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Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on
mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in
brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of
pairwise correlation analysis approaches. This enables a more comprehensive exploration of higher-order interactions and
multiscale intrinsic connectivity networks (ICNs) in the psychotic brain. In this study, we provide converging evidence suggesting
that the psychotic brain exhibits states of randomness across both spatial and temporal dimensions. To further investigate these
disruptions, we estimated brain network connectivity using redundancy and synergy measures, aiming to assess the integration
and segregation of topological information in the psychotic brain. Our findings reveal a disruption in the balance between
redundant and synergistic information, a phenomenon we term brainquake in this study, which highlights the instability and
disorganization of brain networks in psychosis. Moreover, our exploration of higher-order topological functional connectivity
reveals profound disruptions in brain information integration. Aberrant information interactions were observed across both cortical
and subcortical ICNs. We specifically identified the most easily affected irregularities in the sensorimotor, visual, temporal, default
mode, and fronto-parietal networks, as well as in the hippocampal and amygdalar regions, all of which showed disruptions. These
findings underscore the severe impact of psychotic states on multiscale critical brain networks, suggesting a profound alteration in
the brain’s complexity and organizational states.
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INTRODUCTION
The human brain, with its intricate spatiotemporal organization,
remains a critical focus for understanding the pathophysiology of
complex mental disorders, including schizophrenia (SZ) and
bipolar disorder (BP). These conditions are characterized by their
diverse clinical presentations and a lack of reliable biomarkers,
making accurate diagnosis and treatment particularly challenging
[1–4]. Recent advancements in neuroimaging and electrophysio-
logical research have begun to reveal that specific brain regions
exhibit altered spatiotemporal dynamics that may underlie both
the onset and progression of SZ and BP [5–10]. The examination of
spatiotemporal dynamics, or how neural activity evolves across
both time and space, offers significant promise for elucidating the
neural substrates of psychosis, particularly the disruptions in brain
network connectivity that are hallmark features of SZ and BP [11,
12]. Furthermore, investigating spatiotemporal complexity in brain
activity has the potential to refine existing disease models,
thereby enhancing diagnostic precision and informing the
development of targeted, personalized therapeutic strategies
[13–15]. Given the profound implications for both basic neu-
roscience and clinical applications, a deeper exploration of
spatiotemporal brain activity in SZ and BP is essential for
advancing our understanding of these complex disorders and
improving patient outcomes.

When studying the human brain as a highly nonlinear, complex
dynamic information processing system, it is essential to uncover
the mechanisms that govern both information integration and
segregation. Information integration refers to the coordination
and combination of information across different brain regions,
while information segregation involves the specialization of
regions that process distinct types of information within its
intricate networks [6, 16, 17]. The balance between these two
processes is crucial for maintaining optimal brain function.
Furthermore, understanding the transmission of information
across various brain networks is of utmost significance, particularly
given that disruptions in the integration and segregation of
information are implicated in the initiation of mental illnesses [18].
Therefore, measuring and quantifying information interactions in
individuals with mental disorders, as well as in healthy controls,
have the potential to significantly enhance our understanding of
the fundamental pathological mechanisms underlying these
disorders. The proper functioning of a typical brain depends on
the effective segregation and integration of regular information
[19–21]. Maintaining a crucial balance between these processes is
critical, as any disruption in this equilibrium could lead to severe
brain disorders [22]. Identifying deviations from this equilibrium is
essential for comprehending the advancement of psychotic
diseases. A promising approach to gaining insights into this
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understanding entails quantifying information segregation and
integration levels within the brain by assessing redundant and
synergistic information [23].
Utilizing functional magnetic resonance imaging (fMRI) enables

researchers to explore the intricate interplay of the brain’s
functional connectivity, revealing identifiable patterns of neural
activity that may provide insights into the unique characteristics of
psychosis [24, 25]. Functional connectivity illuminates the intricate
interplay and communication between brain regions, coordinating
a variety of cognitive processes. While both low-order (pairwise)
and high-order (beyond pairwise) functional connectivity are
essential for understanding information exchange, recent research
suggests that high-order connectivity provides a distinct advan-
tage in revealing multi-way brain interactions [26–29]. Emerging
evidence highlights the superior efficacy of high-order functional
connectivity in exploring complex brain network interactions
[17, 30–32]. This evolving perspective underscores the potential of
advanced functional connectivity to serve as a driving force in
capturing previously unknown interactions in the healthy brain
and identifying novel biomarkers in the psychotic brain [33–35].
Moreover, the discovery of high-order brain networks not only
deepens our understanding of neural interactions but also
enhances our ability to unravel the intricate dynamics that govern
the brain’s functional architecture [36, 37].
In this study, we hypothesize that the psychotic brain oscillates

in an unstable, random state, with a disruption in the balance
between information integration and segregation. We refer to this
phenomenon brainquake. Our primary aim is to conduct a
quantitative assessment of the complexities inherent in both
spontaneous and psychotic brain activity. This involves with a
comprehensive analysis of spatiotemporal patterns within fMRI
signals. Our exploration encompasses the utilization of complexity
measures, enabling us to evaluate intricate spatial and temporal
patterns in brain activities. These metrics possess the capability to
capture the nonlinear dynamics and high-order information
encoded in spontaneous brain activity. This potentiality opens
avenues for distinguishing psychotic features.

RESULTS
Estimated subject-specific ICNs and their temporal dynamics
using psychotic rsfMRI
The data-driven brain network reference estimate was obtained
through group independent component analysis (GICA) applied to
a large cohort of subjects. A total of 105 intrinsic independent
connectivity networks (ICNs) across multiple spatial scales (ICA
model order) were identified, collectively referred to as the
Neuromark_fMRI_2.1_modelorder-multi template[38], as shown in
Fig. 1A and Fig. 2. The 105 ICNs can be categorized into 6 domains:
the visual domain (VI, 12 ICNs), cerebellar domain (CB, 13 ICNs),
temporal domain (TP, 13 ICNs), subcortical domain (SC, 23 ICNs),
sensorimotor domain (SM, 13 ICNs), and higher cognitive domain
(HC, 31 ICNs), as presented in Fig. 2.
We then applied multi-objective optimization independent

component analysis with reference (MOO-ICAR) to estimate
subject-specific independent component networks (ICNs) and
their time courses, using the Neuromark_fMRI_2.1 network
template as a spatial prior brain network template. This template
includes 105 high-fidelity ICNs identified from over 100K subjects
[38]. The MOO-ICAR was performed on normal controls (NC),
schizophrenia (SZ), and bipolar disorder (BP), and the correspond-
ing time courses for each identified ICN were also extracted, as
shown in Fig. 1B.
After that, we applied spatiotemporal complexity measures

using information-theoretical methods to quantify the state of the
psychotic brain. Specifically, we used fuzzy recurrence plots and
sample entropy to explore the spatial and temporal complexity of
SZ and BP. We then employed integrated information

decomposition, an extension of partial information decomposition
(PID), to break down the information into redundancy, synergy,
and unique components, enabling us to assess information
integration and segregation in the psychotic brain. Following this,
we applied group theory and total correlation to evaluate the
high-order topological organization of information in the psycho-
tic brain.

The irregularities present in the spontaneous psychotic brain
To measure the spatial and temporal complexity of the psychotic
brain, we applied fuzzy recurrence plots (FRP) [39, 40] and sample
entropy [41]. To estimate the FRP, we first optimized the
complexity parameter estimations, based on the minimum mutual
information criterion, as shown on the left side of Fig. 3A. The
optimized parameters resulted in a delay of τ = 6, an embedding
dimension of e = 3, and a tolerance of r = 0.08.
Afterward, we constructed the FRP using the identified

parameters, as illustrated in the right side of Fig. 3A. Our
investigation revealed that the brains of individuals with psychosis
exhibit greater unpredictability and irregularity compared to NC.
Additionally, pairwise functional connectivity was computed to
serve as a baseline for comparison with the FRP. Notably, the FRP
demonstrated increased spatial sensitivity relative to standard
correlation-based methods. This finding reaffirmed our earlier
conclusion that FRP stands out as an superior descriptor for
functional connectivity in contrast to traditional Pearson correla-
tion metrics [40]. Furthermore, our analysis extended to the
temporal dimension, where we carefully tracked the trajectories of
brain activity in individuals experiencing psychosis. The results
unveiled that the psychotic brain tends to manifest increased
randomness and irregularity in its activity compared to the normal
brain, as illustrated in Fig. 3A. To further quantify brain network
complexity, we applied fuzzy determinism (DET) [39], a metric that
assesses whether brain activity tends toward more chaotic or
random behavior [40]. A small value of DET indicates that brain
activity is more likely to exhibit random states. We observed that
both SZ and BP exhibit randomness compared to NC, as shown in
Fig. 3B.
To more accurately quantify the state of information interaction

in the brain, the small-world network is usually used as a
computational model of the human brain, and this modeling
approach involves initially connecting nodes with their nearest
neighbors, resulting in a network characterized by a high
clustering coefficient and a long characteristic path length [42].
In accordance with small-world models, investigations into brain
networks in SZ and BP tend to favor a less regular and more
random configuration. Here, sample entropy [41] was measured in
the psychotic brain, revealing significant differences between SZ
and BP. A low sample entropy suggests that brain activity in
psychosis is more deterministic, while a higher value indicates
increased randomness, further suggesting a tendency toward a
random state in the psychotic brain. This approach is especially
pertinent given the inherent difficulty in separating traits
associated with SZ and BP, as illustrated in Fig. 3C. Furthermore,
we used Euclidean distance as a metric to measure their
dissimilarities to improve the differentiation of important spatial
topology brain regions between SZ and BP. The corresponding
sample entropy values for SZ and BP were mapped onto the
standard inflated brain surface (fs_LR. 32k) and subcortical regions,
illustrating notable topological similarities and distinctions.
Additionally, to examine which brain domains are involved in SZ
and BP, we mapped the sample entropy values onto the Yeo 7 [43]
and multiscale Neuromark_2.1 templates [38], as shown in Fig. 3D.
Our analysis revealed that the most prominent irregularities and
unpredictabilities in brain activity were observed in the SM, VI,
DMN, FPN, TP, and SC, including regions such as the amygdala and
hippocampus. These findings suggest that these specific brain
domains may play a crucial role in the pathophysiology of SZ and
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BP, highlighting their involvement in the disrupted spatiotemporal
dynamics characteristic of these psychotic disorders.

Disruption of redundancy and synergy in the psychotic brain
Integrated information decomposition, an extension of partial
information decomposition (PID), was used to break down the
group information into redundant, synergistic, and unique compo-
nents [44, 45]. The diagram of PID for triplet variables is illustrated on
the left side of Fig. 4A. Therefore, the entropy brain, redundant brain

and synergistic brain can be constructed from integrated informa-
tion decomposition [23]. Meanwhile, high-order functional con-
nectivity (HOFC) was also estimated through total correlation [26]
(also known as multi-information [46] or redundancy [47]), which
captures information beyond pairwise brain regions and can supply
us with more rich information compared to low-order functional
connectivity (LOFC) [17, 31, 33, 36].
Then, using the integrated information decomposition, we

constructed the redundancy and synergy of functional brain

Fig. 1 The framework designed for examining the complexity of the psychotic brain. The data-driven references for brain networks were
derived from a large cohort of subjects using group-level spatial independent component analysis (GICA), as illustrated in A. Spatial networks
and their corresponding time courses were constructed for subjects with NC, SZ, and BP using spatially constrained ICA, based on previously
established group-level intrinsic connectivity networks, as shown in B. To assess spatiotemporal complexity in the psychotic brain, complexity
measures were applied to its activity, aiming to gain a better understanding of its specific spatiotemporal complexity patterns and
preferences. Additionally, information interactions within brain networks are not limited to isolated (order = 0) or pairwise (order = 1)
relationships. Instead, high-order interactions (order≥2) also play a significant role, highlighting the complexity of brain network dynamics, as
illustrated in C. In this study, we employed integrated information decomposition, which is based on partial information decomposition (with
the information distribution lattices for the triplet case presented to demonstrate the methodology for decomposing mixed information into
entropy, redundant, synergistic, and total correlation components), to assess these high-order interactions within the brain.
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networks across NC, SZ, and BP, with the associated brain networks
labeled on the y-axis, as shown in the right side of Fig. 4A.
Meanwhile, the correlation between psychotic redundancy/synergy
and NC redundancy/synergy was measured as follows: NCredundancy
vs. SZredundancy (0.47), NCredundancy vs. BPredundancy (0.41), NCsynergy vs.
SZsynergy (0.37), and NCsynergy vs. BPsynergy (0.33). Simultaneously, for a
more comprehensive visualization of information interaction within
the brain network, the associated functional connectogram is
depicted in Fig. 4B. In this representation, the red spectrum signifies
the strongest redundant or synergy connection between ICNs, while
the blue spectrum indicates the weakest redundant or synergy

information connection. It is evident from the results that redundant
information decreases within communities and increases between
communities. Simultaneously, synergistic information gradually
decreases in the psychotic brain compared to the normal brain.
Moreover, the major difference in redundant and synergistic
functional connectivity in the psychotic brain is very clear compared
to NC.
To further explore the relationship between redundancy- and

synergy-derived functional connectivity and clinical symptoms, we
examined their correlations with Positive and Negative Syndrome
Scale (PANSS) scores, including the positive, negative, and general

Fig. 2 A total of 105 independent component networks were drawn from Group ICA. The Neuromark_fMRI_2.1 network template [38] is
available at https://trendscenter.org/data/. It includes a total of 105 intrinsic connectivity networks (ICNs) across various domains: VI (12 ICNs),
CB (13 ICNs), TP (13 ICNs), SC (23 ICNs), SM (13 ICNs), and HC (31 ICNs). The composite independent component networks are displayed in the
middle section of the visual representation, providing a holistic view of their collective patterns and interactions (i.e., VI, CB, TP, SC, SM, and
HC). Around this view, each individual independent component network is presented, facilitating a convenient and systematic examination of
their spatial distribution and localization within the brain.

Q. Li et al.

4

Molecular Psychiatry

https://trendscenter.org/data/


subscales. The results revealed significant associations between
symptom severity and both redundancy and synergy functional
connectivity strength, as shown in Fig. 4C, suggesting that distinct
connectivity patterns may underlie different dimensions of
psychopathology.

To represent the distribution of both redundancy and synergy
in the human brain, we used the gradient of the synergy minus
redundancy ranks. This gradient was projected onto the standard
cortical and subcortical surfaces of the brain. Simultaneously, we
examined the distribution of the synergy minus redundancy rank

Fig. 3 Spatiotemporal complexity measures the spontaneous brain activity in psychotic conditions. The optimized complexity parameter
estimates are shown in the bottom-left corner of panel A, with the following optimized values: delay τ = 6, embedding dimension e = 5, and
tolerance r = 0.08. The functional connectivity from Pearson correlation and the FRP are presented in the top right side, and the related
attractors for the normal controls and psychotic brain are present in the bottom in A, and it shows that psychotic brain tend to randomness
states. To further quantify the complexity, we applied Fuzzy Determinism (DET) to assess brain network activity, as shown in B. The psychotic
brain exhibits more randomness compared to the healthy brain. According to the small-world models, studies on brain networks in SZ and BP
can be categorized as favoring a less regular and more random configuration, as shown in C. The resulting sample entropy values for SZ and
BP patients were projected onto the standard inflated brain surface (fs_LR. 32k) and subcortical, revealing notable topological joint and
distinctions considering SZ and BP traits are hard to separate, as shown in C. Related statistical analyses demonstrated significant sample
entropy differences expressed between SZ and BP, it also suggested that psychotic brain tend to randomness state. Moreover, several brain
networks associated with irregular states in SZ and BP engage multiple network systems. In panel D, the color map highlights 22 functional
regions [77] across the flattened left cortex (left side), with each region grouped into the Yeo 7 networks [43] as well as multiscale
Neuromark_2.1 networks [38] (right side). Key networks affected in these conditions include the sensorimotor network (SMN), default mode
network (DMN), central executive network (CON), frontoparietal network (FPN), visual network (VIS), and auditory network (AUD), as defined in
the Yeo 7-networks. These networks correspond to specific Neuromark_2.1 domains, such as sensorimotor (SM), high-cognitive (HC),
subcortical (SC), and visual (VI) domains.
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gradient across ICNs, revealing noticeable differences between
normal and psychotic brains. Furthermore, the correlation
between the normal brain and the psychotic brain was also
measured (i.e., NC vs. SZ, r=0.19, p=0.05; NC vs. BP, r=0.20,
p=0.04; and SZ vs. BP, r=0.16, p=0.09).

In short summary, we showed that an unbalanced distribution
between redundancy and synergy indeed happened in the
psychotic brain, as shown in Fig. 5A. Therefore, we suggested
that disrupting information balance may be a major biomarker in
the psychotic brain. Furthermore, we again used Euclidean
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distance to access their differences in order to improve the
differentiation of major spatial topology brain regions between SZ
and BP. The synergy minus redundancy rank gradient values for
SZ and BP were projected onto the standard inflated brain surface
and subcortical areas, revealing significant topological similarities
and differences, as illustrated in Fig. 5B,C. The key cortical brain
domains identified in this study include the SM, VI, DMN, FPN, TP,
and SC (amygdala). These findings align with the sample entropy
results and suggest that the altered dynamics of redundancy and
synergy contribute to the irregularity and unpredictability of brain
activity, which manifest as hallmark functional brain dysregulation
in SZ and BP. This abnormal balance may help explain the
fragmented or disorganized thought processes observed in both
disorders. By examining these disruptions in information proces-
sing, we gain valuable insights into the complex neurobiological
mechanisms underlying these psychiatric conditions. Ultimately,
these findings provide potential targets for therapeutic interven-
tions aimed at restoring more typical patterns of brain network
activity, which could help improve functional brain regulation in
individuals with SZ and BP.

Aberrant high-order dependencies in the psychotic brain
To explore the integration and segregation of topological
information in NC and individuals with SZ and BP, we transformed
redundancy and synergy functional connectivity into a tree graph
layout, allowing us to visualize their topological interactions, as
depicted in Fig. 6A. Notably, we observed that SZ and BP exhibited
distinct topological distribution patterns compared to NC.
Additionally, individuals with SZ and BP showed greater segrega-
tion and less integration than NC subjects. This indicates reduced
coordination between different brain domains in SZ and BP,
reflecting less synchronized or coherent connectivity compared to
NC. These disruptions in typical network organization may result
in more segregated and less integrated brain activity or functional
connectivity in individuals with SZ and BP.
To capture high-order topological information in the brain more

effectively, it is necessary to apply a high-sensitivity descriptor
designed for this purpose [17]. Here we applied total correlation to
estimate the high-order functional connectivity. Furthermore, our
previous findings have confirmed, both theoretically and empiri-
cally, that total correlation exceeds pairwise mutual information
and Pearson correlation [17, 31, 33, 36]. Consequently, we
employed total correlation to assess global functional connectiv-
ity, as depicted in the tree graph presented in Fig. 6B. Each ICN is
represented by a leaf of the tree and encoded with the
corresponding brain network color. The solid black dots represent
the local total correlation originating from connected ICNs.

Notably, we observe that the HC and TP shared the strongest
information, and this balance was disrupted in individuals with SZ
and BP, aligning with our previously reported results [48].
Remarkably, our findings indicate that psychotic brains exhibit
significantly elevated total correlation values, specifically measur-
ing 58, 62, and 65 nats. This suggests a tendency toward states
characterized by local randomness in the brains of individuals with
psychosis compared to controls.

Computational model of Brainquake for the psychotic brain
From our systematic analysis, we demonstrated that several brain
networks exhibit greater instability in the psychotic brain
compared to the normal brain. To further investigate this, we
used a computational model to simulate the psychotic brain, as
shown in Fig. 7. The model highlights a significant increase in
instability across several key networks, including the sensorimotor,
visual, temporal, default mode, and fronto-parietal networks, as
well as the hippocampal and amygdalar regions. Building on this,
we describe this phenomenon as Brainquake, a concept inspired
by earthquake dynamics to characterize certain unstable brain
networks. Similar to active volcanoes, these networks in the
psychotic brain are more prone to sudden disruptions, in contrast
to the more stable networks observed in the normal brain. This
analogy emphasizes the heightened vulnerability and potential for
instability in the functional connectivity patterns of the psychotic
brain.

DISCUSSION
Our spatiotemporal exploration of information-resolved brain
dynamics sheds light on how the psychotic brain adapts to
manage the inherent trade-off between randomness and integra-
tion. Employing group independent component analysis to
estimate stable multiscale brain networks, we track spatial fuzzy
recurrence plots and temporal psychosis brain activity to capture
their spatiotemporal complexity. Utilizing information-theoretical
metrics such as sample entropy [41] and integrated information
decomposition [23], we decompose the intrinsic dynamics of
human BOLD signals. Through this approach, we quantify the
information content carried in each brain region via sample
entropy, revealing the complexity of regional dynamics. Moreover,
we assess the degree to which information about the brain’s
dynamics is redundantly conveyed by the current state of
different brain areas, thereby illustrating their robustness.
Additionally, we analyze the extent to which information is
transferred across brain areas synergistically, providing insights
into their integration.

Fig. 4 Redundant and synergistic in the spontaneous psychotic brain. The redundant and synergistic information was measured using
integrated information decomposition based on partial information decomposition (PID). The basic principle of PID is illustrated in the
diagram in panel A. The redundant and synergistic functional connectomes between intrinsic brain domains were estimated across NC, SZ,
and BP. It was observed that redundant information decreased within communities and increased between communities. Meanwhile,
synergistic information gradually decreased in the psychotic brain compared to the NC. Furthermore, the correlation between psychotic
redundancy/synergy and NC redundancy/synergy was labeled in the title of each psychotic matrix, respectively. The functional connectogram
within the psychotic brain is shown in B, depicting the redundant and synergistic connections across NC, SZ, and BP. The intensity of
connections is represented by the color spectrum, with red indicating the strongest redundant and synergistic connections, and blue
representing the weakest information linkages. Notably, redundant information connections primarily occurred within brain network
communities in NC, whereas in SZ and BP, these connections increased between communities but decreased within communities.
Additionally, a discernible pattern emerged where redundant information connections between specific brain regions were elevated,
particularly between the HC and SM networks. In contrast, a reduction in redundant connections was observed between other regions,
notably between the CB and TP. This intricate network analysis revealed that synergistic connections also diminished both within and
between brain network communities, potentially explaining the decline in information integration observed in SZ and BP. Upon integrating
both redundant and synergistic functional connectograms, our analysis suggested that the psychotic brain faces challenges in both
information integration and segregation. As a result, the organization of information between brain regions appeared to adopt highly
unstable or random states. The associations between functional connectivity strength, derived from both redundancy and synergy measures,
and Positive and Negative Syndrome Scale (PANSS) scores were examined. As shown in C, these measures revealed distinct patterns of
connectivity significantly related to symptom severity, suggesting that redundant and synergistic interactions may differentially contribute to
the clinical profile of individuals.
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In this study, we utilized fuzzy recurrence plots [39, 40] and
information-theoretic metrics to assess the spatiotemporal com-
plexity characteristics of the psychiatric brain. This assessment
focused on understanding spatial and temporal neural activity
patterns. Specifically, we applied complexity measures to inves-
tigate the information balance between integration and segrega-
tion within the psychotic brain, aiming to comprehend how
different brain regions synchronize and desynchronize their
activity. The complexity measures offer insights into the patterns
of these connections, providing a means to understand how
different brain regions interact and communicate under abnormal
resting-state conditions [3]. Furthermore, we observed that the
brain’s state transitions from a regular, stable state to one
characterized by unstable randomness in the psychotic brain.
Furthermore, we found that the delicate balance between
information integration and segregation is disrupted in the
psychotic brain, a phenomenon we refer to as the brainquake.
However, there are certain limitations to acknowledge in this

study. First, the assessment of the spatiotemporal complexity of
the psychotic brain using fuzzy recurrence plots and sample

entropy might not fully capture the predictive and regularity
properties inherent in psychotic brain activity. It is essential to
incorporate additional compliance measure metrics, such as the
fractal dimension and correlation dimension, among others
[3, 49, 50]. Integrating these metrics into the analysis would
provide a more comprehensive understanding and offer addi-
tional insights into the unpredictable and irregular nature
associated with diagnosing psychiatric disorders.
Second, for estimating redundancy and synergy from inte-

grated information decomposition, it relied on the BOLD signal
matching the Gaussian distribution, and indeed, BOLD signals
satisfied this hypothesis [29, 34, 48, 51]. But in order to avoid these
assumptions constraints, we may need to use some universal
estimators to build redundancy and synergy information. More-
over, investigating bidirectional causation will uncover some
causal effects in brain networks, and it may play a crucial role in
understanding the psychotic brain [52, 53]. However, it is usually
ignored in cause-and-effect analysis for brain networks compared
to traditional cause-and-effect approaches such as Granger
causality [54, 55] and transfer entropy [56].

Fig. 5 The synergy minus redundancy rank gradient in the spontaneous activity of the psychotic brain. The synergy minus redundancy
rank gradient was estimated for the psychotic brain, based on redundant and synergistic interactions, and presented across both cortical and
subcortical regions in SZ and BP, as shown in panel A. The distribution of the synergy minus redundancy rank gradient is also presented in the
middle, revealing a distinctly different gradient distribution in the psychotic brain. Furthermore, the statistical relationship between the NC
synergy minus redundancy rank gradient and the SZ and BP gradients was assessed, along with the differences between SZ and BP. To further
investigate the major brain domains affected in SZ and BP, we applied Euclidean distance to analyze the shared and divergent brain domains
between SZ and BP across cortical and subcortical areas. Our findings revealed that the most affected brain domains included the
sensorimotor (SM), visual (VS), high-cognitive (HC), and temporal (TP) domains, followed by subcortical structures such as the amygdala and
hippocampus, as illustrated in panels B and C. The most affected brain networks were labeled on the flat map of the left cortex, using both the
Yeo 7 and Neuromark_2.1 network templates.
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Third, dysfunction in the psychotic brain typically involves
multiple functional brain networks and structural connectivity [36].
Integrating structural connectivity into our analyses can enhance
the comprehension of the mechanisms underlying psychotic
disorders. Furthermore, to capture a more comprehensive view of

interaction information beyond pairwise brain regions, the
application of high-sensitivity functional connectivity descriptors
is warranted [17]. While in this study, total correlation was
employed to estimate high-order functional connectivity, it is
worth noting that some research suggests that dual total
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correlation may be superior to total correlation in capturing high-
order information interactions [35]. Meanwhile, it is imperative to
consider the application of simplicial complexes to model
complex brain network structures because this approach enables
us to capture the combinatorial properties, topology, and
geometry of higher-order networks [57, 58].
Fourth, tracking the dynamics of brain activity will be an

important direction for future extended investigations, specifically
focusing on quantifying the dynamic transitions of brain activity in
individuals with psychosis. To address this limitation, we propose
two possible approaches for future studies. The first approach
involves quantifying brainquake frequency by measuring dynamic
network energy over time [59, 60]. This method could generate a
dynamic network energy landscape, potentially revealing recur-
ring or periodic patterns in brain activity that are characteristic of
psychotic disorders. The second approach is to move beyond
static network components, such as those estimated by ICA and
instead develop dynamic network models [61, 62]. A key limitation
of ICA is its assumption of fixed spatial components, which may
not adequately capture the temporal evolution of network states.
In contrast, dynamic models would allow us to quantify how
frequently periodic or transient patterns of network activity
emerge in the brains of individuals with psychosis.
Finally, to establish a connection between functional brain

networks and cognitive functions, it is advisable to perform
functional decoding using meta-analytic data [63]. This approach
can provide valuable evidence on how psychotic brain networks
are intricately linked to cognitive functions.

MATERIALS AND METHODS
rsfMRI dataset acquisition
In this study, we analyzed resting-state fMRI data from 1111 subjects,
including 640 normal controls (NC), 288 individuals with typical schizo-
phrenia (SC), and 183 diagnosed with bipolar disorder (BP), all from the
multi-site Bipolar and Schizophrenia Network on Intermediate Phenotypes
study [64, 65]. Subjects were recruited and scanned at multiple sites:
Baltimore, Boston, Chicago, Dallas, Detroit, and Hartford. The scanning
period was approximately five minutes for all sites. Demographic and
clinical details of the participants are shown in Table 1. Exclusion criteria
included the presence of other neurological or neurodegenerative
disorders (beyond those specified), substance or alcohol dependence,
and pregnancy. All participants were also confirmed to be safe for MRI
scanning, with no contraindications such as non-MRI-compatible pace-
makers. All subjects were psychiatrically stable and on stable medication
regimens at the time of the study. Participants were instructed to rest with
their eyes closed and remain awake. Detailed scanning information for the
entire study sample is provided elsewhere [64].
Initial evaluation of the dataset revealed significant differences in age

and sex across participant groups, based on two-sample t-tests for all
pairwise comparisons. The results of the statistical comparisons are shown
in Table 2. To minimize potential confounding effects, age, sex, and other
covariates were regressed out in the subsequent analyses.

rsfMRI dataset processing
The rigorous preprocessing pipeline applied to our rsfMRI data, as
illustrated in Fig. 1, encompasses several essential steps designed to

ensure the integrity and reliability of the data for subsequent analysis. First,
careful quality control procedures were applied to identify and retain high-
quality data, thereby ensuring the reliability of our analyses. Next, each
participant’s rsfMRI data underwent a standardized preprocessing pipeline,
which included rigid body motion correction, slice timing correction, and
distortion correction. The preprocessed data were then registered to a
common spatial template, resampled to isotropic voxels of 3mm3, and
spatially smoothed with a Gaussian kernel having a full-width at half-
maximum of 6mm.

Spatially constrained ICA
A spatially constrained ICA (scICA) method known as Multivariate
Objective Optimization ICA with Reference (MOO-ICAR) was implemen-
ted using the GIFT software toolbox (http://trendscenter.org/software/
gift). The MOO-ICAR framework estimates subject-level independent
components (ICs) using existing network templates as spatial guides
[5, 66, 67]. Its primary advantage lies in ensuring consistent correspon-
dence between estimated ICs across subjects. Moreover, the scICA
framework offers the flexibility to customize the network template used
as a spatial reference in the ICA decomposition. This adaptability
supports both disease-specific network analyses and more generalized
assessments of well-established functional networks, making it suitable
for diverse populations [38, 66, 68, 69].
The MOO-ICAR algorithm, which implements scICA, optimizes two

objective functions: one to enhance the overall independence of the
networks and another to improve the alignment of each subject-specific
network with its corresponding template [66]. Both objective functions,
J Skl
� �

F Skl
� �

, are listed in the following equation, which summarizes how the
lth network can be estimated for the kth subject using the network
template Sl as guidance:

max
J Skl
� � ¼ E G Skl

� �� �� E½GðvÞ�� �2
F Skl
� � ¼ E SlSkl

� �
(

(1)

s:t: wk
l

�� �� ¼ 1

Here Skl ¼ wk
l

� �T � Xk represents the estimated lth network of the kth, Xk is
the whitened fMRI data matrix of the kth subject and wk

l is the unmixing
column vector, to be solved in the optimization functions. The function
J Skl
� �

serves to optimize the independence of Skl via negentropy. The v is a
Gaussian variable with mean zero and unit variance G(. ) is a nonquadratic
function, and E[. ] denotes the expectation of the variable. The function
F Skl
� �

serves to optimize the correspondence between the template
network Sl and subject network Skl . The optimization problem is addressed
by combining the two objective functions through a linear weighted sum,
with each weight set to 0.5. Using scICA with MOO-ICAR on each scan
yields subject-specific ICNs for each of the N network templates, along with
their associated time courses.
In this study, we used the NeuroMark_fMRI_2.1 template (available for

download at https://trendscenter.org/data/) along with the MOO-ICAR
framework for scICA on rsfMRI data. It enabled us to extract subject-specific
ICNs and their associated time courses. This template includes N = 105
high-fidelity ICNs identified and reliably replicated across datasets with
over 100K subjects [38]. These ICNs are categorized into 6 major functional
domains: the visual domain (VI, 12 sub-networks), cerebellar domain (CB,
13 sub-networks), temporal-parietal domain (TP, 13 sub-networks), sub-
cortical domain (SC, 23 sub-networks), sensorimotor domain (SM, 13 sub-
networks), and high-level cognitive domain (HC, 31 sub-networks), as
illustrated in Fig. 2.

Fig. 6 Topological functional connectome in the psychotic brain. To examine the topology of redundancy and synergy representations in
NC, SZ, and BP, we plotted the connectograms of redundancy and synergy for each group as tree graphs. The intrinsic connectivity networks
(ICNs) were represented as leaves on the tree, with the color spectrum corresponding to specific brain domains. Our analysis revealed that SZ
and BP exhibited disrupted topological connection structures in the redundancy connectogram compared to NC, highlighting significant
differences in the organization of brain networks associated with these psychotic conditions. In addition, we observed similar disruptions in
the synergy connectograms, as shown in A. Taken together, these findings suggest that information integration and segregation are impaired
in both SZ and BP, particularly within the sensorimotor (SM), visual (VI), high-cognitive (HC), and temporal (TP) domains. These disruptions
highlight specific brain domains where connectivity patterns are altered in psychotic conditions, further emphasizing the complexity of
network dynamics in SZ and BP. Furthermore, we conducted an analysis of high-order functional connectivity using information-theoretic
methods based on total correlation, as shown in B with tree graphs. The edge weight represents the mutual information between ICNs and
their contributions to local total correlation. The different colors of the ICNs correspond to distinct brain domains, while the solid black dot
indicates the local total correlation, derived from the connected ICNs.
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Fuzzy recurrence plots
Fuzzy recurrence plots (FRPs) are an advanced technique used to visualize
multivariate nonlinear dynamics, particularly in the study of brain activity
[40]. This approach represents data as a fuzzy cluster binary matrix, where
each element reflects the recurrence of data states or phases at different
time points. It can be mathematically expressed as follows:

ζði; jÞ ¼ μ xi ; xj
� �

(2)

where μ xi ; xj
� � 2 ½0; 1� represents the fuzzy membership of similarity

between xi and xj. The generation of an FRP is achieved by applying the
fuzzy c-means algorithm [70], which divides the dataset X into a collection
of clusters, each denoted as c = 3. This algorithm assigns a fuzzy
membership grade, symbolized as ζij and taking values within the range of
[0, 1] (ζi,j ∈ [0, 1]), to each data point xi, where i = 1, 2,…, k, concerning its
association with each cluster center vj, where j = 1, 2, …, c. The FRP
method applies the following properties:

● Reflexivity

ζ ii ¼ 1; i ¼ 1; 2; ¼ ; k

● Symmetry

ζ ij ¼ ζ ji ; i ¼ 1; ¼ ; k; j ¼ 1; 2; ¼ ; c

● Transitivity

ζ im ¼ max min ζ ij ; ζ jm
� �� �

; j ¼ 1; ¼ ; c; i≠m

Consequently, a FRPs 2 Rk ´ k is formally characterized as a square
grayscale image,

FRPk ´ k ¼

ζ11 ζ12 � � � ζ1k

ζ21 ζ22 � � � ζ2k

..

. ..
. ..

. ..
.

ζM1 ζM2 � � � ζkk

8>>>><
>>>>:

9>>>>=
>>>>;

The fMRI signal can be effectively mapped into a spatial domain using a
FRP, where each data point represents a state within the FRP. This
transformation is especially valuable as it uncovers intrinsic patterns within
complex brain activity, often providing insights that go beyond those
obtainable from the original time series alone [39, 40]. Consequently,
selecting the embedding dimension, denoted as e, is critical, as it
determines the key dimensions required to capture the dynamics of brain
activity. Additionally, choosing the time delay parameter, τ, and the
number of clusters, c, within the time series is essential, as these
parameters are aimed at optimizing the extraction of nonlinear dynamic
features.

Dynamic attractor
To track the temporal complexity of brain activity over time, we employed
delay-coordinate embedding to construct a new vector in a reconstructed
space [71]. This involved using a series of past measurements of a single
scalar variable x from the dynamic system. The resulting d-dimensional
vector xdt was formed from d time-delayed measurements of xt, following

Fig. 7 The computational model of Brainquake for the psychotic brain. The model of the psychotic brain suggests greater instability in
several key brain networks (sensorimotor, visual, temporal, default mode, and fronto-parietal networks, as well as in the hippocampal and
amygdalar regions) compared to the normal brain. The concept of Brainquake, inspired by earthquakes, compares certain unstable brain
networks to active volcanoes, which are more prone to eruption than those in a normal brain. To aid in the recognition of brain regions on the
flat brain surface, reference lines are labeled to define the inner and outer boundaries of the insula (Ins) and the central sulcus (CS). Additional
key landmarks include the dorsolateral prefrontal cortex (DLPFC), posterior parietal cortex (PPC), rostral lateral temporal cortex (rLTC),
posteromedial cortex (PMC), parahippocampal cortex (PHC), and medial prefrontal cortex (MPFC).
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the procedure:

xdt ¼ xt; xt�τ ; xt�2τ ; � � � ; xt�ðd�1Þτ
� �

(3)

Here, we applied mutual information to optimize the embedding delay τ
and dimension parameter d when utilizing the delay-coordinate embed-
ding method. This is crucial as the values of d and τ can significantly impact
the precision of trajectory estimates.

Sample entropy
In dynamic systems such as the brain, brain entropy quantifies the rate
at which information is generated [50]. A key complexity measure
related to entropy is sample entropy (SampEn), which estimates
the complexity of a system based on a known prior probabilistic
distribution. SampEn has been widely used in neural time series
analysis [33, 41] and is particularly useful for evaluating the
complexity of brain activity in conditions such as psychosis [21].
SampEn offers two distinct advantages: it is independent of data length
and is relatively straightforward to implement. For these reasons, we
selected SampEn as a measure to assess the complexity of the
psychotic brain.
For an fMRI signal of N points, U(i) (1 � i � N ), informally, given

N=(u1; u2; u3; � � � ; uN ) points with a constant time interval t, the family
of statistics SampEn (m, r, N ) is approximately equal to the negative
average natural logarithm of the conditional probability that two
similar sequences for m points remain similar. That is, within a
tolerance r (usually refers to the distance to consider two data points
as similar) and default will set to 0.2 × stdU(i), where std indicates
standard deviation), at the next point. Thus, a low value of SampEn
reflects a high degree of regularity. The parameters m, r, and N must
be fixed for each calculation, where e for embedding dimension,
tolerance r, and number of points N .
Let’s define a template vector with length l, then we have

UlðiÞ ¼ ui ; uiþ1; uiþ2; � � � ; uiþl�1f g, and distance function, D½UlðiÞ;UlðjÞ�,
where i ≠ j. Then, we can define the sample entropy as follows,

SampEn ¼ � ln
C
T

(4)

where C is the number of template vector pairs having
D½Ulþ1ðiÞ;Ulþ1ðjÞ�<r, and T is the number of template vector pairs having
D½UlðiÞ;UlðjÞ�<r. Considering properties of SampEn [41], the value of
SampEn will always be zeros or positive.

Quantifying the topological similarities and differences of the
psychotic brain
To quantify the joint and separate topological features of brain regions
between SZ and BP, we employed the Euclidean distance, Here,

d ¼ jSampEnSZ � SampEnBPj (5)

where d was estimated between the sample entropy, SampEnSZ and
SampEnBP. The joint similarities were,

SampEnSZ þ SampEnBP ¼ 1
1þ d

(6)

and the difference will be,

SampEnSZ � SampEnBP ¼ 1� 1
1þ d

	 

(7)

The identical approach was employed to investigate the joint and
separative aspects in the topology of brain regions concerning the rank
gradient of synergy minus redundancy.

Information decomposition
Before discussing integrated information decomposition, we will first cover
partial information decomposition (PID), as it forms the basis from which
Integrated Information Decomposition is extended. The PID reveals that
the two source variables X and Y given a third target variable Z, I(X, Y; Z),
can be decomposed into different types of information. That is,
information provided by one source but not the other (unique
information), information provided by both sources separately (redundant
information), or jointly by their combination (synergistic information) [44].
In PID, the information I(Z: X, Y) = EX + EY + R + S, where EX and EY refer

to unique entropy, and R and S refer to redundancy and synergy,
respectively [44]. In some special cases, if Z = X or Z = Y, it explained that
systems completely only have unique information; if Z = X = Y, it means
that systems are fully redundant; and in contrast, if Z = X⨁Y, the systems
are completely synergistic. Similar to PID, integrated information decom-
position breaks down group information into separate components, rather
than pairwise information (mutual information) as in PID, providing a direct
way to decompose group information into redundancy and synergy [45]. It
can be mathematically expressed as,

IðX; Y; ZÞ ¼ RðX; Y; ZÞ þ UðX; ZjYÞ
þUðY; ZjXÞ þ SðX; Y; ZÞ (8)

Where R(X, Y; Z) refers to redundancy information, U(X; Z∣Y), U(Y; Z∣X)
indicates unique information, and S(X, Y; Z) refers to synergy information.
The PID provided us with the chance to decompose information into
different pieces of information and supplied us with more information
metrics to quantify the complex system, but it will present some limitations
to decomposing information in the dynamic brain. Therefore, to access the
redundancy and synergy in the human brain, the integrated information
decomposition was introduced to estimate both metrics, considering the
past states and currents of brain signal [23, 45, 72], i.e., I X1

t�τ ; X
2
t�τ ; X

1
t ; X

2
t

� �
,

where X1
t�τ ; X

2
t�τ refers to past states of brain signal and X1

t ; X
2
t refers to

current states, and redundancy, synergy, and unique information all can be
avaiable from the integrated information decomposition framework. In this
study, we utilized the Gaussian solver implemented in the Java Information

Table 1. Clinical and demographic information for the patient and NC groups.

SZ BP NC

No. of Participants 288 183 640

Age (Mean ± SD) 35.12 ± 12.03 36.31 ± 12.71 35.81 ± 12.28

Sex (M/F) 93/195 124/59 379/261

PANSS Positive 16.66 ± 6.08 13.02 ± 4.51 N.A

PANSS Negative 17.27 ± 6.92 12.34 ± 4.02 N.A

PANSS General 32.26 ± 10.39 29.17 ± 8.05 N.A

PANSS Total 66.20 ± 20.71 54.52 ± 13.93 N.A

*PANSS stands for Positive and Negative Syndrome Scale.

Table 2. Statistical comparison results of age and sex across all
pairwise group combinations.

SZ BP NC

SZ N.A page = 0.35 page = 0.01

BP psex < 0.001 N.A page = 0.02

NC psex < 0.001 psex = 0.03 N.A

The upper triangle displays p-values for age comparisons, while the lower
triangle shows p-values for sex.
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Dynamics Toolkit (https://jlizier.github.io/jidt/) to compute all information-
theoretic quantities [73].

Synergy minus redundancy rank gradient
To assess the engagement of redundancy and synergy in the human brain,
we constructed a synergy minus redundancy rank gradient, following
previous studies [23]. The process involved calculating the nodal strength
of each ICN across the redundancy and synergy matrix, representing the
sum of all its connections in the group-averaged matrix. Subsequently, we
ranked all 105 ICNs based on their connection strength, with higher-
strength ICNs assigned higher ranks. By subtracting each ICN’s redundancy
rank from its synergy rank, we obtained a gradient ranging from negative
(indicating a higher ranking in terms of redundancy than synergy) to
positive (indicating a synergy rank higher than the corresponding
redundancy rank).

Total correlation
Before we start to introduce total correlation, we will first introduce the
Shannon entropy [74] for quantifying the information in the brain, and for
the BOLD signal, consider it’s a continuous signal. Therefore, we extend the
Shannon entropy to differential entropy, and for a random variable X with
probability density function P(x) in a finite set X , the differential entropy is
defined as:

HðXÞ ¼
Z

x2X
PðxÞ log PðxÞdx (9)

To access the information dependencies between brain regions and
pairwise mutual information usually applied to capture both linear and
nonlinear statistical dependencies for a pairwise BOLD signal X and Y, we
have,

IðX; YÞ ¼ HðXÞ � HðXjYÞ ¼ HðXÞ þ HðYÞ � HðX; YÞ (10)

Where H(X) and H(Y) refer to the entropy of X and Y, H(X∣Y) refers to
conditional entropy, and H(X, Y) indicates the joint entropy.
Considering the limitations of mutual information [17, 31, 33, 34, 36],

here we applied total correlation [26] to estimate high-order information
interaction in the human brain. In general, the total correlation describes
the dependence among n variables and can be considered a non-negative
generalization of the concept of mutual information from two parties to n
parties [26]. Suppose now we have n ≥ 2 variables X1; X2; � � � ; Xn

� �
, then

the definition of TC can be denoted as follows,

TC X1; X2; � � � ; Xn
� � ¼Xn H Xi

� �� H X1; X2 � � � ; Xn
� � (11)

In real-life situations, estimating the marginal entropy H Xi
� �

is
straightforward, but estimating the joint entropy H X1; X2 � � � ; Xn

� �
is

considerably challenging. To address this challenge, Gaussian information
theory is commonly applied to estimate total correlation because the
BOLD signals satisfy Gaussian distributions [29, 34, 48, 51]. However, here
we estimated the total correlation directly from the data structure itself
without any prior assumptions. We use latent factor modeling to estimate
total correlation, and a latent factor model is a statistical model that
establishes a relationship between a set of observable variables and a set
of latent variables [31, 75, 76]. The concept is to explicitly construct latent
factors, denoted as Y, that effectively capture the dependencies present in
the data. When measuring dependencies through total correlation,
denoted as TC(X),

TCðXÞ �
Pr
k¼1

Pm
j¼1

Pn
i¼1

αki;j I Yk�1
i ; Yk

j

� �
�Pm

j¼1
I Yk

j ; Y
k�1

� � ! !
(12)

where X ¼ X1; X2; � � � ; Xn
� �

, Y ¼ Y1; Y2; � � � ; Yn
� �

, m is the number of
hidden variables, n is the number of observed variables, k is the number of
layers, and α is the learned connection matrix between the previous and
current layers. Ultimately, we obtain a bound on TC that tightens as more
latent factors and layers are added, allowing us to quantify the
contribution of each factor to the overall bound [75, 76]. Total correlation
is inherently non-negative. Through iteration optimization and a tight
bound on total correlation, one can obtain the total correlation, thereby
learning from the BOLD signal itself. In our study, we employed three

hierarchical layers with hidden dimensions of 10, 3, and 1, respectively, to
ensure that the model effectively learned all the dependencies present in
the brain.
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