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Nociceptin/orphanin FQ (N/OFQ), an endogenous opioid neuropeptide, and its G-protein coupled receptor NOPR have been
implicated in motivation, feeding behaviors, and aversion. Stress-induced dysfunction in these states is central to the development
of numerous psychiatric disorders, and the N/OFQ-NOPR system'’s role in reward- and stress-related responses has driven broad
interest in NOPR as a therapeutic target for anxiety and depression. However, the impact of stress on N/OFQ signaling in the
context of its influence on discrete midbrain reward circuitry remains unknown. To this end, we focused on a possible candidate
population of N/OFQ neurons in the paranigral ventral tegmental area (pnVTA"™°%) that have been shown to act locally on NOPR-

containing VTA dopamine neurons to suppress motivation. Here we report and characterize pnVT

APNOC sensitivity during exposure

to a diverse range of stressors. Our results indicate that pnVTAPNC neurons become recruited during exposure to a variety of acute
stressor types, suggesting that this N/OFQ population in the pnVTA could act as a critical bridge between stress and motivation.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-025-02292-z

INTRODUCTION

Stress exposure is a major risk factor in the development of
addiction, relapse susceptibility, anxiety, and mood disorders, all
of which collectively impose a staggering global health burden
[1-4]. While these disorders are vastly diverse, they all commonly
involve the emergence of anhedonia and atypical motivation,
indicating that the neurobiological mechanisms driving functional
reward-related behaviors are highly susceptible to disruption in
these disease states [5-9]. Understanding the circuitry and
neurobiological substrates central to reward processing that
become altered by stress is a critical first step toward identifying
viable therapeutic targets with improved function.

The mesolimbic pathway, comprised of dopaminergic projec-
tions from the ventral tegmental area (VTA) to the nucleus
accumbens (NAc), plays a central role in processing and
responding to reward [10, 11]. Converging animal [12-14] and
human studies [15-18] have demonstrated that acute stress
impacts neural activity within mesolimbic circuitry. In the VTA
specifically, stress is generally found to have a net effect of
suppressing VTA dopamine (DA) neuron activity [19, 20]. Recent
studies have also expanded on the VTA’s molecular complexity by
revealing diverse neuropeptide subpopulations, released both by
the VTA itself and by upstream inputs that have significant
influence over this critical reward circuitry [21-24].

Among these subpopulations, neurons in the paranigral nucleus
of the VTA (pnVTA) enriched with the endogenous opioid peptide
nociceptin/orphanin FQ (N/OFQ) have recently emerged as key

regulators of motivated behavior [25]. Our group previously
reported that activation of these N/OFQ-expressing pnVTA
neurons (pnVTAPN9C neurons) suppresses motivated reward-
seeking behavior and drives aversive responses. Notably, N/OFQ
signaling through its cognate G-protein coupled receptor NOPR,
which is largely expressed on VTA DA neurons [26], negatively
regulates dopamine tone [27], paralleling the effects of stress.
Despite widespread implications of N/OFQ in stress responses [28],
whether stress impacts this particular pnVTA™NC population
which is critically situated to regulate motivation and reward-
related behaviors remains unexplored.

Here, we employed in vivo calcium imaging with the
genetically-encoded calcium indicator GCaMP to monitor
pNVTAPNOC neuronal dynamics during exposure to physical,
environmental, and predatory forms of stress. These findings
contribute to a growing understanding of VTA circuitry in stress
processing and identify a unique role of pnVTA N/OFQ neurons
as a tenable bridge underlying stress regulation of motivated
behavior.

MATERIALS AND METHODS

Animals

Adult (18-35 g, 3-6 months old) male and female Pnoc-IRES-Cre (PNOC-
Cre) mice were group housed in the animal facility at 22-24°C on a 12 h/
12 h reverse light/dark cycle (9:00 AM lights off) in ventilated cages with ad
libitum access to standard chow and water. All animals were monitored for
health status daily and before experimentation for the entirety of the
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study. Animal procedures were approved by the Animal Care and Use
Committee of the University of Washington and conformed to US National
Institutes of Health guidelines. All resources are listed in Table S1.

Stereotaxic surgery

All coordinates, viruses, and volumes for experiments are listed in Table S2.
After acclimating to the holding facility for at least seven days, mice were
anaesthetized in an induction chamber (1-4% isoflurane) and placed into a
stereotaxic frame (Kopf Instruments, model 1900) where they were
maintained at 1-2% isoflurane. A blunt needle syringe (86200, Hamilton
Company) was used to deliver virus at a rate of 100 nL/min in the pnVTA.
An optic fiber (400 um core, 2.5 mm ferrule, Doric) was slowly lowered to
0.05 mm above the injection site and secured using MetaBond (C & B
Metabond). A stainless-steel head-ring was also secured on animals
undergoing air puff to allow for head-fixation. Animals were allowed to
recover from surgery for a minimum of 3 weeks before any behavioral
testing, permitting optimal viral expression.

Fiber photometry recordings

Fiber photometry studies were completed as described previously [29]
(see Supplementary Methods). In brief, GCaMP6s fluorescence was excited
using a 470 nm LED (Caz*—dependent signal) and a 405 nm LED (isosbestic
control, Ca®**-independent signal). LED intensities were set to 30 uW at the
optic fiber tip. GCaMP6s emissions were filtered (525 + 25 nm), detected
with a photoreceiver, and recorded by a real-time processor.

In vivo animal experiments

All animal behaviors were performed within a sound-attenuated room
maintained at 23°C at least one week after habituation to the holding
room. Animals were handled for a minimum of three days prior to
experimentation and were habituated to fiber photometry patch cord
attachment to their fiber implants. For all experiments, mice were brought
into the experimental room and allowed to acclimate to the space for at
least 30 min prior to any testing. All experiments were conducted in red
light to accommodate the reverse light cycle schedule, unless otherwise
stated. All sessions were video recorded.

Behaviors

Cued foot shock. Mice were placed in Med Associates Fear Conditioning
Chambers (NIR-022MD) which consisted of a 29.5 x 23.5 x 21 cm chamber
with a conductive grid floor lit by infrared light and contained within a
soundproof box. Mice were exposed to ten 10 s tones co-terminating with
a 2s 0.5 mA shock with a variable inter-trial interval (VITI) of 45-90s.

Tail lift. Mice were placed in a 10" x 10" clear acrylic box illuminated by a
dim, diffuse white light (~ 30 lux). Mice were suspended by the tail four
times for 20 s with a VITI of 120-180s. All suspensions were made to the
same height.

Air puff.  Four days prior to testing, mice were habituated to head-fixation
on the OHRBETS platform as described previously [29, 30]. A
fixed, solenoid-controlled O, valve was positioned above the animal’s left
whiskers. Mice were exposed to fifteen 0.1s 20 PSI air puffs with a VITI
of 45-75s. Solenoid opening (Parker, 003-0257-900) was controlled
using an Arduino Mega 2560 REV3 (Arduino) and custom Arduino
programs.

Looming. Mice were placed in a white-walled plexiglass arena
(50 x 50 cm) illuminated by a diffuse white light (~80 lux) and allowed
to roam freely. Looming was simulated four times via a posterboard
blocking the arena’s overhead lighting (arena illumination reduced to ~25
lux) for 1-2s, with an ITI of 120s.

Odor delivery. Mice were placed in a polyethylene chamber approxi-
mately 12 x 12 x 24 cm where air was continuously vacuumed out at a rate
of 2 L/min [31]. To minimize odor release into the room, the chamber was
placed in a fume hood and vacuumed air was passed through a carbon
filter. Odors (2% 2MT or 2% peppermint oil, in separate sessions) were
delivered four times per session for 30 s periods with a VITI of 120-180s.

Open field test (OFT). OFT was completed as described previously [31, 32]
in a white-walled plexiglass arena (50 x 50 cm) illuminated by a white light
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(~ 200 lux). Center zone was defined as the middle 50% of the arena size.
Mice were allowed to roam the arena freely for 30 min.

Elevated zero maze (EZM). EZM was completed as described previously
[31, 32] in a circular maze (Harvard Apparatus) with a 200cm
circumference comprised of four 50cm sections (two open and two
closed ‘arms’), elevated 50 cm above the floor illuminated by a white light
(~ 25 lux). The maze path was 4 cm wide with a 0.5 cm lip on each open
arm and 17 cm walls on each closed arm. Mice were positioned head-first
into a closed arm and allowed to roam the maze freely for 7 min.

Tissue preparation and immunohistochemistry (IHC)

Unless otherwise stated, animals were transcardially perfused with 0.1 M
phosphate-buffered saline (PBS) followed by 40 mL 4% paraformaldehyde.
Brains were dissected and post-fixed in 4% paraformaldehyde overnight
and then transferred to 30% sucrose solution for cryoprotection. Brains
were sectioned at 30 um on a microtome and stored in 0.1 M phosphate
buffer at 4°C prior to immunohistochemistry and tracing experiments.
Immunohistochemistry was completed as described previously [29, 33, 34]
(see Supplementary Methods). For behavioral cohorts, viral expression and
optic fiber placements were evaluated before inclusion in the presented
datasets.

Fiber photometry analysis

Fiber photometry data were analyzed as described previously [29]. In brief,
custom MATLAB scripts were used to normalize signal by detrending
bleaching decay and correcting for motion artifact using the isosbestic
trace. Normalized traces were extracted in windows surrounding the onset
of relevant behavioral events (tail lift, odor, shock, air puff, looming, open
arm entry, center entry), z-scored relative to the mean and standard
deviation of a 10-s baseline period preceding each event window, and
then averaged.

Behavioral scoring

For foot shock and looming video recordings, behavior annotations were
conducted manually by a blinded investigator to avoid bias in scoring sex
differences. A trial was categorized as “freeze” if mice were immobile for at
least 2s following stimulus onset, whereas a trial was categorized as
“flight” if mice fled from their original position with enhanced velocity
within 5s of stimulus onset. Trials not classified as either freeze or flight
were labeled as “neither.”

Statistical analyses

Statistical analyses were performed as indicated (see Supplementary
Methods) in GraphPad Prism 9 and MATLAB 9.9 (MathWorks). For
spontaneous behaviors where experimenters did not control the timing
of each trial (open field test, elevated zero maze), any trials that occurred
less than 10s after a directly preceding trial were removed to prevent
signal contamination within the baseline period. No other data were
excluded from analyses. All data are expressed as mean+SEM unless
otherwise specified.

RESULTS

pnVTAPNOC neurons exhibit sustained activity throughout
acute stress exposure across multiple stress conditions
N/OFQ-containing neurons in the pnVTA (pnVTAPNOC neurons) act
to suppress motivated behaviors. Stress is also known to disrupt
motivation, but despite evidence linking N/OFQ with stress, the
impact of stress on the activity of this population remains
unknown. Importantly, the effects of stress exposure on motiva-
tion can vary depending on the form and duration of the stressor.
To evaluate the effects of diverse stress conditions on pnVTAPNCC
activity, we injected PNOC-Cre mice with a Cre-dependent
GCaMP6s (AAV-DJ-Ef1a-DIO-GCaMPé6s) and implanted optic fibers
in the paranigral ventral tegmental area (pnVTA) to record the
calcium activity of pnVTA N/OFQ neurons (pnVTAPNS) during
exposure to a variety of stressful stimuli (Fig. 1A, B). At 3-4 weeks
post injection we detected robust, transient activation of
pNVTAPNOC neurons in response to a mild foot shock (Fig. 1C-F,
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Fig. 1 pnVTAPNOC neurons are activated during exposure to acute stressors. A Fiber photometry schematic and cartoon of DIO-GCaMP6s
(GCaMP6s) viral injection and fiber implant in the pnVTA of PNOC-Cre mice. B Representative coronal image showing DAPI (blue) and
GCaMPés (green) expression in pnVTA. C Representative trace of GCaMP6s AF/F fluorescence throughout a cued foot shock session. Black
arrows are aligned with foot shock onset. D Trial structure for a cued foot shock session (10s tone co-terminating with 2s 0.5 mA shock).
E Left: Averaged trace of pnVTAPNOC GCaMP6s activity during epoch surrounding tone-cued foot shock, aligned to tone onset. Right: Intensity-
sorted heat map of GCaMP6s fluorescence during same epoch, each row correspond to a trial in the averaged trace (left). (N =9 mice). F Area
under the curve (AUC) for averaged traces from (E), calculated over 8-s intervals surrounding cued-foot shock events. GCaMP6s signal
increases in response to shock but not tone (one-way repeated-measures ANOVA main effect of time [F3,24 = 14.26, p < 0.0001]. Tukey's
multiple comparisons test [****p < 0.0001, ***p = 0.0003], N = 9 mice). G-1 Same as (D-F) but for pnVTAPN® GCaMPe6s activity during 20's tail
lift. Activity averaged in 5-s intervals surrounding each tail lift shows increases first during tail lift and again when animal is lowered to the
ground (one-way repeated-measures ANOVA main effect of time [F4,44 = 10.94, p < 0.0001]. Tukey’s multiple comparisons test [****p < 0.0001,
**xp — 0,0002, *p = 0.0342], N = 12 mice). J-L Same as (D-F) but for pnVTAPN®® GCaMP6s activity during acute air puff (0.1s, 20 PSI). Activity
averaged in 5-s intervals surrounding each air puff (one-way repeated-measures ANOVA main effect of time [F2,14 = 13.99, p =0.0005].
Tukey’s multiple comparisons test [****p < 0.0001, **p = 0.0044], N =9 mice). All data represented as mean + SEM.

one-way repeated-measures ANOVA main effect of time Interestingly, pnVTAPNOC activity was time-locked with the

F3,24 = 14.26, p < 0.0001; Tukey's baseline vs shock p <0.0001), a
20-s tail lift (Fig. 1G-I, one-way repeated-measures ANOVA main
effect of time F4,44 =10.94, p <0.0001; Tukey's baseline vs lift
p <0.0001), and a brief 0.1s air puff delivered to the whiskers
(Fig. 1J-L, one-way repeated-measures ANOVA main effect of time
F2,16 = 18.05, p < 0.0001; Tukey’s baseline vs puff p < 0.0001).

Neuropsychopharmacology

duration of the stressor. Activity returned to baseline levels
following the offset of the 2 s foot shock (Fig. 1F, Tukey's baseline
vs post-stimuli p = 0.8908) or 0.1 s air puff (Fig. 1L, Tukey’s baseline
vs post-stimulus p=0.1113) but remained elevated throughout
the 20s tail suspension (Fig. 1I, Tukey’'s baseline vs during
p=0.0275). Across these stressors we did not detect sex-

SPRINGER NATURE
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Fig.2 Anxiogenic exploratory behaviors drive pnVTANOC activity. A Cartoon of DIO-GCaMP6s (GCaMP6s) injection and fiber implant into
pnVTA of PNOC-Cre mice. GCaMP6s activity was recorded during open field test (OFT) and elevated zero maze (EZM). B Left: Averaged traces
of pnVTAPNOC GCaMP6s activity during high-anxiety epochs of the OFT, aligned to entries into the center zone of the open field arena. Right:
Area under the curve (AUC) for averaged traces (left) calculated over 5-s intervals surrounding center zone entry. GCaMP6s activity increases
during and immediately after center entry (one-way repeated-measures ANOVA main effect of time [F2,30 =16.18, p <0.0001]. Tukey’s
multiple comparisons test [****p < 0.0001, **p = 0.0011], N = 16 mice). C Same as (B) but for pnVTAN°® GCaMP6s activity during high-anxiety
epochs of the EZM, aligned to entries into either open arm of the maze (one-way repeated-measures ANOVA main effect of time
[F2,30 = 6.305, p =0.0052]. Tukey's multiple comparisons test [**p =0.007, *p =0.0233], N=16 mice). D Heat map from a representative
animal showing proportion of time spent in each area of the open field arena. Heat map shows more time spent around the edge than in the
center. E Same as (D) but showing proportion of time spent in each area of the elevated zero maze. Heat map shows more time spent in the
closed arms than in the open arms. All data represented as mean + SEM.

APNOC APNOC

dependent effects on pnVT, activity during stress (Supple- Stressful environmental cues elicit pnVT. neuron

mentary Fig. 1A-C, two-way repeated-measures ANOVA main
effect of sex, foot shock: F1,7=2.699, p=0.1444; tail lift:
F1,10 =0.8557, p=0.3767; air puff: F1,7=0.2339, p=0.6434),
although foot shock did elicit a larger response in females
(Supplementary Fig. 1A, two-way repeated-measures ANOVA
interaction between time and sex F3,21 = 5.505, p = 0.006; Tukey's
shock male vs female p =0.0003). Notably, pnVTA™°C neurons
were not activated in response to the 10-s tone that preceded
each foot shock (Fig. 1E, F, Tukey's baseline vs. tone p = 0.9993),
suggesting that pnVTA"N®C neurons have selective sensitivity to
stress rather than simply responding indiscriminately to any
salient stimuli.

SPRINGER NATURE

activation during exploration

We next evaluated pnVTAPN®C dynamics during innately anxio-
genic exploratory behaviors (Fig. 2A). In the open field test (OFT),
we detected a significant increase in calcium activity as animals
transitioned from the ‘safe’ edge of the arena to the open, ‘risky’
center (Fig. 2B, D, one-way repeated-measures ANOVA main effect
of time F2,30 = 16.18, p < 0.0001; Tukey's baseline vs center entry
p <0.0001). We observed a similar increase in the elevated zero
maze (EZM) as animals entered the unprotected open arms of the
maze (Fig. 2C, E, one-way repeated-measures ANOVA main effect
of time F2,30 =6.305, p =0.0052; Tukey's baseline vs open arm
entry p=0.007). No sex-dependent effects were identified in

Neuropsychopharmacology
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Fig. 3 pnVTAPNOC neuron activity is recruited in response to predatory threat. A Cartoon of DIO-GCaMP6s (GCaMP6s) injection and fiber
implant into pnVTA of PNOC-Cre mice. GCaMP6s activity was recorded during looming or exposure to predator odor. B Averaged traces of
pnVTAPNOC GCaMP6s activity for males (blue, N = 5 mice) and females (magenta, N = 7 mice) aligned to looming onset. C Area under the curve
(AUC) for averaged traces from B for females (left, magenta) and males (right, blue), calculated over 5-s intervals. GCaMP6s activity increases
during and immediately after looming in males, but not females (two-way repeated-measures ANOVA main effect of time [F2,26 = 9.383,
p = 0.0009], main effect of sex [F1,13 =8.796, p = 0.0109], interaction of time x sex [F2,26 = 4.728, p = 0.0177]. Tukey's multiple comparisons
test [***p = 0.0004, **p = 0.0027], N = 8 males, 7 females). D Left: Averaged traces of pnVTAPNO® GCaMP6s activity surrounding 30-s exposure
to either predator odor (2% 2MT, green) or a control non-predator odor (2% peppermint oil, blue). Right: Intensity-sorted heat map of
GCaMPés fluorescence during same epoch, each row correspond to a trial in the averaged trace (left). (N =10 mice). E AUC for averaged traces
from D calculated over 10-s intervals surrounding exposure to either the 2MT predator odor (left, green) or the peppermint oil (right, blue).
pnVTAPNOC GCaMP6s activity increases during 2MT but not peppermint oil exposure (two-way repeated-measures ANOVA main effect of time
[F4,72 =6.173, p =0.0003], main effect of odor [F1,18 =4.896, p =0.0401], interaction of time x odor [F4,72 =4.041, p = 0.0052]. Tukey's
multiple comparisons test, 2MT over time [****p < 0.0001, **p =0.0032], 2MT vs peppermint [**p =0.0025, *p = 0.0419], N=10 mice per
group). All data represented as mean + SEM.

either OFT or EZM (Supplementary Fig. 1D, E, two-way repeated- 2MT predator odor evoked a robust, sustained increase in calcium
measures ANOVA main effect of sex, OFT: F1,14 =0.0007, activity, whereas the non-aversive peppermint odor elicited no
p=09794; EZM: F1,14=1.058, p=0.3212). These findings response (Fig. 3E, 2MT: one-way repeated-measures ANOVA
demonstrate that pnVTA"NOC neurons are also engaged by F4,36 = 6.007, p=0.0008; peppermint oil: one-way repeated-
innately stressful environmental stimuli. Taken together, our measures ANOVA F4,36 =0.5098, p =0.7288). These data are

results indicate that multiple forms of acute stress elicit robust consistent with our initial findings that pnVTA"N°C neurons are
activation of N/OFQ-containing pnVTA neurons. selectively activated by stressful stimuli and reveal a potential sex-
dependent circuit level effect in response to certain predatory

Predator odor stress engages pnVTA"N°C neurons in both stressors, in male mice.

sexes, while predator looming stress elicits responses only

in males Threat-response strategies were similar between male and
We further characterized the stress sensitivity of pnVTAPNOC female mice, but female mice spent more time freezing after
neurons by recording calcium activity following different pre- looming

datory stressors (Fig. 3A). When exposed to a looming stimulus During foot shock, all mice of both sexes employed a ‘flight’
that mimics the threat of an overhead Eredator, male mice escape response following the onset of the shock (Fig. 4A, 100%
displayed a significant increase in pnVTAPN°C calcium activity flight response, SD = 0, N = 4 males, 5 females). Males and females
while females did not (Fig. 3B,C, two-way repeated-measures also had similar latencies to initiation of the flight behavior,
ANOVA main effect of sex F1,13 =8.796, p = 0.0109; Tukey’s male although there was a slight but non-significant trend toward faster

baseline vs loom p = 0.0004, female baseline vs loom p =0.9979). response time in females (Fig. 4B, two-tailed Mann-Whitney test,
We also assessed pnVTAPNOC calcium activity dynamics in p =0.0635). There were no detectable sex-dependent differences
response to an aversive predator odor (2% 2MT, a predator urine in behavioral response during the cue period that preceded each

derivative [35]) and a non-aversive novel odor (2% peppermint foot shock trial (Supplementary Fig. 2, two-way repeated-
oil), which served as a control for salience (Fig. 3D). The aversive measures ANOVA main effect of sex on behavioral response

Neuropsychopharmacology SPRINGER NATURE



C. Stine et al.

A

oY)

100 2
Cued ns

Foot Shock @ females £ ]
8 D0
S H males =2
) 9= 298
= X > €
s 5 58

; =5 ns ns £ 3 °
-
0 0
neither freeze flight males females

C ns ns

[ L]
- ns

-
o
o

O

@ females
H males

Looming

% of total
looming trials
Time spent freezing
after loom (s)

o

freeze

neither flight males females

Fig. 4 Male and female mice employ similar behavioral strategies in response to shock and looming, but females spend more time
freezing during looming. A Percentage of total shock trials (10 per session) where each male (blue, square) or female (magenta, circle) mouse
showed behavioral responses categorized as either freeze, flight, or neither during foot shock (100% flight response, SD = 0 for all behavior
types. N=5 females, 4 males). B Trial averaged latency to flight response following foot shock (two-tailed Mann-Whitney test, males vs
females p =0.0635, N =5 females, 4 males). C Percentage of total looming trials (4 per session) where each male (blue, square) or female
(magenta, circle) mouse showed behavioral responses categorized as either freeze, flight, or neither during the loom (two-way repeated-
measures ANOVA main effect of behavior [F; 39 =5.457, p = 0.0081], main effect of sex [F; 30 =0.000, p > 0.9999], interaction of behavior x sex
[F3,30=0.9989, p = 0.3775]. Tukey’s multiple comparisons test male vs female in behavior type neither: [p = 0.2586], freeze: [p = 0.4956], and
flight: [p = 0.6491]. N = 7 females, 8 males). D Trial averaged time spent freezing in the 10-s window beginning at loom onset for animals that
had a freeze response to looming (two-tailed Mann-Whitney test, males vs females p = 0.0079, N = 5 females, 5 males). All data represented as

mean + SEM.

F127=0.000, p>0.999; two-tailed Mann Whitney test on time
spent freezing to tone, males vs females p = 0.1905). These results
suggest that the sex-dependent difference in pnVTA™N¢ poten-
tiation during shock is not accompanied by notable differences in
behavior between males and females.

During looming stress, although mice had more overall
variation in which strategy they employed in response to the
stressor, there were similar proportions of male and female mice
that opted for flight, freeze, or neither strategy (Fig. 4C, two-way
repeated-measures ANOVA main effect of sex on behavioral
response F1,39:0.000,(§)>0.999;). During looming, the primary
difference in pnVTAPNC signal between sexes was detected
during the first 10s after the loom. Since freezing was the more
prevalent threat-response for this behavior compared to flight, we
quantified the total time each sex spent freezing during this 10-s
time period (Fig. 4D). Interestingly, female mice spent more time
freezing during this time window compared to male mice (Fig. 4D,
two-tailed Mann Whitney test on time spent freezing to loom,
males vs females p = 0.0079). These findings indicate that the lack
of pnVTAPNOC activity we observed during looming in females but
not males is accompanied by a sex-dependent difference in
freezing behavior.

pnVTAPNOC activation does not sensitize to repeated stress
exposure across an acute exposure session

Since we observed differences in the magnitude of pnVTAPNOC
activity across different types of stressors, we next examined
whether activation of these neurons became sensitized by
repeated exposure to the same stressor. For each of the
experimentally-evoked stressful stimuli that we tested (foot shock,
tail lift, air puff, predator odor, and looming), mice experienced
multiple presentations of the stressor within a single experimental
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session. For each of these stress types, we divided each
experimental session into three time periods, early, mid, and late,
and then evaluated pnVTAPNOC activity during trials that occurred
within each time period (Fig. 5).

We found that the magnitude of pnVTAPNC neuron responses
remained consistent across early, mid, and late trials for all tested
stressors, including tone-cued foot shock (Fig. 5A, one-way
repeated-measures ANOVA main effect of time F,;6=2.403,
p=0.1223), 20s tail lift (Fig. 5B, one-way repeated-measures
ANOVA main effect of time F,,, = 1.803, p = 0.1884), 0.1 s air puff
(Fig. 5C, one-way repeated-measures ANOVA main effect of time
Fy16=0.5601, p=0.5820), predator odor (Fig. 5D, one-way
repeated-measures ANOVA main effect of time F,3=0.4393,
p=0.6512), and looming (Fig. 5E, F, one-way repeated-measures
ANOVA main effect of time males: [F,4=0.4527, p=0.6449],
females: [F1, =1.180, p = 0.3405]). In conclusion, these findings
indicate that pnVTAPNOC activation is stable across repeated
exposure to a given stressor occurring within an acute (< 30 min)
time frame.

DISCUSSION

The aim of this study was to characterize how stress exposure
impacts pnVTAPN9C  neuron activity. We demonstrate that
pNVTAPNOC neurons are selectively activated in response to stress
rather than salience in a primarily non-sex-dependent manner,
except during looming predator stress where activity increased in
males only. Our findings reveal new insights into a pathway by
which stress interfaces with a neuropeptide subpopulation known
to direct motivated reward-seeking behaviors through its influ-
ence on mesolimbic circuitry. We also show that pnVTAPNOC
neurons do not sensitize with acute, repeated exposure to the
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Fig. 5 pnVTAPNOC activation does not sensitize to repeated exposure of a stressful stimulus. A Left: Averaged traces of pnVTAPNOC
GCaMPés activity during epoch surrounding tone-cued foot shock, aligned to tone onset. Trials were grouped by when they occurred during
the session, with early trials (light green) in the first third, mid trials (medium green) in the second third, and late trials (dark green) occurring
in the final third of the session. Right: Area under the curve (AUC) for averaged traces from left panel, calculated over the 8-s window
following foot shock. AUC was similar across early, mid, and late trials (one-way repeated-measures ANOVA main effect of time F; 6 = 2.403,
p = 0.1223. Tukey’s multiple comparisons test, ns = non-significant. N = 9 mice). B-F Same as (A) but for pnVTAPNO® GCaMP6s activity during B
20 s tail lift (one-way repeated-measures ANOVA main effect of time F,,, = 1.803, p = 0.1884. Tukey’s multiple comparisons test, ns = non-
significant. N =12 mice), C 0.1 s air puff (one-way repeated-measures ANOVA main effect of time F, ;¢ = 0.5601, p = 0.5820. Tukey’s multiple
comparisons test, ns = non-significant. N =9 mice), D predator odor (one-way repeated-measures ANOVA main effect of time F, 13 = 0.4393,
p =0.6512. Tukey's multiple comparisons test, ns = non-significant. N=10 mice), E looming in male mice (one-way repeated-measures
ANOVA main effect of time F, 4= 0.4527, p = 0.6449. Tukey’s multiple comparisons test, ns = non-significant. N = 8 mice), and F looming in
female mice (one-way repeated-measures ANOVA main effect of time F;1, = 1.180, p = 0.3405. Tukey’s multiple comparisons test, ns = non-
significant. N =7 mice). For data in (B-F), AUC was calculated over the 5-s window following stress exposure onset. All data represented as
mean + SEM.

same stressor, but do have varying sensitivity to different
stressors, with physical and predator-based stimuli producing a
larger dynamic response than the innately stressful environmental
cues experienced during exploratory behaviors. Whether these
differences in dynamics are related to the perceived valence of the
stressful stimulus will be an important follow-up for further study.

In this study we recorded changes in calcium activity via
GCaMPé6s fluorescence as a proxy for pnVTAPNOC neuron activity. It
is important to note that although calcium activity can serve as an
indirect measure of neuron activity, our recordings do not directly
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measure N/OFQ release within the VTA and therefore do not
necessarily reflect recruitment of endogenous N/OFQ signaling.
The recent development of biosensors specific to a wide array of
neuromodulators and neuropeptides, including a sensor for N/
OFQ [29], have opened up new avenues for direct detection of
neuromodulator release and should be used in future studies to
examine N/OFQ dynamics during the stress response within the
pnVTA neuronal population.

Although the looming behavior was not formally cued, the
timing of signal onset in pnVTA"NC neurons slightly precedes the
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initiation of the looming trial (Fig. 2B). This suggests that the mice
may have detected inadvertent environmental cues (e.g. move-
ment of the researcher to initiate a trial) in anticipation of the
upcoming loom trial, which is a limitation to consider when
interpreting the temporal precision of this specific behavior.

N/OFQ has been implicated in the stress response, but the
observed effects of stress on the N/OFQ-NOPR system vary widely
both across the brain and depending on the form and duration of
stress exposure [28, 36]. Prior studies have also reported notable
sex differences in rats, where stress-induced changes to N/OFQ
expression were more prominent in males [37, 38]. While most of
the stressors we evaluated in this study evoked similar pnVTAPNOC
responses in males and females, the activity during looming that
occurred exclusively in male mice mirrors these prior findings
where a stress-evoked change in N/OFQ was only seen in males.
On the contrary, we observed a potentiation of pnVTAPNOC
activation during foot shock in females relative to males
(Supplementary Fig. 1), suggesting that sex-dependent effects
on how N/OFQ neurons respond to stress can also extend to
females. This potentiation during foot shock was not accompanied
by any detectable behavioral differences between sexes. In
contrast, the lack of pnVTAPNOC response in females during
looming was accompanied by an increase in freezing time
compared to males, suggesting a sex-dependent effect on the
presence but not the magnitude of pnVTA™OC activation in
response to stress (Figs. 3 and 4). Given the lack of a sex-
dependent difference in the behavioral response to foot shock, it
would be interesting to determine whether individual hetero-
geneity in terms of an animal'’s resilience or vulnerability to stress
shapes the magnitude of pnVTA"™M°S neuron response during
stress exposure.

The N/OFQ-NOPR system has been closely linked with
anhedonia and changes to motivated behavior (for a summary
see Gavioli and Calo, 2013). It is well established that stress is a
prominent factor in the pathophysiology and development of
anhedonia and motivational deficits, but the specific circuit-level
mechanisms by which stress alters motivated behaviors are less
understood. In previous work, we reported that activation of
pnVTAPNOC activity suppresses effort-based reward seeking in
mice [25], suggesting a mechanism by which N/OFQ activity in this
circuit may regulate motivation. Our findings in this study
demonstrate that these pnVTAPNC neurons are also sensitive to
acute stress, identifying a potential pathway through which stress
could suppress motivation by driving excessive activation of N/
OFQ signaling in the pnVTA, and subsequent modulation of
dopaminergic tone as previously demonstrated by our group [25].
Further work with specialized genetic approaches is needed to
more directly test this hypothesis however, particularly in
evaluating whether inhibition of pnVTAPN®® activity can improve
chronic stress-induced motivation deficits, and furthermore how
NOPR expressing dopamine neuron activity is impacted under
these situations.

In our previous work, we found that over-activation of
pNVTAPNOC neurons suppressed reward-seeking behavior in mice
while pnVTAPNOC inhibition enhanced motivation [25]. This
suggests that N/OFQ neuron activity may be critical for fine-
tuning reward-related behavior, and imbalances in either direction
of standard expression levels could drive opposing effects on
motivation. Our findings here showed enhanced pnVTAPNOC
activation in response to stress, thus we would predict that
stress-induced activation of this population would contribute to
an overall anhedonic phenotype. However, it is important to note
that our findings are still limited by the selection of stressors used
in this study. Given that some forms of stress exposure have also
been shown to exacerbate impulsive behaviors such as drug self-
administration [39, 40], further work should investigate if other
forms and extended durations of stress have a suppressive effect
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on pnVTAPNOC activity, in addition to evaluating their effects on
motivated behavior.

In conclusion, the findings we report here provide insight into
how stress modulates N/OFQ neuron activity within the VTA
microcircuitry. These results advance our understanding of how
the N/OFQ system interfaces with both stress and motivational
deficits within a single circuit, laying the groundwork for further
studies to explore stress-related mechanisms for anhedonic
behavior in the context of this neuropeptidergic pathway. Future
research should examine the long-term effects of chronic stress on
pNVTAPNOC activity and evaluate the therapeutic potential of
NOPR antagonism within this circuit during motivation in models
of stress-induced anhedonia.
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The datasets generated and analyzed in this study are available from the
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