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BACKGROUND: Temporal distribution and amplitude of physical activity/inactivity in 24 h known as circadian rest-activity rhythm
may predict the risk of various metabolic diseases, including type 2 diabetes (T2D), yet the mechanisms behind the diurnal behavior
patterns remain largely unexplored.
METHODS: This study included 74,165 UK Biobank participants who were free of T2D at baseline. Circadian rest-activity rhythm
(CRAR) characteristics, including amplitude (strength), acrophase (timing of peak activity), pseudo-F (robustness), and mesor
(height), were assessed using an extended cosine model applied to accelerometer data. T2D was assessed using the established UK
Biobank algorithms. Using Cox regression and restricted cubic spline models, we examined the association between CRAR and
incident T2D as well as subsequent all-cause mortality among individuals developed T2D during the follow-up. Mediation analysis
explored the mediating effects of blood and metabolic biomarkers.
RESULTS: During a median follow-up of 7.9 years, 1784 T2D cases were documented. We found that CRAR abnormalities was
associated with a higher risk of incident T2D compared to optimal CRAR, and the multivariate adjusted hazard ratios (HRs) (95% CI)
were 1.48 (1.31, 1.67) for low amplitude, 1.25 (1.07, 1.45) for delayed acrophase, 1.17 (1.04, 1.31) for pseudo-F, and 1.55 (1.38, 1.74)
for low mesor. Furthermore, low amplitude and low mesor were associated with higher all-cause mortality following the diagnosis
of T2D. Serum vitamin D emerged as a crucial mediator in the association between CRAR abnormalities and the risk of T2D as well
as subsequent all-cause mortality.
CONCLUSION: Our study suggests that CRAR abnormalities are linked to an elevated risk of incident T2D and subsequent mortality.
These associations are mediated by blood and metabolic biomarkers, with serum vitamin D playing a significant role as the primary
mediator.
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INTRODUCTION
Diabetes remains a significant global public health issue, affecting
nearly 537 million adults in 2021, with projections suggesting this
number could rise to 578 million by 2030 [1, 2]. Type 2 diabetes
(T2D) accounts for approximately 90% of all diabetes cases. The
rising prevalence of T2D can partly be attributed to lifestyle risk
factors, including physical inactivity, poor diet, as well as
insufficient sleep and disrupted circadian patterns (e.g. shift work)
[3, 4].
Circadian rhythms regulate our daily behavioral and physiolo-

gical cycles to align with the 24-h light-dark cycle. These rhythms
are regulated by a master clock in the suprachiasmatic nuclei of
the hypothalamus, which is crucial for coordinating daily sleep
and wakefulness cycles, along with various metabolic functions

including eating patterns, tissue metabolism, and hormone
secretion [5–7]. The circadian clock autonomously regulates daily
fluctuations in baseline glucose levels and glucose tolerance [8].
Experimental studies in humans have found that circadian
misalignment can impair glucose regulation and increase
inflammation, regardless of sleep loss [9]. Epidemiological studies
have shown that night shift work, especially rotating shifts that
include nights, is associated with a 15–44% increased risk of
diabetes [4]. Additionally, our previous research has demonstrated
that carrying the MTNR1B G risk allele, along with a late
chronotype, increases the risk of T2D [10]. However, much of this
research relies on self-reported data concerning chronotype and
work schedules, which may introduce biases. A previous study has
demonstrated that an imbalanced rest-activity rhythm, as
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detected by wearable accelerometry, is associated with an
increased risk of T2D [11]. Importantly, this association persists
even after considering established risk factors for T2D. However,
the mechanisms through which objective circadian characteristics
are linked to T2D remain elusive. Our study aimed to identify
blood and metabolic markers associated with CRAR metrics and
evaluate their association with incident T2D risk, along with
exploring their potential mediating roles. Additionally, we
conducted a supplementary analysis to determine how optimizing
CRAR might reduce the risk of premature mortality among
participants with T2D.

METHODS
Study design and population
The UK Biobank is a prospective cohort study that enrolled over half a
million participants aged between 40 and 73 years, who were recruited
from 2006 to 2010 across 22 assessment centers throughout England,
Scotland, and Wales. This extensive study provides a substantial dataset
that supports a wide range of research projects aimed at understanding
the genetic, lifestyle, and environmental factors that influence health and
disease.
We utilized a subsample of 103,712 participants who, between 2013 and

2015, wore an Axivity AX3 accelerometer (Axivity, Newcastle upon Tyne,
UK) on their dominant wrist to collect raw accelerometer datasets over a
7-day period. The UK Biobank accelerometer expert working group
subsequently processed this data and generated detailed metrics on the
participants’ physical activity intensity in 5-second intervals. We excluded
participants with unreliable accelerometry data (n= 11,104), including (1)
those accelerometer data were flagged as unreliable; (2) those with less
than 72 h of data or who failed to provide data for every 1-h period within
a 24-h cycle; (3) those with poorly calibrated data; (4) those whose data
were recalibrated using previous records from the same device worn by
different participants; (5) those with a non-zero count of interrupted
recording periods; and (6) with more than 768 data recording errors
(defined as Q3 + 1.5×IQR). We further excluded participants with incom-
plete information on any variables (n= 538), those with prevalent diabetes
at baseline (n= 3,248), and those without complete genetic data or not of
European descent (n= 14,657). Ultimately, participants were eligible for
the analysis. The study workflow is illustrated in Figure S1.

Assessment of circadian rest-activity rhythm
We employed an enhanced version of the traditional cosine model, widely
used in prior research [12, 13], to map the circadian activity rhythm onto
the activity data. This adjustment accommodates the squared wave shape
often observed in activity data, offering greater flexibility for fitting. It
proves especially useful for analyzing diurnal patterns in older populations,
which typically deviate from a simple cosine shape [14]. Our analysis
focused on four key parameters: (1) amplitude, defined as the peak-to-
nadir difference in activity on the fitted curve, where higher values signify
stronger rhythms, characterized by more active days and less active nights;
(2) acrophase, represents the timing of peak activity on the fitted curve,
measured in fractions of an hour (time of day); (3) pseudo-F, assesses the
model’s goodness-of-fit and acts as an indicator of overall rhythmicity, with
higher values indicating more robust rhythms; (4) mesor, the midline
estimating statistic of rhythm, representing the average activity level over
the fitted 24-h rest-activity pattern and reflecting the central tendency of
the rhythmic variable. The data were analyzed using the ‘ActCR’ R package
[15].

Ascertainment of T2D
We utilized the established UK Biobank algorithms to identify T2D status
[16], using hospital inpatient and outpatient records, primary care data,
death registration, self-reported medical history and medication, as well as
biochemical examination for glycated hemoglobin (if HbA1c ≥ 6.5%). The
admissions and diagnoses data of the records were used to ascertain
incident T2D using the ICD-10 code E11. The time-to-event was calculated
from the accelerometer assessment to the date of T2D diagnosis, death, or
censorship (31 October 2022 for England, 31 August 2022 for Scotland, and
31 May 2022 for Wales), whichever came first. For assessing the association
between CARA and all-cause mortality among participants with T2D,
person-time was calculated from accelerometer assessment to the

occurrence of study outcomes or the end of follow-up (30 November
2022), whichever came first.

Genotype information
The methodology for genotyping, imputation, and quality control of
genetic data in the UK Biobank has been detailed elsewhere [17]. We
computed the polygenic risk score (PRS) for T2D using 424 single
nucleotide polymorphisms (SNPs) linked to an increased risk of T2D in
participants of European ancestry [18]. The PRS was determined by the
formula PRS= β1×SNP1 + β2×SNP2 + … + βn×SNPn, where βn represents
the effect size of each SNP, and SNPn indicates the number of risk alleles
present. This PRS was then categorized into low (lowest tertile),
intermediate (middle tertile), and high (highest tertile) risk. The SNP
MTNR1B rs10830963 on chromosome 11 was among those directly
genotyped in the UK Biobank. In the sensitivity analysis, participants were
categorized into GG genotype, GC genotype and CC genotype.

Blood biochemistry
Blood biochemistry data were collected from about 480,000 participants
during their recruitment visits (2006–2010) and from about 20,000
participants during repeat assessments approximately five years later.
Details on quality control procedures can be found in an open-source
document (https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/
biomarker_issues.pdf). Blood count data were also collected from the
same participants during their first visit, with additional information on
hematology analysis available at (https://biobank.ndph.ox.ac.uk/showcase/
ukb/docs/haematology.pdf). In the present study, a total of 30 blood
biochemistry biomarkers and 31 blood cell counts were incorporated.
Baseline plasma samples from around 280,000 randomly selected UK
Biobank participants were analyzed using a high-throughput nuclear
magnetic resonance (NMR) metabolomics platform. Detailed protocols on
sample collection and metabolomic quantification can be found elsewhere
[19–21]. For this study, we included a subset of 170 directly measured
metabolic biomarkers for subsequent analyses. Metabolites with less than
10% missing were included, and missing data for each metabolite were
imputed using half of the minimum measured value. All biomarkers
underwent skewness testing. Skewed distributions were log-transformed,
and each biomarker was then standardized before statistical analysis. Table
S1 provides details on the category and sample size of these blood and
metabolic biomarkers.

Ascertainment of covariates
Age (continuous), sex (female/male), and educational level (≥college
university degree or <college or university degree) were assessed using a
touch-screen questionnaire. The Townsend Deprivation Index (continu-
ous), history of shift work (yes/no), physical activity (metabolic equivalent
of task hours/week), smoking status (never/previous/current), alcohol
drinker status (not current/less than three times a week/three or more
times a week), and use of antihypertensive and cholesterol medications
(yes/no) were also recorded. Body mass index (BMI) was categories as
normal/underweight (<25 kg/m2), overweight (25≤ to <30 kg/m2), and
obese (≥30 kg/m2). The healthy diet score, ranging from 0 to 5, was
calculated based on daily consumption of vegetables (at least four
tablespoons), fruits (at least three pieces), and fish (at least twice weekly),
as well as the limited intake of unprocessed red meat and processed meat
(no more than twice weekly). Higher scores indicate healthier dietary
patterns [22]. Higher scores indicate healthier dietary patterns. Additional
confounders included the season of accelerometer wear (spring/summer/
autumn/winter), sleep efficiency (continuous), sleep duration (<7 h/day,
7–8 h/day, >8 h/day) as recorded by accelerometers, the first 10 principal
components of ancestry, and genotype measurement batch were also
included as confounding variables.

Statistical analysis
The baseline characteristics of the study participants were presented as
means (standard deviation) for continuous variables and as percentages
for categorical variables. Following previous methodologies [23, 24], we
trichotomized circadian rest-activity metrics to address potential non-linear
associations and to mitigate the impact of outliers. Cut-offs were
established based on observed change points in the associations with
T2D (Fig. 1). For metrics without non-linear associations, cut-offs were
chosen to balance the sample sizes across groups. The metrics adjusted
were amplitude (categorized as ≤35, >35 to ≤50, >50 counts/min),
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acrophase (categorized as ≤13:00, >13:00 to ≤15:00, >15:00 hh:mm),
pseudo-F (categorized as ≤80, >80 to ≤160, >160), and mesor (categorized
as ≤23, >23 to ≤30, >30 counts/min).
Cox proportional hazards regression models were used to estimate

hazard ratios (HRs) and 95% confidence intervals (CIs) for the association
between CRAR metrics and the risk of T2D and all-cause mortality among
participants T2D. The assumption of proportional hazards was examined
using Schoenfeld residuals, confirming no violations in our dataset. The
model was adjusted for multiple covariates, including age, sex, BMI
category, recruitment center, Townsend deprivation index, healthy diet
score, education level, alcohol consumption, smoking status, shift work
history, physical activity, season of accelerometer usage, sleep efficiency,
sleep duration, and the use of antihypertensive and cholesterol medica-
tions. Adjustments were also made for the first 10 principal components of
ancestry and genotype measurement batch in the genetic analysis.
Additionally, to explore the dose-response association, restricted cubic
spline (RCS) analyses with three knots (at the 5th, 50th, and 95th
percentiles) were performed [25]. Joint analyses using Cox proportional
hazards models were conducted to explore the association between CRAR
metrics and T2D outcomes across various strata defined by genetic risk for
T2D and MTNR1B polymorphisms. To assess potential multiplicative
interactions, an interaction term of CRAR and genetic variants was
included in the fully adjusted model.
Linear regression analysis was employed to identify blood and metabolic

biomarkers associated with the CRAR. Standardized biochemical biomar-
kers were served as the dependent variables, while CRAR metrics was
utilized as the independent variable. Models with adjustment variables
identical to those used in Model 3 of Table 2 were utilized in the analysis. A
Bonferroni corrected P < 0.000216 (0.05 divided by 231) was considered
statistically significant. To assess whether the association between CRAR
metrics and risk of T2D was mediated by the identified biochemical
biomarkers, we conducted mediation analyses. Moreover, we also use the

repeated measurements data of blood biomarkers and Phase 2 NMR
metabolic biomarkers to verify our result.
To ensure the robustness of our findings, we conducted several

sensitivity analyses. First, we excluded cases of T2D that occurred within
the first year of follow-up to evaluate the potential influence of reverse
causation bias on our results. Second, we conducted prespecified stratified
analyses to explore how age (<65/ ≥ 65 years) and sex (female/male) might
modify the effects. Third, we employed multiple imputation by chained
equations to handle missing covariate data, rather than excluding these
data points. Fourth, we excluded participants with history of shift work.
Fifth, we additionally adjusted for mediating factors to examine whether
the observed associations were attenuated. Sixth, we further adjusted for
the duration of T2D in the analysis of all-cause mortality in the participants
with T2D. Finally, we utilized the Fine and Gray models to account for the
competing risks posed by deaths.
A two-sided P < 0.05 was considered statistically significant except for

the Bonferroni multiple testing. All statistical analyses were conducted
using SAS version 9.4 (SAS Institute Inc., Gary, NC, USA) and R software
version 4.3.1.

RESULTS
Basic characteristics
In the main analysis, a total of 74,157 participants were enrolled in
this study and were observed for a median duration of 7.91 years,
accumulating a total of 575,767 person-years of follow-up. Table 1
presents the characteristics of the participants categorized by
amplitude. Those in the lower amplitude categories tended to be
older and obese, possess a university degree, and have a higher
Townsend deprivation index. They also exhibited shorter sleep
durations and lower sleep efficiency. Furthermore, these

Fig. 1 Restricted cubic spline models for the association between 4 subtypes of CRAR metrics and the risk of type 2 diabetes.
A Amplitude, B Acrophase, C Pseudo-F, D Mesor. The shaded areas represent the 95% confidence intervals of the adjusted hazard ratios (HRs).
The restricted cubic spline models are adjusted as per Model 4 in Table 2.
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participants were less likely to be non-smokers, consumed less
alcohol, and had lower scores on the healthy diet index. The
baseline characteristics of participants with T2D in the supple-
mentary analysis are presented in Table S2.

T2D and mortality outcomes
Table 2 presents the association between CRAR metrics and the
incidence of T2D. For amplitude, individuals in the low amplitude
group had a 63% higher risk of developing T2D compared to those
in the high amplitude group, as shown in Model 1. This association
was attenuated upon adjustment for covariates. In the fully
adjusted Model 3, which includes sleep parameter, the association
between categories of amplitude and incident T2D remained

significant, with the low amplitude group showing a 55% lower risk.
Mesor also demonstrated a strong link to T2D (HR: 1.52; 95% CI:
1.35–1.70 for the high mesor group), persisting after adjustment for
all covariates. However, only the worst level of acrophase and
pseudo-F showed a statistically significant association with incident
T2D. The fully adjusted nonlinear model revealed an L-shaped
association between both amplitude and mesor and the incidence
of T2D (all P for nonlinearity <0.0001) (Fig. 1).
Further supplementary analysis shown in Fig. S2 indicates that

participants with T2D and low amplitude have an increased risk
of all-cause mortality, with an HR of 1.30 (95% CI: 1.03–1.65).
Similarly, the low mesor group exhibited HR of 1.28 (95% CI:
1.03–1.59) for T2D, compared to the high mesor group in Model

Table 1. Baseline characteristics of the study participants (N= 74,165) a.

Characteristics Categories of amplitude P value b

Total High Intermediate Low

No. of participants 74,165 25,226 26,854 22,085

Age (years) 56.3 (7.76) 55.3 (7.67) 56.2 (7.67) 57.6 (7.78) <0.0001

Sex (male, %) 43.4 46.4 37.9 46.6 <0.0001

Body mass index categories <0.0001

Normal/Underweight (<25 kg/m2) 40.4 47.0 42.1 30.6

Overweight (25–30 kg/m2) 41.7 40.3 41.6 43.6

Obese (≥30 kg/m2) 17.9 12.7 16.3 25.8

Townson depretive index –1.92 (2.69) –2.01 (2.64) –1.98 (2.66) –1.76 (2.79) <0.0001

Recruitment regions 0.79

England 89.6 89.6 89.5 89.7

Wales 6.60 6.63 6.73 6.40

Scotland 3.80 3.81 3.74 3.86

Education level (college or higher, %) 41.85 40.9 42.0 42.8 <0.001

PA (MET × hour/week) 42.5 (40.6) 52.1 (45.7) 41.1 (38.5) 32.9 (33.7) <0.0001

Season of accelerometer wear <0.001

Spring 22.6 23.5 22.3 21.7

Summer 26.1 26.3 27.0 24.8

Autumn 29.8 30.1 29.6 29.9

Winter 21.5 20.1 21.0 23.6

Smoking status (%) <0.001

Current smoker 58.0 58.0 59.2 56.7

Ex-smoker 35.5 35.9 35.0 35.7

Non-smoker 6.46 6.16 5.85 7.55

Alcohol consumption <0.001

Not current 4.90 4.15 4.82 5.86

Two or less times a week 44.5 42.6 44.6 46.6

Three or more times a week 50.6 53.3 50.6 47.5

Healthy diet score 3.51 (1.14) 3.56 (1.12) 3.56 (1.13) 3.40 (1.15) <0.0001

Sleep efficiency 0.76 (0.07) 0.77 (0.07) 0.77 (0.07) 0.75 (0.08) <0.0001

Sleep duration 0.20

< 7 h/day 33.1 32.9 32.9 33.7

7–8 h/day 46.5 46.9 47.7 44.5

> 8 h/day 20.4 20.2 19.4 21.9

Shift work 21.9 23.6 21.0 20.9 <0.0001

Use of blood pressure-lowering medications (yes) 8.79 6.91 8.31 11.5 <0.0001

Use of cholesterol-lowering medications (yes) 12.1 9.52 11.2 16.1 <0.0001

MET metabolic equivalent, PA physical activity.
aContinuous variables are expressed as mean (standard deviation) and categorical variables are expressed as percentages.
bChi-squared was used for categorical variables and one-way analysis of variance for continuous variables.
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3. However, no significant associations were observed between
acrophase, pseudo-F, and all-cause mortality. Moreover, the RCS
analysis revealed a significant non-linear trend in the association
between both amplitude and mesor and all-cause mortality
among participants with T2D (all P for nonlinearity <0.0001).

T2D genetic risk analysis
We further assessed the joint association of the CRAR parameters
and PRS on the outcomes of T2D events. The adjusted cumulative
incidences of T2D, stratified by CRAR parameters and genetic risk,
are depicted in Fig. 2 and Table S4. Our analysis shows that
participants with high genetic risk and the worst CRAR parameters
had the highest risk of T2D events. Specifically, participants with
high genetic risk and the worst CRAR parameters demonstrated a

two- to three-fold increase risk in T2D, with an HR (95% CI) 3.67
(2.87, 4.69) for amplitude, 2.87 (2.16, 3.80) for acrophase, 2.74
(2.21, 3.39) for pseudo-F, and 3.79 (3.02, 4.75) for mesor, compared
to those with low genetic risk and optimal CRAR parameters. In
stratified analyses by genetic risk, the associations of CRAR
parameters and T2D genetic risk were not modified by genetic
susceptibility to T2D (all P for interaction >0.15). Additionally,
there was no significant interaction between CRAR and the
rs10830963 genotype concerning the risk of T2D (all P for
interaction >0.41) (Table S5).

Blood biochemistry analysis
The linear regression analyses revealed that out of 231 blood and
metabolomic biomarkers examined, 94 exhibited significant

Table 2. Association of circadian rest-activity with the risk of T2DM outcomes (N= 74,165) a.

Subgroup Circadian rest-activity characteristics P for trend c

Amplitude High Intermediate Low

No. of events 408 546 830

Person years 197,667 209,456 168,644

Incidence per 1000 PYs 2.06 2.61 4.92

Model 1 1.00 (reference) 1.18 (1.04, 1.35) b 1.63 (1.44, 1.83) <0.0001

Model 2 1.00 (reference) 1.16 (1.02, 1.32) 1.50 (1.32, 1.69) <0.0001

Model 3 1.00 (reference) 1.17 (1.02, 1.33) 1.45 (1.29, 1.64) <0.0001

Model 4 1.00 (reference) 1.17 (1.03, 1.34) 1.48 (1.31, 1.67) <0.0001

Acrophase Advanced Intermediate Delayed

No. of events 418 1087 279

Person years 116,515 376,768 82,484

Incidence per 1000 PYs 3.59 2.89 3.38

Model 1 1.00 (reference) 1.00 (0.89, 1.12) 1.18 (1.01, 1.37) 0.07

Model 2 1.00 (reference) 1.06 (0.95, 1.19) 1.19 (1.02, 1.39) 0.03

Model 3 1.00 (reference) 1.08 (0.96, 1.21) 1.20 (1.03, 1.40) 0.02

Model 4 1.00 (reference) 1.10 (0.98, 1.24) 1.25 (1.07, 1.45) <0.01

Pseudo-F High Intermediate Low

No. of events 541 557 686

Person years 200,910 178,709 196,148

Incidence per 1000 PYs 2.69 3.12 3.50

Model 1 1.00 (reference) 1.07 (0.95, 1.20) 1.17 (1.04, 1.31) <0.01

Model 2 1.00 (reference) 1.07 (0.95, 1.20) 1.16 (1.04, 1.30) <0.01

Model 3 1.00 (reference) 1.06 (0.94, 1.19) 1.14 (1.02, 1.28) 0.02

Model 4 1.00 (reference) 1.08 (0.96, 1.22) 1.17 (1.04, 1.31) <0.01

Mesor High Intermediate Low

No. of events 471 484 829

Person years 221,716 182,312 171,740

Incidence per 1000 PYs 2.12 2.65 4.83

Model 1 1.00 (reference) 1.15 (1.01, 1.31) 1.65 (1.47, 1.85) <0.0001

Model 2 1.00 (reference) 1.13 (1.00, 1.29) 1.54 (1.37, 1.73) <0.0001

Model 3 1.00 (reference) 1.13 (1.00, 1.29) 1.52 (1.35, 1.70) <0.0001

Model 4 1.00 (reference) 1.14 (1.00, 1.30) 1.55 (1.38, 1.74) <0.0001

Model 1 was adjusted for age, sex, and BMI.
Model 2 was additionally adjusted for recruitment center, smoking status, drinking status, healthy diet score, educational level, Townsend deprivation index,
shiftwork, physical activity, season of accelerometer wear, use of blood pressure-lowering medications, and use of cholesterol-lowering medications.
Model 3 was additionally adjusted for sleep efficiency and sleep duration.
Model 4 was additionally adjusted for T2DM-PRS, first 10 principal components of ancestry, and genotype measurement batch.
BMI body mass index, PYs person-years, T2DM-PRS type 2 diabetes mellitus-polygenic risk score.
aObtained by using multivariable Cox regression model.
bHazard ratios (95% confidence interval) (all such values).
cP for trend was calculated across quartiles using multivariable Cox regression models.
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associations with amplitude following Bonferroni correction
(P < 0.05/231). Among these, 21 were blood biomarkers and 73
were metabolomic biomarkers. Additionally, 44, 11, and 94 blood
and metabolomic biomarkers were associated with acrophase,
pseudo-F, and mesor, respectively (Fig. 3). We observed that
Vitamin D exhibited the most pronounced effect size, and it also
demonstrated the highest level of statistical significance among all
the biomarkers analyzed. For amplitude, the effect size (β) was
6.23 × 10–4 with a P= 9.73 × 10–44, for acrophase, β= –0.03 with
P= 8.66 × 10–42; and for mesor, β= 1.28 × 10–3 with
P= 3.44 × 10–48. Additionally, regarding the pseudo-F parameter,
both high-density lipoprotein (HDL) cholesterol (β= 7.88 × 10–5

with P= 1.19 × 10–7) and apolipoprotein A (β= 7.59 × 10–5 with
P= 8.28 × 10–7) demonstrated very strong positive associations,
which were also significantly correlated with other CRAR metrics.
Besides, other HDL or low-density lipoprotein (LDL) related
biomarkers were also exhibited strong correlations with the CRAR
metrics.
Figure 4 illustrates the mediating role of blood and metabo-

lomic biomarkers in the association between CRAR metrics and
the risk of T2D. Specifically, we analyzed the mediation effects of
three principal biomarkers: Vitamin D, HDL cholesterol, and
apolipoprotein A. Vitamin D mediated 9.90% of the association
for amplitude, 10.1% for acrophase, 5.49% for pseudo-F, and
9.49% for mesor. HDL cholesterol contributed to 12.8% of the
mediation for amplitude, 7.35% for acrophase, 10.6% for pseudo-F,

and 12.7% for mesor with respect to the risk of T2D.
Apolipoprotein A mediated between 6.23% and 9.81% of the
association across all CRAR metrics. In the supplementary analysis,
we found that Vitamin D mediated the association between
amplitude, mesor, and all-cause mortality among participants with
T2D, accounting for 1.49% and 1.33% respectively. No mediating
effects were observed for HDL cholesterol and apolipoprotein A
between CRAR metrics and all-cause mortality.
In the linear regression analyses of repeated blood and

metabolic biomarker assessments, it was found that Vitamin D
and other biomarkers remained significantly associated with CRAR
metrics (Table S10–13). Additionally, the mediation effects of
principal biomarkers revealed that Vitamin D contributed to
mediated effects of 1.68% for amplitude, 6.60% for acrophase, and
2.18% for mesor; whereas HDL cholesterol exhibited mediated
effects of 4.52% for amplitude and 5.75% for mesor.

Sensitivity analyses
In sensitivity analyses, the association between CRAR metrics and
the risk of T2D remained consistent, even after excluding
participants diagnosed with T2D within the first year of follow-
up (Table S14). Additionally, stratified analyses by age and sex
showed consistent associations across subgroups, with no
significant interactions between CRAR metrics and these factors
(all P for interaction >0.13) (Table S15, 16). Finally, the associations
between CRAR metrics and T2D risk remained consistent across all

Fig. 2 The association between genetic risk and 4 subtypes of CRAR metrics with type 2 diabetes. A Amplitude, B Acrophase, C Pseudo-F,
D Mesor. All models are adjusted as per Model 4 in Table 2.
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Fig. 3 Distinctive association of blood and metabolic biomarker profiles with four subtypes of CRAR metrics. Manhattan plots illustrating
the results of linear regression for (A) Amplitude, B Acrophase, C Pseudo-F, and (D) Mesor, based on the analysis of 231 biomarkers from 39
categories of blood and metabolic biomarkers. The height of each point represents the negative logarithm of the P value of the t tests, with
the color bar indicating the different biomarker categories. The black dashed line indicates the Bonferroni threshold for multiple comparisons
(α= 0.05), and text annotations mark the top 15% of biomarkers exhibiting significant differences after Bonferroni correction (P < 0.05/231). All
models were adjusted the same as the Model 4 in the Table 2.
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sensitivity analyses, including multiple imputation, exclusion of
shift workers, further adjustment for mediating factors, further
adjustment for the duration of T2D, and competing risk models
(Tables S17–21).

DISCUSSION
This large prospective cohort study found that abnormalities in
CRAR—characterized by low amplitude, delayed acrophase, low
mesor, and low pseudo-F—were associated with an increased risk of
T2D. Additionally, low amplitude and low mesor were also
associated with higher risks of all-cause mortality among partici-
pants with T2D. We found no evidence of interactions between
CRAR metrics and T2D genetic risk. It is important to note that CRAR
metrics are not only associated with plasma metabolites but also
show a strong correlation with vitamin D, serving as a mediator for
incident T2D and subsequent all-cause mortality in T2D, which offers
insights into the underlying biological mechanisms.
Our findings contribute to the expanding body of literature

indicating a significant connection between disrupted circadian
rhythms and T2D. Previous cross-sectional study indicated that
impaired daily regularity and increased fragmentation of rest-
activity rhythms were associated with various metabolic out-
comes, including obesity, metabolic syndrome, hypertension, T2D,
and dyslipidemia [26]. Several studies have reported that night
shift work, which is associated with similar circadian abnormalities

[27], is also linked to a higher risk of T2D [4, 28, 29]. Additionally,
another study revealed that imbalance rest-activity rhythm
parameters (created by non-parametric method), such as lower
levels of relative amplitude, shorter periods of the most active
continuous 10-h interval, and longer periods of the least active
continuous 5-h interval were associated with an increased risk of
T2D [11]. Notably, only one study from the Osteoporotic Fractures
in Men Study investigated the association between rest-activity
rhythm characteristics and glycemic metabolism, which showed
that multiple characteristics of rest-activity rhythms were asso-
ciated with elevated fasting insulin levels and higher insulin
resistance at baseline [30].
The biological mechanisms underlying the association between

CRAR and the risk of T2D remain unclear. Our study aimed to depict
the links between CRAR metrics, blood and metabolic biomarkers,
and incident T2D risk. While CRAR metrics showed no significant
association with plasma glucose levels, we found a correlation
between the acrophase and HbA1c levels. Specifically, a delayed
acrophase correlated with elevated HbA1c levels. This observation
has been supported by findings from two independent cross-
sectional studies, indicating that a later chronotype is linked with
poorer glycemic control, including HbA1c levels, in individuals with
prediabetes and T2D, regardless of sleep disturbances [31, 32].
Moreover, our results indicate that all four CRAR metrics (low

amplitude, delayed acrophase, low mesor, and low pseudo-F) are
associated with decreased levels of HDL-associated indicators,

Fig. 4 Associations of the four subtypes of CRAR metrics with the risk of type 2 diabetes mediated by three principal biomarkers
(Vitamin D, HDL cholesterol, and apolipoprotein A). All models were adjusted the same as the Model 4 in the Table 2. A1-A3 Amplitude, B1-
B3 Acrophase, C1-C3 Pseudo-F, D1-D3 Mesor.
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which also mediated the association between CRAR metrics and
T2D risk. Animal studies suggest that exercising in the morning,
during the active phase, may exert a more pronounced metabolic
impact compared to nighttime activity during the rest phase,
characterized by increased utilization of carbohydrates and ketone
bodies, lipid and amino acid degradation [33]. HDL cholesterol is
thought to improve insulin resistance by counteracting the effects
of LDL cholesterol [34, 35]. Additionally, HDL has been implicated
in potentially regulating glucose homeostasis through mechan-
isms such as insulin secretion, direct glucose uptake by muscle,
and enhanced insulin sensitivity [36].
Interestingly, we discovered a robust correlation between CRAR

metrics and serum Vitamin D, which also serve as a crucial
mediator for the association between CRAR metrics and T2D
incidence, as well as subsequent all-cause mortality. The biological
plausibility of this association is supported by the endogenous
synthesis of serum Vitamin D through skin exposure to ultraviolet
B radiation [37]. Accordingly, optimal CRAR may lead to increased
sunlight exposure, thereby contributing to higher serum Vitamin
D levels. Conversely, unhealthy sleep behaviors such as excessive
daytime sleepiness may be associated with reduced outside
activities and sun exposure, consequently leading to lower levels
of Vitamin D in the human body [38]. Furthermore, the association
between higher serum Vitamin D concentrations and a reduced
risk of incident T2D is influenced by overall sleep patterns, with
daytime sleepiness playing a significant role [39]. Circadian
misalignment disrupts endogenous melatonin levels, as studies
indicate that morning circadian misalignment consistently delays
dim-light melatonin offset [40], suggesting that the internal
circadian clock continues to promote sleep and related functions
[41]. However, a spill-over of melatonin into the next day may
compete with vitamin D3 for binding to the vitamin D receptor
[42, 43], potentially diminishing the availability of active vitamin D
and hindering its physiological functions. Furthermore, Vitamin D
may stimulate insulin release by regulating beta cell intracyto-
plasmic calcium concentration and activating the exocytosis
mechanism, thereby reducing the risk of T2D [44]. Multiple studies
have shown that vitamin D serves as a negative regulator of TNF-α
and IL-6 release [45], which in turn affects adipose tissue and the
immune system [46, 47], ultimately mitigating the T2D risk.
Since shift work is a known extreme form of circadian disruption

and may increase the risk of T2D, we conducted additional
analyses excluding individuals with a history of shift work to better
assess the impact in the general population. The results showed
consistent associations, indicating that higher daily rest-activity
amplitudes and more optimal timing of rest-activity onset are
linked to a lower risk of T2D. We also investigated how genetic
predisposition interacts with CRAR metrics regarding the risk of
T2D. However, we did not observe any statistically significant
interaction between CRAR metrics and either T2D-PRS or
polymorphisms in the MTNR1B gene within the study. Never-
theless, throughout the analysis stratified by PRS tertiles or
genotyping of MTNR1B, individuals with CRAR abnormalities
consistently exhibited a significantly higher risk of T2D. This
evidence suggests that enhancing CRAR could provide benefits to
individuals, even those with elevated genetic predispositions.
From a clinical practice perspective, this study underscores the
importance of CRAR in T2D risk. Optimizing CRAR through lifestyle
interventions, such as improving sleep hygiene, regulating light
exposure, and increasing physical activity, could help reduce T2D
risk. These strategies, potentially influencing biomarkers like
vitamin D, provide actionable approaches for T2D prevention
and management.
The major strengths of this study include objective measure-

ment of CRAR, the prospective and population-based study
design, and a series of sensitivity analyses. Additionally, the
novelty of our study lies in being the first to utilize biochemical
biomarkers to investigate potential biological pathways linking

CRAR to the risk of T2D. Nonetheless, the present study has several
limitations. First, the CRAR metrics were assessed using a seven-
day measurement at baseline, which was not updated during the
extended follow-up period and changes in CRAR metrics over time
were not captured. Previous evidence indicates that a seven-day
monitoring period is commonly employed in activity monitoring
studies and typically yields a high level of intra-class correlations in
most populations [48]. Second, covariates such as lifestyle factors
were not collected at the baseline accelerometer mail-out of the
present study but during physical visits to the UK Biobank
assessment centers. However, responses generally remained
stable over time [49]. Third, while causal relationships cannot be
established from this observational study, our mediation analysis
offers indirect evidence supporting causality. Moreover, the results
remained consistent even after excluding participants with events
occurring during the first year of follow-up. Fourth, the study’s
participants were exclusively of white ethnicity, potentially
restricting the generalizability of the findings to a broader
population.

CONCLUSION
Accelerometer-measured CRAR abnormalities are linked to the
future risk of incident T2D and subsequent all-cause mortality in
people with T2D across all levels of genetic risk. Notably, serum
vitamin D played a crucial role as a key mediator in this
association. These findings underscore the critical role and
potential benefits of enhancing CRAR as a strategy to reduce
the risk of T2D.
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