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Converging lines of evidence implicate synaptic loss in cognitive impairment associated with schizophrenia. However, it remains
unknown whether synaptic terminal density and premorbid intellectual functioning are related in vivo, or whether there are age-
related changes in them in schizophrenia. To address this, we investigated whole brain grey matter synaptic vesicle glycoprotein 2A
(SV2A) levels and examined their relationship with intellectual functioning and age, in forty-three patients with schizophrenia (SCZ)
and 26 healthy volunteers (HV), using [''CJUCB-J positron emission tomography (PET). Whole brain grey matter [''CJUCB-J
distribution volume ratio (DVR) was significantly lower in the SCZ than the HV group (Cohen’s d = 0.64, p =0.01), and negatively
correlated with age in both groups (Spearman’s rho = —0.46 to —0.55), with no significant group difference in magnitude of DVR-age
correlations (z= 0.44, p = 0.66). Current (Cohen’s d = 0.73) and premorbid 1Q (Cliff's delta = 0.37) were significantly lower in the SCZ
than the HV group, though DVR was not significantly associated with current or premorbid IQ in either group (including in chronic
medicated and early-course unmedicated SCZ subgroups). The group differences in DVR are consistent with a global deficit in
synaptic terminal density in schizophrenia, with similar age-related changes in people with schizophrenia and healthy volunteers.
The lack of significant relationships between DVR and premorbid or current cognitive measures are not consistent with the
hypothesis that lower levels of synaptic terminal density observed in schizophrenia underlie lower levels of intellectual functioning
in the disorder.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-026-02349-7

INTRODUCTION
Schizophrenia is a debilitating illness with a lifetime prevalence of
approximately 0.5% [1] and is a leading cause of global disease
burden [2]. Its symptoms are often separated into 3 domains:
positive (e.g. hallucinations and delusions), negative (e.g. avolition,
asociality and anhedonia) and cognitive (e.g. deficits in IQ,
executive function, processing speed and working memory) [2,
3]. The modulation of dopamine function is the mainstay of most
antipsychotic drugs, which show efficacy in reducing positive
symptom severity [4], yet show little benefit in the treatment of
cognitive symptoms [5, 6].

Cognitive impairment is present in over 60% of patients at
illness onset [7-10], and is linked to worse functional outcomes in
schizophrenia [11-13]. In many patients, intellectual functioning is

impaired even at the premorbid stage of illness [7, 14-16], and
cognitive impairment may progress in some patients through the
illness course [17-19], although it is challenging to predict in
whom. Together, this highlights the need to advance under-
standing of the neurobiology of cognitive impairment in
schizophrenia.

Several lines of evidence indicate that lower synaptic levels
could underlie cognitive impairment associated with schizophre-
nia [20]. For example, in preclinical models of schizophrenia risk
factors using maternal immune activation, offspring of mice
exposed to polyriboinosinic-polyribocytidylic acid show lower
dendritic spine length and dendritic complexity, coupled with
impaired short-term memory in a novel object recognition task,
compared to control mice [21]. Furthermore, rodents subjected to
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another schizophrenia risk factor, chronic stress, show impair-
ments in dendritic arborisation in the medial prefrontal cortex,
linked to impaired performance on a perceptual attentional set-
shifting task [22]. Moreover, elevated expression of complement
component C4, a key regulator of microglia-mediated synaptic
elimination [23] that has been strongly associated with schizo-
phrenia risk [24], is linked to lower levels of markers of synaptic
density and working memory deficits in mice [25, 26].

There is also growing evidence implicating synaptic dysfunction
in schizophrenia pathogenesis [20, 27, 28]. Genetic studies have
identified associations between schizophrenia and variants in
genes encoding synaptic proteins and protein mediators of
synaptic elimination [24, 29, 30]. Post-mortem studies have
identified lower levels of synaptic proteins and mRNA [31] and
lower dendritic spine density [32, 33] in regions spanning the
frontal, temporal and cingulate cortices, and hippocampus in
people with schizophrenia relative to healthy volunteers.

Synaptic vesicle glycoprotein 2A (SV2A) is a protein expressed in
synaptic terminals, and can be indexed in vivo using positron
emission tomography (PET) as a marker of synaptic terminal
density [34]. PET studies have identified lower levels of SV2A tracer
binding in multiple brain regions than healthy volunteers both in
patients with chronic schizophrenia [35, 36] and also in patients
early in the course of illness [37-39], although possibly to a lesser
extent [40]. Moreover, clinical high-risk subjects have shown lower
SV2A binding compared to controls in the anterior cingulate
cortex and limbic and associative striatal subdivisions, indicating
lower synaptic terminal density in the premorbid phase of illness
[39].

Previous work exploring the link between SV2A and cognition
has indicated that [''CJUCB-J uptake is linked to social cognition
and processing speed measures in patients with chronic schizo-
phrenia (n =13 [36]), and with a composite cognitive score in a
mixed sample of early-course schizophrenia patients and healthy
volunteers (n =18 [37]). Another study of healthy volunteers
demonstrated an association between [''CJUCB-J DVR and some
cognitive functions (e.g. switch cost) but not others (e.g. working
memory task performance) [41].

However, no study has tested the association between SV2A
and premorbid intellectual functioning or change in intellectual
functioning, and only one small study has assessed the relation-
ship with a global measure of current intellectual functioning [37].
Moreover, it remains unknown whether there are age-related
changes in SV2A levels in schizophrenia.

Therefore, we conducted an [''CJUCB-J PET imaging study to
test the relationship between the synaptic terminal density marker
SV2A, age and measures of premorbid and current intellectual
functioning. We hypothesised that whole brain grey matter SV2A
levels would be significantly lower in patients with schizophrenia
compared to healthy volunteers, negatively correlated with age,
and positively correlated with premorbid and current intellectual
functioning in patients with schizophrenia.

MATERIALS AND METHODS

We obtained approvals for the study protocol from The London-West
London & GTAC Research Ethics Committee, United Kingdom (reference:
16/L0O/1941), and for the administration of radioactive material from the
Administration of Radioactive Substances Advisory Committee, United
Kingdom. The study was conducted in accordance with the Declaration of
Helsinki (1996). All volunteers provided written informed consent prior to
their participation in the study.

We recruited 69 subjects (43 patients with schizophrenia [SCZ] and
26 healthy volunteers [HV]). The whole brain grey matter PET data have
not been reported previously for either group. NART and WAIS data have
been reported previously for 19 HVs [42]. Volunteers were included in
the study if they showed capacity to consent, were 18-65 years of age,
and had a normal blood coagulation test result to enable arterial
blood sampling.
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We recruited patients from first-episode psychosis and general mental
health services in London, United Kingdom. Patients with SCZ were
included if they met DSM-5 criteria for schizophrenia [43] and had
undergone no changes to treatment in the four weeks prior to screening.
See Supplementary Materials and Methods for exclusion criteria.

Clinical assessments

The Structured Clinical Interview for DSM-5 was used to confirm the
diagnosis in patients, and to exclude psychiatric illness in healthy
volunteers [44]. HVs were also screened for family history of psychosis.
In patients, illness duration was calculated as the time from first psychotic
symptoms [45].

Cognitive measures

We used an abbreviated version of the Wechsler Adult Intelligence Scale,
shortened version (WAIS-IV SF) to measure current intellectual functioning
[46, 47]. The version used in this study incorporated four subtests: digit
symbol coding, arithmetic, information, and block design. The National
Adult Reading Test (NART) was used to measure premorbid intelligence
[48]. These scales were administered and scored in accordance with
instructions to generate current (WAIS-IQ) and premorbid IQ (NART-IQ)
estimates. See Supplementary Material and Methods for further
information.

Magnetic resonance imaging

To facilitate the delineation of anatomical regions of interest (ROIs), each
subject underwent structural magnetic resonance imaging (MRI). See
Supplementary Material and Methods for further information.

PET acquisition

['"CJUCB-J PET imaging. A low-dose computed tomography scan for
attenuation and scatter correction was administered immediately prior to
each PET scan. Each subject then received an [''CJUCB-J microdose ( < 300
MBQq) injected as a smooth bolus via an intravenous cannula (20 mL over
20s). PET-CT data were acquired for 90 min using a Biograph 6 HiRez PET-
CT scanner (Siemens).

Arterial blood sampling

Arterial blood sampling was performed throughout each PET scan to
enable estimation of an arterial input function [49]. See Supplementary
Material and Methods for further information.

Image analysis

We undertook processing and modelling using MIAKAT version 4.3.7
(http://www.miakat.org/MIAKAT2/index.html), implemented in MATLAB
(version R2018b; The MathWorks, Inc) using functions from SPM12
(Wellcome Trust Centre for Neuroimaging, http://wwwfil.ion.ucl.ac.uk/
spm) and FSL version 5.0.10 (FMRIB). Brain extraction using FSL, and grey
matter segmentation and rigid-body coregistration to a standard reference
space [50] using SPM12, as implemented via MIAKAT, was applied to each
MRI. Next, the template brain image and related Clinical Imaging Centre
atlas [51] were warped nonlinearly to the subject’s MRI where the whole
brain grey matter was defined as the primary ROIl. We used whole brain
grey matter as our primary ROl given the evidence from structural and
functional neuroimaging studies indicating associations between general
intellectual functioning and distributed neural systems rather than single
ROls [52-54], and given evidence for lower ['"CJUCB-J uptake in multiple
brain regions in schizophrenia compared to healthy volunteers [35-37, 40].
We defined frontal and temporal lobe grey matter as additional ROls for
exploratory analyses, given previous findings that the Brief Assessment of
Cognition in Schizophrenia (BACS) composite score, a global intellectual
functioning measure, is significantly correlated with [''CJUCB-J binding in
frontal and temporal regions in a combined group of healthy volunteers
and patients with schizophrenia [37]. We used the automated anatomical
labelling template [55] to generate the centrum semiovale (CS) ROl in line
with predefined parameters for its application as a reference region for
estimating nondisplaceable McucB-J binding [34].

Individual PET images were motion-corrected using frame-to-frame
rigid-body registration, with the 14th frame (acquired 9-11 minutes
after injection) used as the reference frame. The summed PET image
and MRI were co-registered. Time activity curves were generated for
each ROL

Neuropsychopharmacology
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Table 1.

Age (mean [SEM] years)

Female, male (n)

Taking antipsychotic medication (n)
Duration of illness (mean [SEM] years)
WAIS-IQ (mean [SEM]) n: HV = 20; SCZ = 25
NART-IQ (mean [SEM]) n: HV = 21, SCZ = 33

NART-WAIS 1Q difference (NART-IQ minus WAIS-IQ, mean [SEM]) n:
HV =19; SCZ =23

Injected radioactivity (mean [SEM] MBq)

[''CJUCB-J plasma free fraction (mean [SEM])

CS Vr

Whole brain grey matter [''CJUCB-J DVR (mean [SEM] ml/cm?)

Clinico-demographic and imaging characteristics in healthy volunteer (HV) and schizophrenia (SCZ) groups.

HV (n = 26) SCZ (n=43) Test-statistic p value
35.92 (2.45) 33.26 (1.82) Mann-Whitney U = 483.00 0.35
3,23 7, 36 Chi-square = 0.29 0.59
— 20 — —

- 9.67 (1.65) - -
103.43 (3.85) 93.44 (1.97) T=244 0.02
114.80 (1.55) 107.05 (1.99) Mann-Whitney U =217.50 0.02
10.34 (3.61) 15.01 (2.51) T=1.09 0.28
260.35 (5.35) 228.89 (8.25) Mann-Whitney U = 366.00 0.02
0.25 (0.005) 0.26 (0.005) Mann-Whitney U = 658.00 0.22
5.56 (0.11) 6.16 (0.24) Mann-Whitney U = 675.00 0.15
3.43 (0.09) 3.07 (0.09) T=259 0.01

Sample sizes provided in headings of columns 2 and 3, unless otherwise specified within rows in column 1.

Regional time activity curve and arterial input function data were then
analysed together with the 1-tissue compartment model, which has been
shown to produce reliable [''CJUCB-J volume of distribution (V4) estimates
[49, 56]. Whole brain grey matter V¢ was determined by applying a grey
matter mask to the whole brain ROl within MIAKAT. Whole brain grey
matter distribution volume ratio (DVR) was obtained by using the CS as a
pseudoreference region [34, 49], deriving DVR as a ratio of whole brain
grey matter Vi to CS V. We used DVR as our primary [''CJUCB-J outcome
measure. This approach corrects for non-specific tracer uptake in a
reference region, and is thought more closely to reflect the signal specific
to SV2A in the ROI than V; [57], which indexes both SV2A-specific [''C]
UCB-J binding, as well as the nondisplaceable uptake. Moreover, the
increased variability of ['"CIUCB-J V; compared to DVR [49] means it has
lower sensitivity to group differences [58], as found in previous Mcucs-J
analyses [35, 40].

Sample size and power calculation

We conducted a power calculation using Gxpower version 3.1.9.3 (https://
www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower) to establish the minimum sample size
required to test our primary hypothesis. This was based on prior evidence
for significant correlations between frontal [''CJUCB-J binding potential
and detection speed (r= —0.73, p = 0.005) and social emotional cognition
domains of the CogState Battery (r=0.64) [36]. We determined that
19 subjects per group would have greater than 80% power to detect
a significant relationship at r of 0.6 between these variables, at p < 0.05
(two-tailed).

Statistical analysis

Statistical analyses were undertaken with IBM SPSS Statistics, Version
31.0.0.0 (117), and RStudio Version 1.4.1106 (RStudio Team (2021), RStudio,
Inc., Boston, MA (http://www.rstudio.com/)).

We used the Kolmogorov-Smirnov test to test data normality
(Supplementary Results). We tested relationships between variables using
Spearman’s rank correlation coefficient. Group differences in clinical,
demographic and imaging variables were assessed using two-tailed
independent sample t tests for normally distributed data, Mann-Whitney
U tests for non-normally distributed data and Chi-squared tests for
categorical data. Our primary analysis tested for group differences in
whole brain grey matter [''CJUCB-J DVR, and for its association with age
and WAIS-IQ, in the combined sample, with an uncorrected alpha
threshold set at 0.05. We conducted exploratory analyses testing these
associations in HV and SCZ groups separately, associations between whole
brain grey matter [""CJUCB-J DVR and NART-IQ, NART-WAIS 1Q difference
score (defined as NART-IQ minus WAIS-IQ as a measure of change in
intellectual functioning) and WAIS subtests, and for group differences in
WAIS-IQ, NART-IQ, and NART-WAIS IQ difference score. We conducted
exploratory analyses testing the association between intellectual function-
ing measures and [''CJUCB-J DVR in frontal and temporal regions.
Exploratory analyses were conducted using a false discovery rate (FDR)
(Q) of 5% to limit false discoveries [59], and FDR-adjusted p values
are reported.

Neuropsychopharmacology

RESULTS

Sixty-nine participants (HV n=26 [3 female and 23 male]; SCZ
n =43 [7 female and 36 male]) completed the study. In the SCZ
group, 20 patients were taking antipsychotic medication (mean
[SEM] illness duration = 17.10 [2.63] years) whilst 23 patients were
unmedicated (mean [SEM] illness duration = 3.22 [0.65]). The
groups were well matched by age and sex, and there were no
significant group differences in [''CJUCB-J plasma-free fraction (fo)
or CS V¢ (Table 1). ['""CIUCB-J injected activity was significantly
lower in the SCZ group (Table 1).

Current and premorbid intellectual functioning in healthy
volunteer and schizophrenia groups

Mean [SEM] WAIS-IQ was significantly lower in the SCZ (93.33
[2.06]) than the HV group (103.97 [4.02], t = 2.36, p = 0.02, Cohen'’s
d=0.73, Table 1, Fig. 1a). Mean [SEM] NART-IQ was significantly
lower in SCZ (107.05 [1.99]) than the HV group (114.80 [1.55],
Mann-Whitney U =217.50, p = 0.02, Cliff's delta = 0.37, Table 1,
Fig. 1b). There was no significant difference between groups in
NART-WAIS 1Q difference scores (Table 1, Fig. 1c). Intellectual
functioning measures were not significantly associated with
chlorpromazine-equivalent antipsychotic dose (Supplementary
Results).

Whole brain grey matter [''CJUCB-J DVR in healthy volunteer
and schizophrenia groups

Mean [SEM] whole brain grey matter [''CJUCB-J DVR was
significantly lower in SCZ 3.07 [0.09] than the HV group (3.43
[0.09], t =2.59, p=0.01, Cohen’s d = 0.64, Fig. 2). There were no
significant associations between injected radioactivity and whole
brain grey matter [''CJUCB-J DVR, and there remained a significant
effect of group on whole brain grey matter [''CJUCB-J DVR in an
ANCOVA controlling for injected radioactivity (F;e6 =452,
p=0.04, n?=0.06, Supplementary Results). Whole brain grey
matter [''CJUCB-) DVR was not significantly associated with
chlorpromazine-equivalent dose (Supplementary Results). [''C]
UCB-J DVR remained significantly lower in the SCZ than the HV
group in a sensitivity analysis excluding subjects reporting
cannabis use in the past month (Supplementary Results).

Association between whole brain grey matter [''CJUCB-J DVR
and age

Age was significantly negatively correlated with whole brain grey
matter [''CJUCB-J DVR in the combined sample (rho=-0.45,
p =0.0001, n =69), HV group (rho =-0.55, p = 0.004, n = 26), and
SCZ group (rho=-0.46, p =0.002, n =43, Fig. 3). There was no
group difference in the magnitude of the bivariate DVR-age
correlations (z=0.44, p = 0.66).

SPRINGER NATURE
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Fig. 1 Intellectual functioning measures in healthy volunteer (HV) and schizophrenia (SCZ) groups. a WAIS-IQ was significantly lower in
the SCZ compared to the HV group (Cohen’s d = 0.73). b NART-IQ was significantly lower in the SCZ compared to the HV group (Cliff's delta =
0.37). ¢ NART-WAIS 1Q difference score was not significantly different between groups. Greater NART-WAIS-IQ difference score reflects greater
reduction from premorbid to current 1Q. Error bars indicate standard error of the mean.

Association between whole brain grey matter [''CJUCB-J DVR
and general intellectual ability

Whole brain grey matter [''CJUCB-J DVR was not significantly
correlated with WAIS-IQ in the combined sample (rho = 0.11,
p =0.47, n =45), or in the HV (rho = 0.30, p = 0.39, n = 20) or SCZ
(rho =-0.23, p =0.39, n = 25, Fig. 4a) groups analysed separately.
There remained no significant associations between [''CJUCB-J
DVR and WAIS-IQ when the SCZ group was separated into chronic,
medicated patients (rho =-0.07, p = 0.86, n = 9) and early-course,
unmedicated patients (rho =-0.27, p =0.39, n=16).

Whole brain grey matter [''CJUCB-J DVR was not significantly
correlated with NART-IQ in the combined sample (rho = 0.15,
p =0.86, n =54), or in the HV (rho = 0.04, p = 0.86, n = 21) or SCZ
(rho = 0.06, p =0.86, n = 33, Fig. 4b) groups. There remained no
significant associations between [''CJUCB-J DVR and NART-IQ
when the SCZ group was separated into chronic, medicated
patients (rho =-0.09, p = 0.86, n = 14) and early-course, unmedi-
cated patients (rho = 0.22, p =0.86, n=19).

Whole brain grey matter [''CJUCB-J DVR was not significantly
correlated with the NART-WAIS IQ difference score in the
combined sample (rho=-0.06, p =0.72, n=42), nor in the HV
(rho=-0.30, p=10.52, n=19) or SCZ group (rho = 0.22, p =0.52,
n = 23, Fig. 4c). There was no significant association between [''C]
UCB-J DVR and NART-WAIS IQ difference score in the chronic,
medicated patients (rho=-0.24, p=0.71, n = 8) or early-course,
unmedicated patients (rho =0.52, p =0.23, n=15).

There were no significant associations between whole brain
grey matter [''CJUCB-)J DVR and WAIS subtests (digit symbol
coding, arithmetic, block design, or information, Supplementary
Table 1).

Further exploratory analyses revealed no significicant associa-
tions between intellectual functioning measures and frontal or
temporal ['"CJUCB-J DVR (Supplementary Table 2).

Partial correlations controlling for effects of age and
chlorpromazine-equivalent dose revealed no significant associa-
tions between [''CJUCB-J DVR and intellectual functioning
measures (Supplementary Results).

Association between whole brain grey matter [''CJUCB-J DVR
and duration of illness

In the SCZ group, duration of illness was not associated with
whole brain grey matter [''CJUCB-J DVR (rho=-0.21, p=0.72,
n=43), WAIS-IQ (rho=-0.02, p=0.94, n=25), NART-IQ
(rho=-0.10, p =0.94, n=33), or the NART-WAIS IQ difference
score (rho =-0.03, p =0.94, n=23).

Given the correlation between age and SV2A binding in the SCZ
group, we conducted partial correlations controlling for the effect
of duration of illness in the SCZ group. We found that there
remained a significant negative association between age and
whole brain grey matter [''CJUCB-J DVR in the SCZ group (r=-
0.35, p = 0.02).

SPRINGER NATURE

DISCUSSION

Our main findings are that whole brain grey matter [''CJUCB-J
DVR is significantly negatively associated with age in both
schizophrenia and healthy volunteers, but unrelated to measures
of current and premorbid intellectual functioning.

Whole brain grey matter [''CJUCB-J DVR was lower in
schizophrenia compared to controls, as were WAIS-IQ and NART-
IQ scores. However, whilst NART-WAIS IQ difference score was
numerically greater in the schizophrenia group relative to controls,
this was not statistically significant. The DVR finding extends
previous work identifying lower SV2A levels in various cortical and
subcortical regions in schizophrenia [35-37, 40, 60] by showing for
the first time that global grey matter uptake of an SV2A-specific
tracer is significantly lower in patients with schizophrenia
compared to healthy volunteers. The premorbid and current 1Q
findings are consistent with meta-analyses finding lower pre-
morbid and current intellectual functioning in schizophrenia
compared to controls [14, 15, 17, 611.

In schizophrenia, two previous studies have investigated the
associations between [''CJUCB-J BPyp and specific cognitive
functions [36, 37]. The first, analysing 7 a priori ROIs and 21
cognitive measures (147 correlations), reported only two sig-
nificant positive associations, between frontal BPyp and detection
speed and social emotional cognition correct responses in
CogState Schizophrenia Battery subtests [36]. The second reported
significant positive correlations between BPyp and BACS compo-
site score in 3 out of 8 regions tested (right rostral middle frontal
gyrus, right superior temporal gyrus, and right Heschl’s gyrus) in a
combined schizophrenia and healthy control sample [37]. Neither
study corrected for multiple comparisons, which increases risk of
false positive results [59]. Considering the totality of relationships
reported in these studies, the majority (150/155 correlations) were
not significant even without multiple comparisons correction.
Plausibly, even fewer correlations would have been significant at
adjusted probability thresholds if FDR correction had been
applied. Our findings add to these studies in a sample two- to
threefold larger, providing further evidence that there is not a
strong relationship between SV2A markers and generalised
cognitive function in schizophrenia or healthy young to middle-
aged adults, although weaker associations or associations with
specific cognitive functions remain possible. Exploratory analyses
did not find significant relationships between DVR and cognitive
measures in chronic or first-episode subgroups. However, the
sample sizes were small, particularly for the chronic subgroup, and
these analyses are underpowered so require further testing in
future studies.

We found negative correlations between whole brain grey
matter [''CJUCB-J DVR and age, in the combined sample, and in
healthy control and schizophrenia groups (Spearman’s rho
ranging from -0.55 to -0.45). In the schizophrenia group, this
relationship was unaffected by duration of illness, indicating it
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Fig. 2 Whole brain grey matter [''CJUCB-J DVR levels in healthy
volunteer (HV) and schizophrenia (SCZ) groups. [''CJUCB-J DVR
was significantly lower in the SCZ compared to the HV group
(Cohen’s d = 0.64). Error bars indicate standard error of the mean.
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Fig. 3 Association between whole brain grey matter [''CIJUCB-J
DVR and age. There was a significant negative relationship between
[''CJUCB-J DVR and age in the combined sample (rho=-0.45,
p=0.0001), HV (rho=-0.55, FDR-corrected p =0.004) and SCZ
(rho =-0.45, FDR-corrected p = 0.002) groups. Linear regression line
shown. Shaded areas indicate 95% confidence interval.

primarily reflects normal developmental rather than disorder-
related changes. These findings are consistent with previous work
finding negative associations between cortical and subcortical
(particularly caudate) SV2A levels as indexed by V; and age
[49, 62, 63], and smaller effects in the medial thalamus, transverse
temporal gyrus, lateral posterior insula and caudate nucleus with
standardised uptake value ratio as an alternative SV2A outcome
measure [64]. Our findings extend these by identifying brain-wide
age-related effects on SV2A levels. Our findings contrast with
smaller studies exploring SV2A-age relationships in controls and
people with psychosis [35, 36, 65]. Differences between findings
may be partially explained by the greater power that our study has
to detect SV2A-age relationships.

Strengths and limitations

To date, this is the largest sample of schizophrenia patients
investigated with [''CJUCB-J PET imaging. 20 patients were taking
antipsychotic medication, which may have influenced the relation-
ship between SV2A binding and intellectual functioning. Anti-
psychotic drugs may reduce cognitive impairment in
schizophrenia [66, 67], although they show heterogeneous effects
potentially relating to receptor-binding profiles [68]. Antipsychotic
drugs ameliorating cognitive impairment in schizophrenia could
weaken the association between synaptic terminal density and
cognitive function. However, chlorpromazine-equivalent dose was
not significantly correlated with intellectual functioning measures
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or DVR. Moreover, the absence of significant relationships
between DVR and intellectual functioning measures remained
consistent when accounting for treatment status, either through
analyses of antipsychotic-treated and unmedicated subgroups, or
partial correlations controlling for antipsychotic dose. Taken
together with prior evidence that SV2A binding in patients is
not significantly related to antipsychotic exposure [35-37, 39], and
that SV2A levels in the rat brain are unaffected by clinically
relevant antipsychotic drug exposure [35], it is unlikely that
treatment status accounted for our findings. Nonetheless, further
studies including antipsychotic-naive patients would be useful to
test if antipsychotic exposure could be confounding our findings.

A small proportion of volunteers reported cannabis use within
the last month (healthy volunteer n = 1, schizophrenia n = 4). This
is a potential limitation, but DVR results remained consistent in a
sensitivity analysis excluding these volunteers. Thus, recent
cannabis use is unlikely to influence our findings. Future studies
examining volunteers free from cannabis use would be valuable.

We calculated DVR using the CS as a reference region. A
potential limitation is that the CS shows low levels of [''CJUCB-J
displacement by levetiracetam, an SV2A-specific drug [34]. Thus,
group differences in CS V; could bias findings. However, we did
not find significant differences between schizophrenia and
healthy volunteer groups in CS Vi, consistent with prior work
[35, 36, 38].

Our study was powered to detect DVR-age and DVR-WAIS-IQ
correlations with r=0.6. It was underpowered to detect weaker
relationships, or associations in smaller subgroups, so type Il error
is possible.

We did not set out principally to explore the relationship
between SV2A binding and decline in intellectual functioning in
schizophrenia, or to include patients showing pronounced
decline. Although NART-WAIS 1Q difference score was greater in
schizophrenia compared with controls suggesting increasing
cognitive impairment, this was not statistically significant. This
analysis may have been underpowered due to sample size, or
more sensitive to measurement error through use of cross-
sectional measures to estimate longitudinal change in 1Q. Recent
cross-sectional and longitudinal MRI studies stratifying patients
according to 1Q trajectories indicate lower brain volume and
greater brain volume loss respectively in subgroups with more
negative trajectories versus those with relatively stable 1Q [69, 70].
Whether schizophrenia subtypes showing more pronounced
decline in intellectual functioning would also show altered SV2A
binding relative to stabler subtypes remains unclear. Moreover, a
recent meta-analysis of longitudinal studies indicates that, despite
broad stability in cognitive functioning following the first
psychotic episode, verbal and visual learning and memory
domains may decline [17]. Future studies focusing on specific
cognitive domains, and in patient groups showing greater
cognitive decline, are warranted.

[''CJUCB-J DVR, which indexes SV2A binding, a marker of
synaptic terminal density [34], was not significantly associated
with intellectual functioning measures. Whilst this indicates that
alterations in SV2A are unlikely to underlie cognitive impairment
in schizophrenia, this does not preclude alterations in other
aspects of synaptic function underlying cognitive impairment.
Indeed, genetic and postmortem evidence implicates disruption in
synaptic parameters additional to terminal density in schizophre-
nia, including cellular machinery relevant to synaptic plasticity
such as N-methyl-D-aspartate receptor and activity regulated
cytoskeleton-associated protein complexes, dendritic spine den-
sity and PSD-95 protein levels [29, 30, 71, 72]. Thus, disorder-
related changes in these other synaptic components may underlie
cognitive impairment in schizophrenia [73]. The development of
in vivo molecular imaging probes to synaptic elements beyond
SV2A would be valuable in further testing the link between
synaptic dysfunction and cognitive impairment in schizophrenia.

SPRINGER NATURE
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Fig. 4 Association between whole brain grey matter [''CJUCB-J DVR and intellectual functioning measures. a [''CJUCB-J DVR was not
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Our previous studies [35, 40] focused on a limited number of a
priori ROIs (frontal cortex, anterior cingulate cortex, and hippo-
campus) selected given meta-analytic findings for lower synaptic
protein levels in the postmortem brain in schizophrenia [31], and
exploratory ROIs (temporal, parietal, and occipital lobes, dorso-
lateral prefrontal cortex, thalamus and amygdala) selected given
meta-analytic findings for structural and/or functional brain
alterations in schizophrenia [74, 75]. Those analyses did not
investigate other regions such as the insula, cerebellum, basal
ganglia, and brainstem, which may nonetheless have important
contributions to differences in brain synaptic terminal density in
schizophrenia. Moreover, it has previously been unknown whether
schizophrenia-related differences in synaptic terminal density are
detectable at the whole-brain level, which has important
implications with respect to both the magnitude and distribution
of effects, and measurement sensitivity. Structural and functional
alterations in regions beyond those considered in our previous
analyses have been implicated in impaired cognitive functioning
in schizophrenia [76-81]. Given this, and the evidence that general
intellectual functioning arises from distributed neural systems
rather than discrete regions [52-54], it is important to consider
whether synaptic alterations throughout the brain are linked to
intellectual functioning in schizophrenia. Nonetheless, there could
be differences in SV2A binding in schizophrenia in specific neural
circuits spanning multiple regions relevant to intellectual func-
tioning that this approach is unable to detect. However,
exploratory analyses did not identify significant associations
between intellectual functioning measures and frontal or temporal
['"CJUCB-J DVR either.

Implications for understanding the pathophysiology of
schizophrenia

Our finding of lower global [''CJUCB-J DVR in schizophrenia is
consistent with our and other previous findings of lower SV2A-
specific radioligand binding in cortical brain regions in schizo-
phrenia [35-37, 40, 60] and extends them to indicate globally
lower grey matter levels. One potential explanation for lower SV2A
levels in schizophrenia is that these are due to a neurodevelop-
mental mechanism predating the first psychotic episode, reflected
in lower premorbid IQ [82]. Our finding that NART-IQ, whilst lower
in schizophrenia, was not significantly associated with DVR, is not
consistent with this explanation. Similarly, our finding that WAIS-
IQ is not associated with DVR is not consistent with the hypothesis
that SV2A levels underlie current cognitive function. However,
given the prior findings of regional and test specific relationships,
and the fact that we cannot exclude weak relationships, or
relationships in patient subgroups, further, particularly long-
itudinal studies, are required to test these hypotheses further.
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Our finding that there is no significant group difference in the
magnitude of negative [''CJUCB-J DVR-age correlations suggests
that age-related decline in presynaptic terminal markers in
schizophrenia is similar to that seen in healthy controls. In contrast,
previous cross-sectional work has identified accelerated age-related
grey matter volume loss in schizophrenia compared to controls
until middle age, stabilising thereafter [83], with meta-analyses of
longitudinal MRI studies similarly identifiying greater grey matter
volume loss over time in patients [84]. Notably, grey matter volume
changes are unlikely wholly attributable to synaptic terminal loss,
and likely partially attributable to changes in its other consitutents,
including vasculature, astrocytes, neuronal somata and dendrites
[85, 86]. Longitudinal PET studies exploring synaptic terminal
density in larger numbers of younger subjects and clinical high-risk
subjects would be useful to address this.

In conclusion, whole brain grey matter [''CJUCB-J DVR, a marker
of global synaptic terminal density, is lower in schizophrenia, and
negatively associated with age, but unrelated to measures of
premorbid or current intelligence in healthy volunteers or in
patients with schizophrenia. Our findings suggest that synaptic
terminal density declines with age at a similar rate in patients and
controls, and that factors underlying lower levels of global
intellectual functioning in schizophrenia are distinct from those
underlying lower synaptic vesicle glycoprotein 2A levels observed
in schizophrenia.
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