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Senescent lung fibroblasts in idiopathic pulmonary fibrosis
facilitate non-small cell lung cancer progression by secreting
exosomal MMP1
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Lung cancer is a fatal complication of idiopathic pulmonary fibrosis (IPF) with a poor prognosis. Current treatments are insufficient
in improving the prognosis of lung cancer patients with comorbid idiopathic pulmonary fibrosis (IPF-LC). Senescent fibroblasts, as
stromal cells in the tumor microenvironment, influence tumor progression via exosomes. With evidence that fibroblast senescence
is an important mechanism of IPF, we investigated the impact of senescent IPF lung fibroblast (diseased human lung fibroblasts,
DHLF)-derived exosomes on non-small cell lung cancer (NSCLC). We found DHLF expressed significant senescence markers, and
promoted NSCLC proliferation, invasion, and epithelial-mesenchymal transition. Specifically, senescent DHLF showed strong
secretion of exosomes, and these exosomes enhanced the proliferation and colony-forming ability of cancer cells. Proteomic
analysis showed DHLF-derived exosomes exhibited upregulated senescence-associated secretory phenotype (SASP) factors, notably
MMP1, which activates the surface receptor PAR1. Knocking down MMP1 or using PAR1 inhibitors reduced the tumor-promoting
effects of DHLF-derived exosomes in vivo and in vitro. Mechanistically, MMP1 acted by activating the PI3K-AKT-mTOR pathway. In
conclusion, our results suggest that exosomal MMP1 derived from senescent IPF fibroblasts promotes NSCLC proliferation and
colony formation by targeting PAR1 and activating the PI3K-AKT-mTOR pathway. These findings provide a novel therapeutic
approach for patients with IPF-LC.

Oncogene (2025) 44:769–781; https://doi.org/10.1038/s41388-024-03236-5

INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung
disease associated with aging and an independent risk factor for
lung cancer. Epidemiological studies indicate that 3–22% of
patients with IPF develop lung cancer during follow-up [1], with
the cumulative incidence increasing over time, making lung
cancer a primary cause of mortality in these patients [2]. Research
has revealed that IPF combined with lung cancer (IPF-LC) exhibits
higher invasiveness compared to sporadic lung cancer [3].Non-
small cell lung cancer (NSCLC), which includes squamous cell
carcinoma and adenocarcinoma, is the main pathological type of
IPF-LC. Currently, there are no specific treatment guidelines for
IPF-LC. Standard lung cancer therapies such as chemotherapy,
radiotherapy, immunotherapy, and targeted therapy have been
found to cause acute exacerbations of IPF in clinical practice [4, 5],
thereby limiting treatment options for patients with IPF-LC.
Elucidating the molecular mechanisms underlying IPF-LC progres-
sion is crucial for developing new therapeutic targets.
IPF-LC tumors are commonly located in the peripheral or lower

lobes of the lungs, regions affected by fibrosis, suggesting a link
between fibrosis and lung cancer development. Cancer-associated
fibroblasts (CAFs), a prominent cell population in the tumor

microenvironment (TME), have garnered significant attention in
recent years [6]. CAFs promote tumor cell proliferation, immune
evasion, metastasis, and therapeutic resistance by remodeling the
ECM and secreting growth factors and cytokines. Notably, studies
have found many similarities between myofibroblasts in IPF and
CAFs [7]. Both exhibit sustained overactivation and abnormal
proliferation, mesenchymal characteristics, heterogeneous pheno-
types, and similar signaling pathway activations. And fibroblasts in
IPF were found to promote tumorigenesis and progression [8, 9].
However, the quantity of available studies is limited.
Cellular senescence, an irreversible process leading to cell cycle

arrest, has been increasingly implicated in IPF pathogenesis [10].
In cancer research, senescence was initially considered a tumor-
suppressive mechanism; however, it has been recently described
as a double-edged sword [11]. Studies have shown that senescent
fibroblasts can induce abnormal proliferation of various precan-
cerous cells, leading to tumor formation and promoting cancer
cell invasion and migration [12–14]. In IPF-LC, the potential role of
senescent fibroblasts in promoting the malignant behavior of
NSCLC cells warrants investigation. Senescence-associated secre-
tory phenotype (SASP) refers to the specific secretory profile of
senescent cells, involving the selective overexpression of
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numerous factors, predominantly interleukin-6 (IL-6), interleukin-8
(IL-8), CXC motif chemokine ligand 1 (CXCL1), and various matrix
metalloproteinases (MMPs) [15]. Extracellular vesicles (EVs), which
are known to be key mediators of intercellular communication, are
significant components of the SASP [16, 17].
The role of senescent fibroblasts in promoting tumor cells has

been a prominent research focus. IPF is an aging-associated
disease with fibroblast senescence recognized as its key
pathological feature. Therefore, understanding the impact and
potential mechanisms of fibroblast senescence on IPF-LC is crucial.
In this study, we aim to investigate the senescence characteristics
of primary lung fibroblasts obtained from patients with IPF and
elucidate, for the first time, the SASP factors profile of exosomes
secreted by these fibroblasts and their promotive effects
on NSCLC.

RESULT
Reduced proliferative capacity and enhanced senescence
traits are observed in fibroblasts from patients with IPF
To investigate cellular senescence in IPF lung cells, we imple-
mented immunofluorescence co-localization on lung specimens
from IPF patients, assessing senescence markers (γH2AX, p53, p16,
p21) in RAGE+ (AT1), SPC+ (AT2), and Vimentin+ (fibroblast) cells.
As shown in Fig. 1A, B and Supplementary Fig. 1B, all three cell
types exhibited senescent phenotypes, with fibroblasts compris-
ing the largest fraction, followed by AT2 cells. A comparison
between IPF and healthy controls revealed elevated γH2AX, p53,
p16, and p21 expression in IPF lung tissues (Fig. 1C, D).
Primary fibroblasts were extracted from specimens, revealing

that IPF fibroblasts (DHLFs) exhibited hallmark senescence
features, such as increased cell size and irregular morphology
(Supplementary Fig. 1C). DHLFs also showed higher expression of
α-SMA and Vimentin compared to normal fibroblasts (NHLFs) (Fig.
1E, F, Supplementary Fig. 1D, E). Proliferation assays (Ki67 and
EdU) indicated that DHLFs had about half the proliferation
capacity of NHLFs (Fig. 1E, F). Elevated p16 and p21 levels were
confirmed by immunofluorescence and western blot (Fig. 1E–G,
Supplementary Fig. 1E). SA-β-Gal activity assays further confirmed
senescence, with 30% of DHLFs testing positive compared to 10%
in NHLFs at passage 3 (P3) (Fig. 1H, I).
Collectively, these experiments validated that IPF fibroblasts

exhibit significantly reduced proliferative capacity and pro-
nounced senescent characteristics.

Role of senescent IPF fibroblasts in promoting NSCLC
proliferation and invasion
Senescent CAFs have been demonstrated to enhance the
proliferative and metastatic capacities of cells. Building on this
knowledge, our study aimed to explore whether senescent IPF
fibroblasts influence the proliferation, migration, and invasion of
NSCLC cells. We used transwell chambers to create an indirect co-
culture model (Fig. 2A) and conducted functional assays on A549
and SK-MES-1 cells following co-culture. NSCLC cell lines co-
cultured with IPF fibroblasts exhibited a morphological transfor-
mation from a cobblestone-like appearance to an elongated
spindle shape (Fig. 2B). This morphological shift was indicative of
epithelial-mesenchymal transition (EMT). Subsequent CCK8 assays
revealed that A549 and SK-MES-1 cells co-cultured with IPF
fibroblasts exhibited increased proliferative capacity (Fig. 2C, D).
Additionally, lung cancer cells co-cultured with IPF fibroblasts
showed a significant increase in clone-formation capacity (Fig.
2E, F). Furthermore, transwell assays confirmed that A549 and SK-
MES-1 cells co-cultured with IPF fibroblasts exhibited significantly
enhanced invasive and migratory capabilities, particularly in the
A549 cell line (Fig. 2G–J). To further elucidate the role of EMT in
these changes, we analyzed the expression of EMT-related
proteins in both groups. Our results indicated a reduction in the

epithelial marker, E-cadherin, and an increase in the mesenchymal
markers, N-cadherin, Vimentin and Snail in the DHLF group
(Fig. 2K–M), suggesting that IPF fibroblasts actively promoted EMT
in NSCLC. These findings demonstrate that senescent IPF
fibroblasts contribute to the increased malignancy of NSCLC cells
by promoting proliferation, EMT, and invasion.

Exosomes from IPF fibroblasts promote malignant
transformation in NSCLC in vitro
To further identify the specific secretory components released by
IPF fibroblasts that facilitate phenotypic alterations in NSCLC, we
separately isolated microvesicles (MVs), exosomes (Exos) and
extracellular vesicle-free (EVs-free) supernatant from serum-free
conditioned media (Fig. 3A). Western blot analysis was conducted
to detect the expression of the microvesicle marker (Annexin V)
and the exosome markers (CD9 and CD63) to confirm successful
extraction (Fig. 3B). Subsequently, we co-incubated lung cancer
cells with MVs, Exos, or EVs-free supernatants secreted by the
same number of cells and then used CCK8 and colony formation
assays to evaluate the effects of different supernatant compo-
nents on the proliferation and colony-forming abilities of lung
cancer cells. The results showed that exosomes exhibited the most
significant pro-tumor effect, followed by vesicle-free supernatant,
with microvesicles having the weakest effect (Fig. 3C–F). Exosomes
have emerged as a crucial mechanism of intercellular commu-
nication, garnering significant attention for their roles in various
physiological and pathological processes. Electron microscopy
revealed that the exosomes exhibited the characteristic bilayer
vesicular structure, and NTA confirmed that the exosome sizes
ranged from 30 to 150 nm (Fig. 3G, H). Notably, IPF fibroblasts
secreted significantly more exosomes than normal fibroblasts,
with higher protein content (Supplementary Fig. 2B, C). Fluores-
cently labeled exosomes (green) were observed to be internalized
by NSCLC cells within 4 h, with substantial uptake by 24 h (Fig. 3I).
For assessing the proliferative and clonogenic changes follow-

ing exosome uptake, we incubated A549 and SK-MES-1 cells with
20 µg/ml of exosomes. NSCLC cell lines that internalized exosomes
exhibited enhanced proliferation, with IPF-derived exosomes
(DHLF-exosome) showing a significantly stronger growth-
promoting effect than NHLF-exosome (Fig. 3J, K). Additionally,
DHLF-exosomes significantly enhanced the clonogenic potential
of both A549 and SK-MES-1 cells (Fig. 3L, M). These findings
suggest that exosomes released by IPF lung fibroblasts signifi-
cantly enhance the malignant phenotype of NSCLC cells.

Upregulated proteins in DHLF-exosomes highlight SASP
factors linked to NSCLC progression
To identify exosomal components with potential pro-tumorigenic
roles, we conducted a proteomic analysis of exosomes. Mass
spectrometry revealed that DHLF-exosomes exhibited an upregu-
lation of 392 proteins compared to NHLF-exosomes. These
proteins included key components of SASP, such as FBLN2, IL-6,
MMP1, MMP3, and IGFBP3 (Fig. 4A). The top 10 highly expressed
proteins in exosomes secreted by IPF fibroblasts included POSTN,
CYGB, SLC22A4, GASK1B, SERPINE2, C7, TNFAIP6, SNRPD1, SELENOP,
and XPO1. Gene Ontology (GO) enrichment analysis showed that
the term ‘extracellular exosome’ (GO:0070062) was the most
enriched cellular component, corroborating the enhanced exoso-
mal secretion capacity of IPF fibroblasts (Fig. 4B). The PI3K-AKT-
mTOR signaling pathway was one of the most enriched KEGG
pathways, with the cellular senescence pathway also prominently
represented (Fig. 4C). Additionally, several senescence-associated
pathways were enriched, including ferroptosis, the p53 pathway,
and autophagy, they are expected to be important mechanisms of
senescence in IPF lung fibroblasts.
To further predict potential aging pathways, we analyzed

single-cell sequencing data from NHLF and DHLF (Supplemen-
tary Fig. 3). Approximately 33372 fibroblasts met the quality
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control criteria, and six fibroblast clusters were identified using
unsupervised clustering with the Scanpy (v1.8.2) package
(Supplementary Fig. 3A, B). Among them, clusters 5 and 6
showed a significantly higher proportion in the DHLF group
(Supplementary Fig. 3C), suggesting that these two subclusters

are IPF-specific fibroblast subtypes. Using an aging gene set to
analyze the cellular senescence levels of different cell subclusters
[18], we found that cluster 6 had significantly higher senescence
scores than other subclusters(Supplementary Fig. 3E, F). Further
analysis revealed that cluster 6 cells were enriched not only with
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proteins related to extracellular matrix (ECM) remodeling and
fibrosis, such as POSTN, COL3A1, SERPINE2, CCDC80, SPARC, and
COL1A1, but also with several proteins associated with cellular
senescence, including IGFBP3, IGFBP7, LOX, CYP1B1, and EFEMP1.
IGFBP3 has been identified as a marker of senescence in
numerous studies [19]. Therefore, we used flow cytometry to
separate IGFBP3high DHLF from IGFBP3low DHLF and found that
IGFBP3high DHLF exhibited more pronounced senescence.
Enrichment analysis of the highly expressed proteins in cluster
6 revealed that many aging-related pathways were significantly
enriched, including Ferroptosis, the PI3K-AKT signaling pathway,
and the TNF signaling pathway.
Furthermore, we conducted a quantitative assessment of SASP

factors in exosomes using a list from SASPAtlas
(www.SASPAtlas.com). The heatmap showed a marked increase
in the expression of SASP factors within IPF exosomes (Fig. 4D). To
validate the expression of fibroblast-derived SASP factors, we
assessed the mRNA encoding SASP factors of IL6, MMP1, MMP3,
FBLN2, IGFBP3, and IGFBP4 in both NHLFs and DHLFs. All showed
significant differences, with MMP1 exhibiting the most pro-
nounced variance (Fig. 4E).
Previous studies have demonstrated that MMP1 is highly

expressed in certain lung cancer cells [20]. An analysis of survival
data from 482 patients with NSCLC in the Cancer Genome Atlas
(TCGA) database revealed that high MMP1 expression correlates
with shorter overall survival (OS) (p= 0.013) (Fig. 4F). Based on
these findings, we hypothesize that MMP1 is a crucial SASP
exosomal component secreted by IPF fibroblasts, potentially
promoting NSCLC progression.

MMP1 is a key factor in DHLF-exosome-mediated progression
of NSCLC
Previous studies have demonstrated that MMP1 critically impacts
the active state of cancer cells [21]. Our preliminary research
revealed that exosomes secreted by DHLF exhibit high levels of
MMP1 expression, whereas those secreted by NHLF exhibit low
levels (Fig. 4E). To further investigate whether MMP1 is a key factor
in promoting cancer within the exosomes secreted by DHLF, we
conducted the following experiments.
We initially assessed the expression of MMP1 in fibrotic lung

tissues of patients with IPF. Co-localization of Vimentin and MMP1
in Immunofluorescence revealed that fibroblasts in IPF lungs
exhibited high MMP1 expression, whereas fibroblasts in normal
lung tissues showed minimal expression (Fig. 5A, B). In IPF-LC
lungs, we observed the presence of multiple fibroblast foci
(marked with Vimentin and annotated by “red” arrowheads) in the
tumor region where MMP1 was highly expressed (Fig. 5C).
Additionally, many fibroblasts were identified in the peritumoral
tissues at the “tumor-fibrosis” junction, with similarly high
expression of MMP1 (annotated by “green” arrowheads). IF
staining of primary fibroblasts demonstrated that MMP1 expres-
sion in DHLF was significantly higher than in NHLF (Fig. 5D, E). WB
analysis of cell and exosome lysates from NHLF and DHLF
indicated elevated MMP1 expression in both DHLF and DHLF-
exosomes (Fig. 5F). Further analysis through ELISA demonstrated
that exosomes contained significantly higher concentrations of

MMP1 compared to free MMP1 in the supernatant (Supplemen-
tary Fig. 2D). To further elucidate the relationship between MMP1
and cellular senescence, we examined MMP1 expression in IPF
fibroblasts and their secreted exosomes across different passage
numbers. Our results indicated that as fibroblasts underwent
cellular senescence during several passages, MMP1 expression
markedly increased (Fig. 5G).
To further confirm that MMP1 in exosomes from senescent

IPF lung fibroblasts promoted tumor cell proliferation and
stemness, we transfected DHLF with shCtrl and shMMP1
lentiviruses and confirmed the knockdown efficiency by WB
(Fig. 5H). Exosomes were extracted using the same method
(shCtrl-exo vs. shMMP1-exo), and co-culture experiments
revealed that A549 and SK-MES-1 cells incubated with
shMMP1-exo exhibited reduced proliferation and colony for-
mation compared to those incubated with shCtrl-exo (Fig. 5I–L).
These findings strongly suggest that MMP1 is a crucial factor in
the DHLF-exosome-mediated promotion of NSCLC cell
proliferation.

DHLF-exosome promotes lung cancer cell proliferation via
PAR1-mediated PI3K-AKT-mTOR pathway activation
PAR1 is a widely recognized receptor for MMP1, extensively
expressed in lung cancer cells. When activated, PAR1 promotes
tumor cell growth and invasion [22]. To verify whether MMP1
exerts its pro-tumor effects through binding to PAR1, we
employed the PAR1 antagonist SCH79797 (0.2 µM) and demon-
strated that the pro-tumor effects of MMP1 could be inhibited by
the antagonist (Fig. 6A–D). To explore how MMP1 exerts its effects
after binding to PAR1, we performed RNA-seq analysis on SK-MES-
1 cells incubated with and without DHLF-exosomes and identified
407 and 182 genes that were upregulated and downregulated,
respectively (Supplementary Fig. 2A, B). GO analysis of differen-
tially expressed genes showed enrichment in several pro-tumor
biological processes, including positive regulation of development
(GO:0051094), negative regulation of epithelial cell apoptosis
(GO:1904036), and positive regulation of cell migration
(GO:0030335) (Supplementary Fig. 4C, D). KEGG analysis indicated
enrichment in multiple signaling pathways, including ECM-
receptor interaction and PI3K-AKT signaling pathway (Fig. 6E).
We also used the TCGA database to explore the correlation
between the top 20 enriched signaling pathways and MMP1
expression (Supplementary Fig. 2E). The four pathways with the
strongest correlations were ECM-receptor interaction (R= 0.32),
focal adhesion (R= 0.2), PI3K-AKT signaling pathway (R= 0.27),
and purine metabolism (R= 0.22) (Fig. 6F). This indicated a strong
correlation between the PI3K-AKT signaling pathway and MMP1.
To validate this finding, we detected the expression of PI3K-AKT-
mTOR pathway-related proteins in A549 and SK-MES-1 cells after
exosome incubation. We found that p-PI3K, p-AKT, and p-mTOR
expression increased in NSCLC cells incubated with DHLF-
exosomes compared to Ctrl and NHLF-exosome groups, while
total protein levels remained unchanged (Fig. 6G, H). Additionally,
incubation with exosomes extracted from shMMP1-DHLF wea-
kened the activation of the PI3K-AKT-mTOR signaling pathway
(Fig. 6I, J).

Fig. 1 Comparative assessment of proliferative and senescent characteristics of IPF Fibroblasts. A, B Co-localization of senescence markers
(p16, p21) with RAGE (AT1), SPC (AT2), and Vimentin (fibroblast) via immunofluorescence. Representative images are shown in (A). Distribution
of p16+ cells and p21+ cells across three different cell types was displayed through pie charts (B). Scale bar, 50 µm. C, D Immunofluorescence
detection of the DNA damage marker (γ-H2AX) and senescence markers (p53, p16, and p21) in control and IPF lung tissues. Representative
images acquired via confocal immunofluorescence and the positive expression rate are shown in (C) and (D), respectively. Scale bar, 50 µm.
E, F α-SMA, Vimentin, Ki67, p16, and p21 expression in normal human lung fibroblasts (NHLF) and diseased human lung fibroblasts (DHLF)
measured by immunofluorescence. EdU assay was measured to assess cell proliferative ability. Representative images and statistical analyses
are shown in (E) and (F), respectively. Scale bar, 200 µm. G Immunoblotting analysis showing elevated protein levels of the senescence
markers p16 and p21 in DHLF compared to NHLF. H, I Increased β-galactosidase staining in DHLFs, indicating higher senescence. Scale bar,
200 µm. (Results are presented as means ± SD, n= 5, *p < 0.05; **p < 0.01; *** p < 0.001).
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Fig. 2 IPF fibroblasts significantly enhanced the aggressiveness of NSCLC cells in vitro. A A schematic diagram illustrating the co-culture
model. (Created with Figdraw). BMorphological changes of A549 and SK-MES-1 cells following co-cultivation with normal human lung fibroblasts
(NHLFs) and diseased human lung fibroblasts (DHLFs). Scale bar, 100 µm. C, D Cellular proliferation of A549 (C) and SK-MES-1 (D) after co-culture
with NHLFs and DHLFs measured by CCK8 assay. E, F Colony formation assays assessing clonogenicity of A549 and SK-MES-1 cells after co-culture
with NHLFs or DHLFs. G–J Transwell assays evaluating migration and invasion abilities of A549 (G, H) and SK-MES-1 (I, J) cells after co-culture. Scale
bar, 100 µm. K–M Immunoblotting analysis of EMT markers (E-cadherin, N-cadherin, Vimentin, and Snail). Representative blots shown in (K), with
statistical analysis plots of protein levels in (L) and (M). (Results are presented as means ± SD, n= 5, *p < 0.05; **p < 0.01; *** p < 0.001).

Y. Lei et al.

773

Oncogene (2025) 44:769 – 781



Exosomal MMP1 promotes tumor growth in vivo
A subcutaneous tumorigenesis assay was performed in nude mice.
The results showed that the tumor volume in the shCtrl-exo group
was the largest compared to the other three groups, and the
weight of the subcutaneous tumors was also the heaviest (Fig.
7A–C). Both the injection of exosomes derived from MMP1-
knockdown DHLF (shMMP1-exo) and the administration of a PAR1

inhibitor (shCtrl+SCH) effectively mitigated the tumor-promoting
effects of DHLF-exo in vivo. Recombinant MMP1 protein also
promoted tumor growth, although the effect was less pronounced
compared to DHLF-exo. Then, we performed HE staining and IHC
staining (Fig. 7D, E). Our IHC results showed that the Ki67 staining
intensity was reduced in shMMP1-exo group and shCtrl+SCH
group. Western blot analysis was performed to assess the
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activation of PI3K-AKT-mTOR signaling pathway in subcutaneous
tumors. The findings demonstrated that p-AKT, p-PI3K, and
p-mTOR levels were significantly elevated in the shCtrl-exo group
(Fig. 7F, G), suggesting that DHLF-exosomes can effectively
activate the PI3K-AKT-mTOR signaling pathway. Therefore, our
results validated the pro-tumor effect of exo-MMP1 secreted by
DHLF in vivo.

DISCUSSION
Senescence is considered a pivotal pathogenic mechanism in IPF
development [23]; although the precise mechanisms of cellular
senescence in IPF have not been fully elucidated, they are
believed to involve various intrinsic (genetic abnormalities) and
extrinsic (oncogene activation and oxidative stress) stressors [24].
Previous studies have demonstrated senescence in the epithelial
cells, fibroblasts, and basal cells in IPF samples [15, 25, 26]. Our
research confirmed that IPF fibroblasts exhibit senescent

characteristics. Extensive research indicates that senescent fibro-
blasts promote the proliferation of preneoplastic and neoplastic
cells and facilitate tumor progression through immunosuppressive
mechanisms[12, 27, 28]. By co-culturing senescent lung fibroblasts
obtained from IPF samples with NSCLC cells, we demonstrated
that these senescent fibroblasts promote NSCLC growth and
metastasis.
Senescent cells exert their effects primarily through SASP,

which includes cytokines, chemokines, growth factors, and
metalloproteinases that promote fibrosis and tumorigenesis.
Recently, increasing evidence suggests that SASP is not limited
to soluble factors. EVs secreted by senescent cells also exhibit
unique characteristics and can transfer their contents (proteins,
mRNA, microRNA, and DNA) to exert pro-fibrotic and pro-
tumorigenic effects [29]. It is now widely accepted that cellular
senescence is associated with increased EV release [29], and
s-EVs possess distinct molecular features that contribute to
specific functions such as accelerating senescence, as well as
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inducing inflammation, stem cell dysfunction, and cancer
progression [16, 17, 30]. Proteomic analysis of exosomes
secreted by IPF and normal lung fibroblast cell lines revealed
significant differences. The difference in POSTN expression was
the most significant. POSTN is overexpressed in various solid
tumors and promotes tumor growth and metastasis in cancers
such as breast, colon, lung, gastric, pancreatic, ovarian cancer,
and melanoma. It facilitates these processes by activating

signaling pathways like PI3K/Akt and others [31, 32]. Additional,
PAI-1, encoded by SERPINE1, acts as an inhibitor of uPA and is an
effective mediator of cancer dissemination [33], and it is a key
regulator of cancer-associated vascular remodeling [34–36].
SNRPD1 is also associated with poor prognosis in lung cancer
[37]. Additionally, we identified a unique protein expression
profile of SASP factors in exosomes derived from IPF fibroblasts.
Many of the SASP factors identified in this study are known to
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impact the tumor microenvironment. Previous studies have
reported that IL-6, produced by various cell types within the
tumor microenvironment, activates the JAK/STAT3 signaling
pathway in both tumor cells and tumor-infiltrating immune cells,
thereby promoting tumor cell proliferation, survival, invasion,
and metastasis [38]. Growth factors such as VEGF and HGF

promote angiogenesis, providing nutrient supply for tumor
growth and enhancing tumor progression and metastasis
[39, 40]. Additionally, tumor-associated fibroblasts release
various IGFBPs, which regulate cell proliferation, apoptosis,
migration, immune responses, and tumor resistance to therapies
[41].
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Our study identified MMP1 as a crucial SASP factor in IPF
fibroblasts. MMP1, which degrades collagen, is overexpressed in
IPF tissues in our research. We hypothesize that the high
expression of MMP1 in IPF fibroblasts is a self-repair mechanism
to maintain homeostasis following inflammatory damage. By
inducing replicative senescence in fibroblasts, we found increased
MMP1 expression, indicating its role as an important SASP factor.
Notably, MMP1 is highly expressed in various tumors and is
considered a poor prognostic factor. It promotes the progression
of esophageal, breast, and prostate cancer. Studies have shown
that IL-8 promotes head and neck cancer invasion by activating
MMP1 expression in fibroblasts [42]. Consistent with these
findings, we confirm that MMP1 is a key factor in promoting
NSCLC growth. Our research also revealed that MMP1 exerts its
pro-tumor effects by binding to PAR1 and activating the PI3K-AKT-
mTOR pathway. Additionally, MMP1-induced senescent fibroblast
enhances large-cell lung cancer invasiveness [43], indicating a
complex interaction network between MMP1 and fibroblast
senescence.
Based on our findings, we propose that fibroblast senescence

not only promotes lung fibrosis but also significantly contributes
to the progression of IPF-LC, suggesting that targeting senescent
fibroblasts could be a novel therapeutic strategy for IPF-LC. This
supports the potential of senotherapeutics to inhibit the tumor-
promoting effects of senescent fibroblasts [44–46]. With respect
to the crucial role of MMP1, targeting MMP1 appears to be
another viable therapeutic target. However, many phase III
clinical trials using broad-spectrum MMP inhibitors for various
cancers have been hampered by dose-limiting joint toxicity [47].
Therefore, targeting the MMP-1 receptor, PAR1, seems a
promising alternative, and it had been demonstrated that low
concentrations of PAR1 inhibitors can effectively inhibit MMP1-
induced lung cancer growth in vivo and in vitro. PAR1 inhibitors
are widely utilized in the clinical management of thrombotic
cardiovascular diseases [48], with Vorapaxar being the first PAR1
inhibitor approved for clinical use [49]. Moreover, PAR1 inhibitors
have demonstrated the capacity to block thrombin-mediated
activation of the PAR1 signaling pathway, subsequently inhibit-
ing tumor proliferation, metastasis, angiogenesis, and inflamma-
tory responses [50]. These inhibitors have shown potential
therapeutic benefits across various inflammation-associated
cancer types [51]. Interestingly, PAR1 inhibitors have also been
shown to potentially slow or even reverse the progression of
pulmonary fibrosis [52, 53]. Based on these findings, we
hypothesize that PAR1 represents a viable therapeutic target
for IPF-LC, with PAR1 inhibitors potentially blocking tumor
progression and mitigating the severity of pulmonary fibrosis
in these patients. One limitation of this study is the exclusive
focus on the pro-tumor effects of exosomal MMP1 secreted by
IPF fibroblasts, without a comprehensive investigation of the
complex roles of other active components within the exosomes.
Future research will address this gap by examining the roles of
additional factors in the progression and development of IPF-LC,
with the aim of identifying more potential therapeutic targets.
Another limitation is the relatively small sample size of IPF

patients and healthy controls. In future studies, we plan to collect
additional specimens to progressively enhance the reliability and
validity of our findings.
In summary, this study highlights that senescent fibroblasts in

IPF promote NSCLC progression by releasing senescence-
associated exosomes carrying MMP1, which activates the PI3K-
AKT-MTOR signaling pathway via PAR1 (Fig. 7H). Therefore,
targeting senescent fibroblasts or key factors such as MMP1 and
PAR1 may be a therapeutic strategy for IPF-LC.

MATERIALS AND METHODS
Cell lines and culture
The lung adenocarcinoma cell line A549 and the lung squamous
carcinoma cell line SK-MES-1 were purchased from the cell bank of the
Chinese Academy of Sciences (Shanghai, China). Cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) supplemented with
10% fetal bovine serum (FBS; Gibco) and 1% penicillin/streptomycin (100X,
Gibco) in an incubator at 37 °C with 5% CO2.

Isolation of primary fibroblasts and co-culture experiment
Lung specimens were obtained from the First Affiliated Hospital of
Zhejiang University, and the collection was approved by the Ethics
Committee (Institutional Review Board approval no. 2021/330). Informed
consent was obtained from all participants before enrollment in the
study. Lung tissues from five patients with IPF who underwent lung
transplantation were collected as the disease group, and tissues from the
distal site of five patients with benign lung nodules were collected as the
control group. The patients with IPF met the diagnostic criteria of the
American Thoracic Society and the European Respiratory Society. The
clinical characteristics of the patients are detailed in Supplementary Table
1. To mitigate the impact of environmental factors, we selected IPF
patients and healthy controls from the eastern coastal regions of China
ensuring similar living environments, as well as comparable age and
smoking history as much as possible. All patients with IPF were
administered anti-fibrotic drugs.
Specimens were chopped into small pieces and mixed with collagenase

IV (Sigma, USA) for 2 h. The supernatant was filtered through a 70 μm filter,
and the centrifuged cells were incubated in DMEM (Gibco) supplemented
with 10% fetal bovine serum (FBS) and 1% 100X penicillin/streptomycin.
After 72 h, non-adherent cells were discarded, and adherent cells were
identified by immunofluorescence (IF). Fibroblasts were passaged to P2–P6
for functional experiments, and both cell lines were kept at the same
passage number to exclude the possible influence of replicative
senescence on the experiments.
For the co-culture experiments, NSCLC cell lines were seeded uniformly

in 6-well plates at a density of 1 × 105 cells per well. Fibroblasts, also
seeded at a density of 1 × 105 cells per well, were introduced into the
upper chamber of a transwell insert (pore size: 0.4 μm; Costar, USA).
Following cell adhesion, the co-cultures were incubated under standard
conditions. After 72 h of incubation, the lung cancer cells in the lower
chamber were digested with TrypLE and subsequently harvested for
further analyses, including the CCK-8 assay, colony formation assay, and
Transwell migration and invasion assays, as well as western blot analyses.

CCK8 assay
After co-culture, cocultured A549 and SK-MES-1 cells were inoculated into
a 96-well plate at a density of 2 × 103cells/well and 2.5 × 103cells/well,

Fig. 6 MMP-1 enhances NSCLC cell proliferation by binding with PAR1 and subsequently activating the PI3K-AKT-mTOR signaling
pathways. A, B CCK8 assays measuring the proliferation of A549 (A) and SK-MES-1 cells (B) incubated with exosomes isolated from DHLF with
MMP1 knockdown (shMMP1) or non-silencing controls (shCtrl) in the presence (+) or absence (–) of a PAR1 antagonist (SCH79797, SCH).
C, D Representative images (C) and histogram analysis (D) of colony formation of cells incubated with exosomes isolated from shMMP1 or
shCtrl fibroblasts in the presence (+) or absence (–) of a PAR1 antagonist (SCH79797, SCH). E Bubble chart of KEGG pathway enrichment
analysis of 589 candidate differentially expressed genes based on RNA-seq of SK-MES-1 cells incubated without exosome vs. SK-MES-1 cells
incubated with NHLF-exosome. F Analysis of the TCGA database showing the correlation between MMP1 and KEGG enrichment pathway-
related genes, with the four strongest correlations highlighted. G, H Western blot analysis of PI3K-AKT-mTOR pathway activation in A549 and
SK-MES-1 cells incubated with NHLF-exosomes, DHLF-exosomes. Band intensities were quantified using ImageJ (H). I, J Western blot analysis
of PI3K-AKT-mTOR pathway activation in A549 and SK-MES-1 cells incubated with shCtrl-exosomes and shMMP1-exosomes. Band intensities
were quantified using ImageJ (J). (Results are presented as means ± SD, n= 3, *p < 0.05; **p < 0.01; *** p < 0.001).
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respectively. In the exosome incubation experiments, lung cancer cells
were seeded in 96-well plates at a uniform cell density using complete
culture medium, and after allowing for cell adhesion, the medium was
replaced with fresh medium containing exosomes and/or inhibitor drugs.
For the next 3–4 days, CCK8 reagent (Beyotime Biotechnology, Shanghai,
China) was added to the wells at the ratio of 1:10 every 24 h and incubated
for 2 h at 37 °C. Absorption at 450 nm was measured using a microplate
reader (CMax Plus, Shanghai, China).

Clone formation assay
After co-culture, A549 and SK-MES-1 were collected for clone formation
assay. Two hundred or one hundred cancer cells were seeded in each well
of 6‐well or 12-well plates respectively and incubated at 37 °C under 5%
CO2 for 10–14 days. In other colony formation assays, untreated lung
cancer cells were seeded into well plates, and exosomes and/or inhibitor
drugs were added to the culture medium according to the specific
experimental conditions. When the clones could be distinguished by the
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Fig. 7 Exosomal MMP1 promotes tumor growth in vivo. A Xenograft tumors in shCtrl-exo group, shMMP1-exo group, shCtrl-exo+SCH
group, and MMP1 group. B Tumor growth curves showing the effect of different treatments on A549. C Tumor weight comparison across
experimental groups after treatment with shCtrl-exo, shMMP1-exo, shCtrl-exo+SCH, and MMP1. D, E Representative hematoxylin and eosin
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Representative blot images and corresponding quantitative analyses are shown in (F) and (G), respectively. H Graphical abstract illustrates the
role of IPF-derived fibroblast exosomes, particularly exosomal MMP1, in promoting the progression of lung cancer through the PI3K-AKT-
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naked eye, the cells were fixed in 4% paraformaldehyde and stained using
a crystal violet staining solution (Sigma-Aldrich, USA). The number of
clonies with more than 50 cells was counted under the microscope.

Exosome isolation
Fibroblasts were cultured in a complete medium supplemented with
exosome-depleted FBS. When the cells reached 80% confluence, the
medium was removed, and the cells were washed three times with PBS.
Serum-free medium was then added and the fibroblasts were cultured for
another 24 h. Exosomes were isolated from the cell culture supernatant
using a differential ultracentrifugation method. The medium was first
centrifuged at 300 × g for 10 min, followed by centrifugation at 2000 × g
for 10 min to remove cells and cellular debris. Subsequently, the medium
was filtered using a 0.22 μm Sterile filter unit (Millipore), and the filter was
washed with PBS. The extracellular vesicles (EVs) larger than 0.22 μm
retained on the filter were classified as microvesicles (MVs) and
resuspended in PBS. The filtered medium was then centrifuged at
15,000 × g for 30 min to further pellet MVs, and exosomes were isolated
by centrifugation at 150,000 × g for 70 min. The resulting pellets were
washed once with PBS and resuspended for subsequent experiments.
Exosome protein concentration was determined using a BCA protein assay
kit (NCM Biotech, China). Exosome characterization was performed using a
transmission electron microscope (TEM) for morphology, a nanoparticle
tracking analyzer (NTA) for particle size analysis, and western blotting (WB)
for signature protein identification.

Statistical analysis
All experiments were conducted at least in triplicate, and results are
expressed as mean ± standard deviation. Statistical analyses were
performed using GraphPad Prism 8.0. Independent samples t test was
utilized to compare differences between the two groups. One-way ANOVA
with Tukey’s multiple comparisons test was used for the analysis involving
three or more groups. Statistical significance was determined by *p < 0.05,
**p < 0.01, and ***p < 0.001.

DATA AVAILABILITY
Materials described in the manuscript, including all relevant raw data, will be freely
available to any scientist wishing to use them for non-commercial purposes. The
proteomics data have been deposited in the Figshare repository (https://doi.org/
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