
Depression is a widespread and debilitating mental health

condition, characterized by persistent low mood or diminished
interest in activities, affecting millions worldwide [4]. Despite the

availability of several antidepressants, a significant portion of
patients fail to achieve adequate relief or experience undesirable
side effects [5]. Moreover, a major limitation of conventional
antidepressants is their delayed therapeutic onset, often requiring
weeks for noticeable improvement [6]. In recent years, interest has
grown in the potential of psychedelics, such as psilocybin and
dimethyltryptamine (DMT), to provide rapid and long-lasting
antidepressant effects [7, 8]. Additionally, these compounds have
been shown to induce neural adaptations, including the promo-
tion of synaptic plasticity, which may underlie their therapeutic
benefits [9]. Therefore, psychedelics are often referred to as
psychoplastogens – a term that describes compounds capable of
rapidly promoting structural and functional changes in neural
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circuits [10]. Moreover, it is known that the prefrontal cortex (PFC)
is a key brain region implicated in the pathophysiology of
depression [11]. In fact, it is known that the loss of dendritic spines
and reduced neuronal plasticity in the PFC are hallmarks of
depression [12], therefore compounds capable of reversing these
alterations could hold therapeutic promise. In this sense,
ketamine, a non-competitive NMDA receptor antagonist with
well-documented antidepressant properties, has demonstrated to
rapidly increase spine density in the PFC [13]. Similarly, Shao and
colleagues [14] reported that a single dose of psilocybin increases
spine density and formation rate in the medial frontal cortex
of mice.
While much of the current research has focused on well-known

psychedelics (e.g. psilocybin, lysergic acid diethylamide (LSD) and
DMT derivatives), other psychedelic compounds, such as certain
phenethylamines, have also garnered interest for their potential
therapeutic applications. Notably, the 2C-series phenethylamines,
first described by Alexander and Anne Shulgin [15], and close
analogs, have emerged not only as recreational drugs, but also as
compounds with therapeutic interest. Among them, 2,5-
dimethoxy-4-iodoamphetamine (DOI) is a potent serotonin 2 A
receptor (5-HT2AR) agonist, which has been found to rapidly
alleviate depressive-like behaviors in animal models through the
promotion of synaptic plasticity [16]. Furthermore, other analogs
from the 2C-series, such as N-2-methoxybenzyl-phenethylamines
(NBOMes), have also been studied. Particularly, Ferri and cow-
orkers [17, 18] recently reported antidepressant properties of a
single dose of 25H-NBOMe or 25H-NBOH (a non-methylated
analog). Unfortunately, this class of compounds has been shown
to carry a significant risk of abuse [19–22], which diminishes their
potential interest as therapeutic drugs. This highlights the
pressing need to identify and develop novel phenethylamines
with antidepressant potential that exhibit a reduced risk of
adverse effects, including addictive properties. In this sense, very
little is known about the pharmacological profile and therapeutic
potential of novel N-(2-fluorobenzyl) analogs (NBFs) of the 2C-X
series. Thus, the present study aimed to investigate the
mechanism of action of 25C-NBF, 25B-NBF, and 25I-NBF, including
their interactions with various 5-HT receptor subtypes and their
effects on human serotonin (5-HT) and dopamine (DA) transpor-
ters (hSERT and hDAT, respectively). More importantly, the study
also evaluated the psychedelic effects, rewarding and reinforcing
properties of these compounds in vivo, alongside the potential
antidepressant activity of 25C-NBF through mouse models of
“anxiety-depression”-like behavior induced by physical and
pharmacological stress, and its ability to promote neural plasticity
both in vitro and in vivo.

MATERIALS AND METHODS
Subjects
Male Swiss CD-1 mice (6–8 weeks old) and Sprague-Dawley rats
(10–12 weeks old) were used in this study, and randomly assigned to an
experimental group. Animals were housed in climate-controlled rooms
under a 12 h light/dark cycle with food and water provided ad libitum,
except during specific test sessions. Animal care and experimental
protocols applied in this study were approved by the local ethics
commitees (Animal ethics Committee of the University of Barcelona and
the Animal ethics Committee of the University of Valencia, under the
supervision of the Autonomous Government of Catalonia and Comunitat
Valenciana, respectively, as well as COMETHEA or Stockholms Norra
djurförsöksetiska nämn following the directives of the Swedish Animal
Welfare Act 1988:534) and are in accordance with the guidelines of the
European Community Council (2010/63/EU), as amended by Regulation
(EU) 2019/1010 and the “Principles of Laboratory Animal Care” (NIH
publication No. 85-23). All animal procedures comply with the ARRIVE
guidelines [23]. All efforts were made to minimize animal suffering and the
number of animals used. For further details, refer to Supplementary
Material.

Drugs and materials
NBFs were synthetized in racemic form as hydrochloride salts as described
in the Supplementary Material. Vehicle consisted of 1% dimethyl sulfoxide
(DMSO) in isotonic saline solution. Radioligands were purchased from
Revvity Inc. (Boston, MA, USA). 3,4-methylenedioxymethamphetamine
(MDMA) was provided by the National Health Laboratory (Barcelona,
Spain). All other reagents were of analytical grade and purchased from
several commercial sources. See the Supplementary Material for buffers
and solutions composition.

In vitro assays
Uptake inhibition assays. The experiment followed our previous protocol
[24]. Briefly, HEK293 cells expressing hDAT or hSERT were preincubated
with varying drug concentrations in Krebs-HEPES-Buffer (KHB) for 5 min,
then exposed to 0.02 μM [³H]MPP⁺ (3 min) or 0.1 μM [³H]5-HT (1 min),
respectively. After incubation, cells were washed, lysed with 1% SDS, liquid
scintillation cocktail added and radioactivity was measured using a beta-
scintillation counter (Perkin Elmer, Waltham, MA, USA). Non-specific uptake
was determined using cocaine (DAT) or paroxetine (SERT). Data represent
the mean (% uptake) of five experiments in triplicate.

Release assays. HEK293 cells expressing hSERT were preloaded with
0.1 μM [3H]5-HT in KHB for 20min at 37 °C. Cells were washed (x3) with
KHB and equilibrated for 10min in KHB or in KHB +monensin (Mon) [25].
Next, cells were incubated with the drug in KHB or KHB +Mon and the
resulting supernatant was transferred to a new well every 2min (x4). Liquid
scintillation cocktail was added to each well. Total radioactivity in the
remaining cells and supernatant was set as 100%, with each fraction’s
radioactivity expressed as a percentage. Assays were performed five times
in duplicate.

Competitive binding assays. Competition binding assays were performed
as described [26]. Briefly, membranes (10–15 μg of protein content) were
incubated with the corresponding compound and radioligand (3 nM [³H]
Imipramine for hSERT; 0.4 nM [³H]-8-hydroxy-DPAT for 5-HT1AR; 1 nM [³H]
ketanserin for 5-HT2AR; 12 and 1 nM [³H]mesulergine for 5-HT2B/2CR). Non-
specific binding was measured using 3 μM paroxetine (hSERT), 10 μM 5-HT
(h5-HT1A/2A/2BR), or 10 μM mianserin (h5-HT2CR). Incubation occurred at
22 °C (hSERT) or 27 °C (5-HT receptors) for 1 h, followed by filtration (GF/B
glass microfiber pre-soaked with 0.5% polyethyleneimine). Liquid scintilla-
tion cocktail was added and trapped radioactivity was quantified. Each
experiment was conducted five times in duplicate.

Calcium mobilization assays. CHO/K1 cells expressing human 5-HT2AR
were used for functional assays using the Invitrogen™ Fluo-4 NW Calcium
Assay Kit (Thermo Fisher, Waltham, MA, USA). Cells were seeded (0.35
million cells/well), incubated with probenecid and the fluorochrome
(45min, 37 °C; 30min, room temperature), and then treated with
compounds. Fluorescence was quantified using a VICTOR Nivo Multimode
Plate Reader (Perkin Elmer). Emax was defined as percentage of the 5-HT
(10−4M) response. Experiments were performed at least four times in
triplicate.

NanoBiT® recruitment assay by means of transient transfection. Cells were
transfected with the receptor construct (5-HT2AR fused to the LgBiT
component of the NanoBiT® system) and SmBiT-βarr2 or SmBiT-miniGαq,
as previously described [27–30]. After 24 h, cells were seeded into PDL-
coated 96-well plates (50 000 cells/well) and incubated for 24 h. Cells were
washed twice with Hank’s Balanced Salt Solution (HBSS), 100 μL of HBSS
was added to each well, followed by 25 μL of NanoGlo Live cell reagent
(diluted 1/20 in NanoGlo LCS Dilution buffer). Luminescence was measured
in a Tristar2LB 942 multimode microplate reader during equilibration. Upon
signal stabilization, 10 μL of 13.5x concentrated agonists or solvent
controls were added to each well and luminescence was monitored for
2 h. LSD and 5-HT were used as reference agonists. βarr2 and miniGαq
assays were conducted in parallel across at least three independent
experiments performed in duplicate.

Behavioral assays
Head-twitch response. Mice received the corresponding intraperitoneal
(i.p.) injection (vehicle 5 ml/kg, 25C-, 25B- or 25I-NBF 0.3, 1, 3 or 10mg/kg)
and were immediately placed into an open field arena (25 × 25 × 40 cm)
and video-recorded. Four trained observers blind to treatment conditions
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visually scored (with slow-down videos) the number of head-twitch
responses (HTR) for 10min after administration of the corresponding drug.

Horizontal locomotor activity and thigmotaxis. The same animals and
assay used for the assessment of HTR were video-monitored for 1 h, and
the total travelled distance was measured (Smart3.0, Panlab, Barcelona,
Spain). The time spent in the center (8 × 8 cm) or the periphery of the
arena was also analyzed.

Pre-pulse inhibition. Startle responses were recorded using two pre-pulse
inhibition (PPI) devices (CIBERTEC, S.A., Madrid, Spain) equipped with a
loudspeaker, each consisting of a Plexiglas tube with a sensor-equipped
platform inside a soundproof chamber. Briefly, mice underwent the PPI
test, carried out in three phases; specific conditions summarized
in Supplementary Material. PPI was calculated as %PPI= 100 - [(startle
with prepulse/startle alone) × 100]. Pre-drug PPI values were used to
allocate animals into three groups with similar PPI levels (Supplementary
Material Fig. 6). PPI was reassessed immediately and 2 h post-NBF
administration. The program included 1min of 65 dB white noise, followed
by 50 trials (120 dB pulse and four prepulse-pulse types, 10 each) in
pseudorandom order separated by a 20-s interval, lasting 18min.

Conditioned place preference. The rewarding effects of the studied
compounds (1, 3 and 10mg/kg, i.p.) were assessed in mice using a place
conditioning paradigm, as described [24], at the same doses and
administration route as in the locomotor test.
The apparatus consists of a two-compartment chambers (and corridor)

with distinct visual and tactile cues. It includes three phases: precondition-
ing (15-min free exploration), conditioning (drug or saline injections
20min-paired and counterbalanced with specific compartments over four
days), and post-conditioning (15-min free exploration). The preference
score was calculated as the time difference spent in the drug-paired
compartment before and after conditioning. Mice with a strong initial
preference ( > 70% of session time) were excluded (3 mice excluded).

Self-administration. Catheter implantation was performed as described
[31]. After recovery, experiments were conducted in MedAssociates
operant chambers with retractable levers, cue-lights, and a house light,
and controlled and recorded by MedAssociates interfaces and MED-PC IV
software (www.medassociates.com). Rats were trained to self-administer
methamphetamine (50 μg/kg/injection; 10–15 daily 2h-sessions) before
switching to one of the NBFs at a dose of 100 μg/kg/injection, selected
based on prior findings [32]. NBFs self-administration was assessed over
five consecutive 2h-sessions. All drugs followed a Fixed Ratio 1 (FR1)
reinforcement schedule. A single press on the active lever resulted in one
intravenous (i.v.) infusion and activated the light (5 s on, 5 s pulsing,
followed by a 5 s time-out). Inactive lever presses had no effect.

Microdialysis
Microdialysis experiments were conducted on awake rats, as described
previously [33]. Briefly, rats were implanted, under anesthesia with
isoflurane, with a guide cannula followed by a microdialysis probe (CMA/
12, 0.5 mm o.d., 2 mm membrane, 20 kDa cut-off) in the nucleus
accumbens (NAcc) (AP + 2.2 mm; L −1.2 mm; DV −5.6 mm−7.6 mm) and
connected to a perfusion system using artificial cerebrospinal fluid (aCSF).
The aCSF was pumped with a syringe pump (CMA/100 Microinjection
pump) at a flow-rate of 1 μl/min.
After 120min stabilization, three baseline samples were collected before

administering the test compound (3 mg/kg, subcutaneous (s.c.)) or vehicle,
and samples were collected for 4 h. Concentrations of DA, 3,4-dihydrox-
yphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured
using ultra high-performance liquid chromatography with electrospray
tandem mass spectroscopy (UHPLC-MS/MS) as described [31, 34]. For more
details, see also Supplementary Material.

Neuroplasticity
Primary cortical neurons and drug treatment. Primary cortical neurons
were obtained from E16 embryonic brains and cultured as described in
the Supplementary Material. Neurons at DIV4 were exposed to 1, 5 or
10 μM of 25C-NBF or solvent control (0.1% ethanol) for 24 h. The
concentrations of 1, 5, and 10 μM were chosen based on previous studies
using similar in vitro approaches [10, 35], where 10 μM approximates brain
levels achieved by antidepressant doses of related compounds in vivo [36],

allowing for relevant and consistent evaluation of NBF-induced
neuroplasticity.

Immunofluorescence: At DIV7, cells were fixed using 4% paraformal-
dehyde, permeabilized (0.1 M PBS containing 0.05% Triton X-100, 10 min)
and blocked for 1 h at room temperature in a blocking solution. Cells were
washed (x3 PBS containing 0.05% Triton X-100) and incubated overnight at
4 °C with the primary antibody against microtubule associated protein 2
(MAP2; Sigma Aldrich; M4403). The next day, cells were washed and
incubated for 45min at room temperature with the appropriate secondary
antibody (Thermo Fisher; A11001). Finally, cells were rinsed with washing
solution and the glass slide cover was mounted using mounting medium
(Invitrogen; 00-4958-02). Images were collected using a microscope (Leica
Thunder Imager; Leica Microsystems) at 20x. A total of 40 neurons from
four independent experiments were analyzed.

Analysis of dendritic arbor: The dendritic complexity was analyzed
from the acquired images of MAP2 immunocytochemistry, via Sholl-
analysis using the plugin SNT of Image J. Neurons were manually outlined
and 10 μm was set as the radius step size. The number of intersections
between the dendrites and the concentric rings was provided by the
software. All replicates used for dendritic arborization originate from
independent cultures.

RNA extraction and qRT-PCR: Total RNA was extracted from the
treated neurons with TRIzol TRItidy G (A4051; PanReac AppliChem)
following a typical phenol-chloroform extraction [37]. Total RNA concen-
trations were measured on a NanoDrop One/One (ND-ONE-W; Thermo-
Fisher). To obtain cDNA, 1 μg of RNA was reverse transcribed using the
High-Capacity cDNA Reverse Transcription Kit (4368814; Applied biosys-
tems) following the manufacturer’s instructions.
To perform the qPCR, 25 ng of the resulting cDNA were added in a 96-

well plate together with the Taqman Gene Expression Master Mix
(4369016; Applied biosystems) and probes against mouse Bdnf (brain-
derived neurotrophic factor; Mm04230607; Applied biosystems), Arc
(activity-regulated cytoskeleton-associated protein; Mm00479619; Applied
biosystems) and Egr-1 (early growth response protein 1;Mm00656724;
Applied biosystems). Mouse Actin B (10546355; Applied biosystems)
was used as a housekeeping gene. qPCR was performed on a QuantStudio
3 Real Time PCR System (Thermo Fisher Scientific) using the
following protocol: 95 °C for 10min and then 40 cycles of 95 °C for 15 s,
and 60 °C for 1 min. qPCR analyses were conducted in duplicate (n > 3).
Fold-change differences were calculated relative to the control group. All
replicates used for gene expression analyses originate from independent
cultures.

Golgi-Cox Staining. Mice were i.p. injected with vehicle or 25C-NBF
(10mg/kg) and euthanized 24 h post-injection by cervical dislocation.
Brains were processed according to the FD Rapid GolgiStainTM Kit (FD
Neurotechnologies, Inc., Columbia, MD, USA) and sectioned (100 μm).
Images were obtained with a microscope (Leica Thunder Imager; Leica
Microsystems). The quantification of dendritic spines was carried out in the
anterior cingulate (AC) and prelimbic (PL) cortex of the PFC and in the
dentate gyrus (DG) and CA1 region of the hippocampus. Five neurons per
zone and animal were selected and dendritic spines were quantified both
in the terminal fragment and in secondary branches. Spine density was
analyzed as described [38] and expressed as the number of spines per
30 μm of dendrite. Six animals per group were analyzed.

Behavioral Assessment of Antidepressant Effects in Mice
Models of induction of depression/stress-like behaviors. The antidepressant
effects of 25C-NBF were studied in two different models of induction of
depression-like behaviors in mice; acute restraint stress (ARS) and
corticosterone (CORT)-induced depression models.

Acute Restraint Stress mouse model: The physical restraint was
performed in mice as previously reported [39], with minor modifications
(5 h instead of 4, to ensure a significant stress response). Mice were
exposed to 5 h physical restraint in an individual rodent restraint device to
evaluate the behavioral impact of an acute stressor. After, mice were
immediately administered with either vehicle or 25C-NBF and returned to
their home cage.
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Corticosterone-induced depression in mice: Mice were subjected to
21 days of s.c. administrations of CORT (20mg/kg) to induce a “depression-
like” state. The dose was based on literature data [40]. CORT was dissolved
in vehicle containing 0.1% DMSO and 5% Tween-80.

Tail Suspension Test. Control mice, depression-induced mice, and mice
treated with 25C-NBF (10mg/kg, i.p.) following CORT administration or ARS
were individually suspended by their tails for 6 min 24 h and one-week
after drug treatment. Three observers, blinded to the treatment assign-
ment, manually assessed the immobility time during the last 4 min.

Sucrose Preference Test. The procedure was performed as previously
described [41], with some modifications. For baseline measurements, mice
were singly housed and given access to two bottles – one containing tap
water and one with a 1% sucrose solution- for 14 h, starting 1–2 h begore
the dark cycle, with bottle positions swapped the next day. Preference (%)
is calculated as (weight of 1% sucrose solution consumed/total liquid
weight consumed)x100. Mice were then group housed, and a depression-
like phenotype was induced by daily s.c. injections of 20mg/kg of CORT for
21 days. Sucrose preference was re-tested before and 24 h after treatment
with vehicle or 25C-NBF (10mg/kg, i.p.). As a priori criteria, mice had to
have a preference for sucrose of >65% at baseline (4 mice excluded) and
display a preference of <70% and at least a 10% decrease in sucrose
preference on the confirmation of anhedonia (13 mice excluded); for more
details refer to Supplementary Material Fig. 11.

Data and statistical analysis
Non-linear regression was used to fit competition and concentration-
response curves, and data were best fitted to a sigmoidal curve to obtain
an IC50, EC50 and Emax values. Selectivity ratios were calculated as (1/DAT
IC50 : 1/SERT IC50) and (1/5-HT2AR Ki : 1/5-HT1A/2C/2BR Ki). The affinity
constant (Ki) was calculated using the Cheng-Prusoff equation: Ki= EC50/
(1 + [radioligand concentration/Kd] [42]. Data from batch release assays
were statistically analyzed with a mixed-effects model, employing Šidák’s
correction for multiple comparisons. Efficacy was calculated as a
percentage of 5-HT or LSD maximum response. Bias factors were
calculated using the “intrinsic relative activity” (Rai) approach [29, 43, 44],
defined as the quotient between the Emax/EC50 ratio of the test compound
and the Emax/EC50 ratio of the reference agonist:

RApathwayi ¼
EmaxðiÞ
EC50ðiÞ

Emaxð5�HTÞ
EC50ð5�HTÞ

The RAi values from each pathway were then combined to obtain the
bias factor (βi):

βi ¼ log
RAβarr2ði; 5�HTÞ
RAminiGαq

ði; 5�HTÞ

 !

Which, by definition, is equal to 0 for the reference agonist; >0 relative
tendency towards βarr2 recruitment (relative to the reference agonist); or
<0 towards miniGαq recruitment. Normal distribution was tested before
selecting statistical tests used for analysis. Statistical differences in the HTR
experiment were determined using Kruskall-Wallis followed by Dunn’s test.
For the rest of the experiments, one way/two-way ANOVA of repeated
measures, followed by Tukey’s post hoc test if F was significant, was used
when appropriate. The α-error probability was set at 0.05 (p < 0.05).
GraphPad Prism software (GraphPad software, San Diego, CA, USA) was
used for statistical analysis. The sample size was determined using GPower
software. For clarity purposes, all statistical results are presented
in Supplementary Material.

RESULTS
NBFs exhibit high selectivity for 5-HT2AR and low DAT/
SERT ratios
The IC50 values for DA and 5-HT uptake inhibition assays, binding
affinities for hSERT and 5-HT receptors and EC50 and Emax values
for 5-HT2AR-mediated calcium efflux are summarized in Table 1
and depicted in Fig. 1. All tested NBFs showed micromolar
potency at inhibiting 5-HT uptake but much lower potency at

hDAT (Fig. 1D, E), resulting in low DAT/SERT ratios. Moreover, all
NBFs showed higher hSERT affinity than MDMA (Fig. 1D) without
evoking 5-HT release (Fig. 1F and Supplementary Material Fig. 2).
Specifically, hSERT affinity increases with halogen volume. NBFs
showed higher affinity for the 5-HT2A/2B/2CR compared to both
MDMA and DMT (Fig. 1H-K). Regarding 5-HT1AR, all NBFs showed
higher affinity than MDMA but lower than DMT. Moreover, the
NBFs showed a high selectivity for 5-HT2AR over 5-HT1AR, but also
moderate over 5-HT2B/2CRs. Decreasing the volume of the halogen
group increased 5-HT2A/2BRs affinity; whereas there is no clear
tendency for 5-HT1AR. For 5-HT2CR, all compounds showed similar
affinities. Moreover, all tested compounds showed >90% efficacy
and equal potency in 5-HT2AR activation-induced calcium
mobilization (Fig. 1L).

NBFs show similar potency than LSD at βarr2 recruitment,
with a bias factor resembling 5-HT at 5-HT2AR
To elucidate the precise mechanism at 5-HT2AR, two analogous in
vitro bioassays were performed, βarr2 and miniGαq protein
recruitment [45]. The EC50 and Emax values (normalized to the
Emax of LSD) are summarized in Table 1; for Emax values normalized
to the Emax of 5-HT refer to Supplementary Material Table 1. All
NBFs displayed nanomolar potency at 5-HT2AR in both βarr2 and
miniGαq assays, consistent with a previous study using 25I-NBF
[27]. The halogen substituent had no impact in the potency or
efficacy in these assays, except for a slightly lower Emax in the
miniGαq assay for 25I-NBF. All compounds tested showed similar
efficacies and potencies in the βarr2 recruitment assay. Although
all NBFs appear to be 2-–3-fold less potent than LSD in the
miniGαq recruitment assay, the overlap of confidence intervals
suggests comparable potencies. Additionally, 25C- and 25B-NBF
showed similar efficacy to LSD in the miniGαq recruitment assay
(Fig. 1M, N). Moreover, the calculated β-factor values relative to
LSD of all the NBFs compounds are >0, similar to the bias factor
obtained for 5-HT. Lastly, EC50, Emax and β-factor values of LSD and
5-HT align with previous studies [27–29].

NBFs induce head-twitches but do not affect locomotion or
sensory-motor desynchronization in mice
Acute i.p. administration of 3 and 10mg/kg of all tested NBFs
significantly increased the HTR (Fig. 2B-D), suggestive of
psychedelic effects in humans [46]. Figure 2A serves as an
illustrative representation of the HTR. Analysis of HTR counts for
25C-NBF across consecutive 10 min intervals revealed that the
peak response occurred within the first 10 min post-administra-
tion, followed by a time-dependent decline (Supplementary
Material Fig. 3). Moreover, none of the doses tested affected
locomotion (Fig. 2F-H) nor induced thigmotaxis (Supplementary
Material Fig. 5). Figure 2E shows a representative 1 h ambulation
tracking. For horizontal locomotor activity (HLA) time-courses see
Supplementary Material Fig. 4. Additionally, acute i.p. administra-
tion of 1 or 10 mg/kg 25C-NBF did not impair PPI of the startle
reflex in short-PPI acute nor in the PPI session repeated after 2 h,
thus suggesting no sensory-motor desynchronization (Fig. 2J).
Figure 2I depicts the PPI procedure.

NBFs do not induce rewarding nor reinforcing effects in
rodents
The conditioned place preference (CPP) paradigm assessed the
rewarding effects of 25C-, 25B- and 25I-NBF. On the test day, none
of the compounds showed preference for the drug-paired
compartment at any dose (Fig. 3A-C). Figure 3D summarizes CPP
procedure. For self-administration studies, baseline methamphe-
tamine self-administration levels (16–19 injections/session) were
similar across groups. When substituted with NBFs, the number of
injections obtained were not significantly different from vehicle
treated mice as demonstrated by a lack of significant effect of
treatment (Fig. 3E). Moreover, statistical analysis revealed a
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significant effect of the variable session (see statistical results
in Supplementary Material) but no significant effect was observed
in the interaction session x treatment. Therefore, NBF-treated rats
behaved in a similar manner as the control group, suggesting a

lack of reinforcing effects. The self-administration experiment is
represented in Fig. 3F. Moreover, no changes in DA levels (Fig. 3G)
nor its metabolites (Supplementary Material Fig. 7) were detected
in the NAcc of awake rats after acute s.c. administration of 3 mg/kg
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of any of the phenethylamines tested. Figure 3H shows a
schematic illustration of the probe placement in the rat NAcc.

25C-NBF induces dendritogenesis and induction of neural
plasticity genes in vitro as well as spinogenesis in vivo
Mouse primary cortical neurons treated with 1, 5 and 10 μM of
25C-NBF exhibited a higher number of crossings and, conse-
quently, an increase of the area under the curve (AUC; Fig. 4B).
Treatment with 5 and 10 μM significantly increased the total
number of crossings and primary dendrites (Fig. 4C, E), while
10 μM also significantly enhanced the total number of branches
and dendritic length (Fig. 4D, F). However, no changes were
observed in the number of secondary/tertiary dendrites nor in the

length of the longest dendrite (Supplementary Material Fig. 8).
Moreover, 10 μM 25C-NBF significantly increased Bdnf expression
2 h after treatment (2-fold-change) (Fig. 4G) (30 min results at
Supplementary Material Fig. 9A). However, no significant changes
were detected in the expression levels of Arc nor Egr-1
(Supplementary Material Fig. 6B-C).
Encouraged by the promising effects observed in vitro, we

examined the impact of an acute administration of 10mg/kg of
25C-NBF on spinogenesis in vivo. Acute treatment with 25C-NBF
significantly increased spinogenesis in both the AC and PL regions of
the mouse prefrontal cortex (Fig. 4H-K), suggesting enhanced cortical
synaptic plasticity. In the hippocampus, spinogenesis increased in the
DG but not in the CA1 region (Supplementary Material Fig. 10).

Fig. 1 In vitro monoamine transporters and 5-HT receptors interaction assays. Structures of 25C-NBF (A), 25B-NBF (B) and 25I-NBF (C).
Concentration-effect curves of 25C-NBF, 25B-NBF, 25I-NBF on [3H]MPP+ uptake at hDAT (D) and [3H]5-HT uptake at hSERT (E) in comparison
with MDMA. Data are expressed as percentage of control uptake (absence of compound). Effect of 25C-NBF on transport-mediated release of
preloaded [3H]5-HT from HEK293 cells stably expressing hSERT (F). MON=monensin. Competition [3H]Imipramine binding curves of NBFs
compounds at hSERT in comparison with MDMA (G). Competition [3H]8-OH-DPAT, [3H]Ketanserin and [3H]Mesulergine binding curves of 25C-
NBF, 25B-NBF and 25I-NBF at 5-HT1AR (H), 5-HT2AR (I) and 5-HT2B/2CR (J and K), respectively, in comparison with DMT and MDMA. Data are
expressed as percentage of control binding (absence of compound). 5-HT2AR-mediated calcium mobilization assay of the tested NBFs and
reference compounds 5-HT (full agonist) and DA (partial agonist) (L). Concentration-response curves of NBFs in the β-arrestin 2 (M) and
miniGαq (N) recruitment assays at the 5-HT2AR normalized to the Emax of LSD. All data are expressed as means ± SD for n ≥ 3 experiments.

Acute 2 h Acute 2 h Acute 2 h-40

-20

0

20

40

60

80

P
P

I (
%

)

Vehicle 25C-NBF 1
1 mg/kg

25C-NBF 1
10 mg/kg

Vehicle 0.3 1 3 10
0

10

20

30

H
T

R
 c

ou
nt

s 
( i

n 
10

 m
in

)

25C-NBF

** ***

Dose (mg/kg, i.p.)

## ###
$

25C-NBF

Vehicle 0.3 1 3 10
0

5000

10000

15000

20000

D
is

ta
nc

e 
(c

m
)

Dose (mg/kg, i.p.)

Vehicle 0.3 1 3 10
0

10

20

30

H
T

R
 c

ou
nt

s 
(1

0 
m

in
)

25B-NBF

**
***

Dose (mg/kg, i.p.)

###

$

*

25B-NBF

Vehicle 0.3 1 3 10
0

5000

10000

15000

20000
D

is
ta

nc
e 

(c
m

)

Dose (mg/kg, i.p.)

Vehicle 0.3 1 3 10
0

10

20

30

H
T

R
 c

ou
nt

s 
(1

0 
m

in
)

25I-NBF

***

***

Dose (mg/kg, i.p.)

#

###
$$

25I-NBF

Vehicle 0.3 1 3 10
0

5000

10000

15000

20000

D
is

ta
nc

e 
(c

m
)

Dose (mg/kg, i.p.)

B C D

F G H

J

A

e Pulse

Pre-pulse

S
TI

M
U

LA
TI

O
N

S
TA

R
TL

E
 R

E
S

P
O

N
S

E

PPI

EE

I

VehiclVV e 25C-NBF 0.3 mg/kg 25C-NBF 1 mg/kg

25C-NBF 3 mg/kg 25C-NBF 10 mg/kg

Fig. 2 Head-twitch response, pre-pulse inhibition and horizontal locomotor activity. Graphical representation of HTR (source: image
generated using DALL·E (OpenAI) and modified in PowerPoint, (A) and number of head-twitch events during a 10-min period for all NBFs
tested (B-D). Data are presented as means ± SD. **p < 0.01 and ***p < 0.001 vs vehicle, #p < 0.05, ##p < 0.01 and ###p < 0.001 vs 0.3 mg/kg,
$p < 0.05 and $$p < 0.01 vs 1mg/kg (Kruskal-Wallis with Dunn’s test). n= 11–12/group. Tracking of the ambulation of one representative
mouse for each experimental group of 25C-NBF (E) and effects of NBFs on cumulative locomotor activity in mice (ANOVA) (F-H). Data are
presented as means ± SD of the total distance travelled in 60 min. n= 11–12/group. Representative scheme of the PPI procedure (I) and effects
of 25C-NBF i.p administration (1 and 10mg/kg) on PPI (J) (mixed-effects model). Data are presented as mean ± SD. n= 10–12/group.
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25C-NBF induces fast antidepressant effects in mice
Building upon observed effects of 25C-NBF on dendritogenesis
and spinogenesis, we reasoned 25C-NBF may possibly exert
antidepressant effects. First, we assessed the antidepressant
effects of 25C-NBF in an ARS mouse model (Fig. 5A). 25C-NBF
administration significantly reduced immobility time in the tail
suspension test (TST) at both 24 h and one-week post-adminis-
tration, compared to the stress-induced (restraint) control group
(Fig. 5B, C). Additionally, as an alternative strategy, we employed a
CORT-induced depression mouse model (Fig. 5D, G). In this model,
the TST also revealed a significant reduction in the immobility
time 24 h after 25C-NBF administration (Fig. 5E). However, no
significant differences were observed among groups one-week
post-administration (Fig. 5F). Using the same CORT-induced

depression mouse model, the sucrose preference test (SPT)
(Fig. 5G) confirmed an anhedonia state through a significant
reduction in sucrose preference, which was rapidly restored by
administration of 10mg/kg of 25C-NBF (Fig. 5H).

DISCUSSION
Treatment-resistant depression remains a major concern, with
many patients unresponsive to current antidepressants. Addition-
ally, the delayed therapeutic effects remain an issue [6].
Psychedelics - including ergoline, tryptamine and phenethylamine
derivatives - are emerging as promising therapeutic alternatives
[47]. However, certain phenethylamine-based psychedelics are
recreationally abused, underscoring the necessity for thorough

Fig. 3 CPP, self-administration and microdialysis. Effects of 25C-NBF (A), 25B-NBF (B) and 25I-NBF (C) on the CPP test in mice, and graphical
representation of the CPP test (D). Bars represent the mean ± SD of the preference score (difference between the time spent in the drug-
paired compartment on the test day and the preconditioning day), (ANOVA). n= 10–12/group. Self-administration of different
phenethylamines in rats trained to self-administer methamphetamine (E), and graphical representation of the self-administration experiment
(F). Number of single press on the active lever by different cohorts of rats after establishing a baseline of self-administration with
methamphetamine (50 μg/kg/inj), which was then substituted with 25C-NBF (100 μg/kg/inj), 25B-NBF (100 μg/kg/inj), 25I-NBF (100 μg/kg/inj),
or their vehicle (1% DMSO in sterile saline) for five 2 h sessions. (Two-way ANOVA). n= 7–8/group. Extracellular levels of DA (G) in the NAcc of
awake rats treated with NBFs (3 mg/kg s.c.) (mixed effects model, n= 4–6/group), and schematic illustration of the probe placement in the
NAcc of a rat (H). Images source: images adapted and/or modified from Servier Medical Art, CC BY 3.0, via https://smart.servier.com (D,F) and
from the Rat Brain Atlas by Gaidica [88] (H).
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investigation of their pharmacological and toxicological profiles to
ensure safety and efficacy [48]. Addressing this need, the present
study comprehensively assesses the pharmacological properties of
novel phenethylamines 25C-, 25B- and 25I-NBF, highlighting their
potential therapeutic benefits alongside a lack of abuse potential
and preserved sensorimotor coordination.
Our results demonstrated that NBF compounds potently

interact with the 5-HT receptor system, highlighting a heightened
affinity, agonist activity and selectivity for 5-HT2AR, one of the
main plausible therapeutic targets of psychedelics for treating
mental health conditions [49, 50]. Particularly, increased 5-HT2AR
affinity over 5-HT1AR, compared to tryptamine-based psychedelics
(i.e. DMT), has also been reported for other phenethylamines such
as 2C-X derivatives [51]. Moreover, hallucinogenic effects of
psychedelics are described to be mediated by activation of
5-HT2AR [26, 52]. In rodents, the HTR is a fast side-to-side rotational
head movement used as a marker of hallucinogenic effects in
humans [46]. Our results demonstrated that acute i.p. administra-
tion of 25C-, 25B- and 25I-NBF induce HTR in mice, suggesting
similar hallucinogenic behavior among compounds. Notably, as
observed for 25C-NBF, the peak HTR response occurred within the
first 10 min post-administration, indicating a rapid onset of action
and supporting the use of this time window to assess their
maximal effect. HTR, as measured immediately after administra-
tion, induced by other phenethylamine-based psychedelics (e.g.,
NBOMes, NBOHs) has been reported in rodents [53, 54], however,
the interspecies and intrastrain variability in these studies
complicates direct comparisons. Notably, under identical

experimental conditions—species, strain, HTR procedure, dose,
and route of administration—our group previously reported that
5-MeO-DMT, a tryptamine-based psychedelic currently in clinical
trials [55, 56], induces approximately 30 HTRs in 10 min [26]. In
contrast, the tested NBFs elicited ~15 HTRs, suggesting a lower
hallucinogenic response. The relatively moderate HTR observed
compared to other tryptamine-based psychedelics could be due
to the compounds’ affinity for the 5-HT2CR, as its activation has
been shown to attenuate HTR in mice [57]. However, 5-HT2CR’s
role in modulating HTR appears complex, as bimodal effects have
been reported depending on the dose of 5-HT2CR antagonist
before psilocybin treatment [58]. Beyond that, biased agonism has
also been proposed as a key mechanism underlying the
psychedelic and therapeutic properties of some 5-HT2AR agonists
[27, 59, 60]. Psychedelics like LSD and 5-MeO-DMT activate both
Gq and β-arrestin2 pathways via 5-HT2AR, though their specific
roles remain unclear [61]. Our findings suggest that NBFs and LSD
have comparable potencies in β-arrestin2 and Gq recruitment
assays. While their EC50 values for Gq recruitment partially overlap,
absolute values indicate NBFs may be slightly less potent than
LSD. Moreover, all tested NBFs showed bias factors ( >0 relative to
LSD) similar to 5-HT. Wallach and coworkers [62], recently
demonstrated a positive relationship between 5-HT2A-Gq efficacy
and HTR in structural related phenethylamines, whereas a β-
arrestin-biased agonism would reduce psychedelic effects. In our
experiments, all NBFs showed reduced Gq efficacy relative to 5-HT
but still induced moderate HTR. However, differences in Gq
recruitment assays protocols prevent direct comparison with our
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results. Further investigation is needed to clarify the factors
behind psychedelics’ hallucinogenic effects.
5-HT2BR agonism has been associated with adverse cardiovas-

cular outcomes [63], prompting the FDA to issue guidance for
industry on clinical investigations for psychedelics, strongly
recommending the evaluation of binding to 5-HT2BR due to its
link to heart valvulopathy [64]. In this sense, the high selectivity
( >100-fold) for 5-HT2AR over the 5-HT2BR observed for all NBFs
underscores their favorable safety profile.
Several studies have reported that phenethylamines reduce

locomotor activity, potentially reflecting hallucinogenic activity in
mice [26, 65]. Wojtas and colleagues [66] suggested that this

hypolocomotion may reflect fear/anxiety in novel settings and
increased center avoidance induced by these substances. The
absence of hypolocomotion and thigmotaxis observed for all NBFs
may be attributed to their lower 5-HT1AR affinity compared to
other psychedelics, particularly tryptamine-based psychedelics,
known to reduce locomotion [26]. However, 25C-, 25B- and 25I-
NBOMe, selective 5-HT2AR agonists, have been shown to dose-
dependently suppress locomotor activity [66, 67]. Additionally,
Tirri and coworkers [68] reported that NBOMe derivatives disrupt
sensorimotor gating (PPI) in mice, similar to LSD. Our findings
reveal that 25C-NBF did not cause sensory-motor desynchroniza-
tion, a translational response of the potential “trance-like”
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behavior typical of users who abuse hallucinogenic substances.
This lack of effect contrasts with structurally related phenethyla-
mines [68] and other psychedelics known to disrupt PPI [69, 70].
Phenethylamines, including MDMA and the 2C-X series, have

been widely used recreationally [71], with many posing significant
abuse risk, limiting their viability and safety as therapeutic agents.
For instance, NBOMe drugs have shown abuse potential in rodents
[19–22, 72]. Moreover, the DA system is widely known to be highly
associated with substance use disorder [73], with the NAcc being a
crucial structure in reward development [74]. Previous studies
have also reported that some NBOMe derivatives increase DA in
the NAcc [22, 75, 76]. Our findings revealed that the tested NBFs
had little to no effect at inhibiting DAT and very low DAT/SERT
ratios in vitro, suggesting low abuse potential [77]. Further in vivo
microdialysis experiments revealed no significant DA increases in
the NAcc of awake rats after acute NBF administration. Moreover,
unlike other 2C-X analogs [21, 22], none of the NBFs significantly
increased preference scores in the CPP paradigm, indicating no
reward-inducing properties. Additionally, NBF substitution after
methamphetamine self-administration reduced injection num-
bers, comparable to the saline group, suggesting minimal to no
reinforcing effects. Our findings partially differ from those of Hur
and colleagues [32], who reported that extinction of self-
administration behavior was slower for 25C-NBF than for vehicle.
However, this is mostly due to their unusually fast extinction in the
vehicle group whereas the 25C-NBF curve is actually very similar
to ours showing decreased drug seeking and drug taking
overtime, indicating that 25C-NBF does not maintain self-
administration. Altogether, our findings highlight the improved
safety profile of the tested NBFs, evidenced by minimal DAT
inhibition and accumbal DA increases, low DAT/SERT ratios,
absence of reward-inducing properties, and lack of reinforcing
effects, suggesting reduced abuse potential. Additionally, their
high affinity for the 5-HT2CR, a promising target for substance use
disorder treatment [78, 79], may indicate an interesting area for
further research.
The high affinity of NBFs for the 5-HT2AR together with their mild

hallucinogenic effects - compared to other psychedelics under
clinical trials - absence of changes in locomotion and sensory-motor
desynchronization nor addictive effects, makes them promising
candidates for further investigation of their potential therapeutic
properties. In this context, we focused on 25C-NBF, the phenethy-
lamine with the greatest 5-HT2AR affinity and selectivity. Given the
link between psychedelic use and increased neuroplasticity (for a
review see Calder and Hasler, 2023 [80]), we first evaluated, in vitro,
25C-NBF’s effects on dendritic branching and neuroplasticity-related
genes. Our findings indicate that 25C-NBF enhances dendritic arbor
complexity and increases Bdnf mRNA levels in primary cortical
neurons, highlighting its potential as a psychoplastogen. It must be
pointed out that although DIV4 represents an early developmental
stage, it provides a sensitive window to detect subtle drug-induced
changes in dendritic growth, a strategy widely employed in studies
of rapid-acting antidepressants [35, 81], while acknowledging that
extrapolation to adult cortical plasticity should be made cautiously.
Moreover, we investigated the impact of 25C-NBF on in vivo
dendritic spinogenesis, a cellular process impaired in depression
[12]. Acute administration promoted spinogenesis in key mood-
regulation regions, including the AC and PL cortex. This suggests a
potential mechanistic link between 25C-NBF and structural plasticity,
similar to other fast-acting antidepressants such as ketamine [82]
and tryptamine-based psychedelics [14, 50, 83].
The ability of 25C-NBF to modulate neuroplasticity prompted us

to investigate whether it could produce antidepressant outcomes
similar to other psychedelics [18, 41, 50]. Thus, we assessed the
antidepressant-like effects of 25C-NBF using established behavioral
paradigms sensitive to antidepressant treatments [84, 85] applying
two complementary approaches. The ARS paradigm was used as a

tool to evaluate the behavioral response to an acute stressor, since
altered stress reactivity is a core feature of depression. This
approached allowed us to assess whether 25C-NBF could modulate
stress-induced behavioral changes in a short-term context, com-
plementing the chronic corticosterone model, in which a depres-
sion/anhedonia-like phenotype is pharmacologically induced. In the
ARS paradigm, administration of 25C-NBF (10mg/kg, i.p.) signifi-
cantly reduced despair behavior in the TST compared to restrained
control mice, both 24 h and one-week post-administration. In the
CORT-model, administration of 10mg/kg 25C-NBF restored both
despair and hedonic behavior in the TST and SPT, respectively, and
demonstrated significant antidepressant effects within 24 h. These
effects align with those reported for other psychedelics, such as 5-
MeO-DMT and DMT at the same dose [10, 50]. Finally, although no
persistent effects were observed one-week after CORT treatment, it
must be pointed out that CORT-treated animals did not exhibit
despair behaviors at this time point, which hindered the ability to
assess the drug’s antidepressant effects. Including alternative
models involving social and/or environmental stressors will also
provide valuable, ethologically and complementary insights,
particularly regarding the compound’s sustained or long-term
effects. Our results provide initial evidence of its therapeutic
potential; however, further studies using additional behavioral and
mechanistic approaches will be necessary to fully characterize its
therapeutic potential.
Taken together, our findings suggest that 25C-NBF exhibits

promising antidepressant properties with a rapid onset of action,
supported by its ability to modulate neuroplasticity and restore
behavioral deficits in preclinical models of depression. Its
therapeutic efficacy, selectivity for 5HT2AR vs 5HT2BR, and lack of
abuse potential and sensorimotor desynchronization, underscores
its promise as a safer alternative in the realm of psychedelic-
assisted treatments for depression. Nevertheless, further studies
are warranted to optimize dosing regimens, assess non-
hallucinogenic doses, evaluate repeated administration effects,
and elucidate the underlying molecular pathways contributing to
its antidepressant and neuroplasticity-promoting properties.
Moreover, the present study is limited to male mice, which
represents a limitation in light of the fact that human females are
generally more susceptible to depression-related disorders [86].
However, previous studies have reported greater synaptic
plasticity and antidepressant effects in female mice following a
single administration of psilocybin or ketamine [14, 87]. This
suggests equal or enhanced efficacy in females, warranting further
investigation. Overall, the present study underscores that NBFs
analogs might emerge as novel and compelling candidates for
further research into their therapeutic potential for treating mood
disorders, particularly treatment-resistant depression, and may
also open avenues for exploring broader applications within this
class of phenethylamines.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon request.
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