
CLINICAL RESEARCH ARTICLE OPEN

Preterm infants on high-frequency oscillatory ventilation:
electrical impedance tomography during lung recruitment
Tobias Werther 1✉, Erik Küng1, Lukas Aichhorn1, Angelika Berger1, Raffaele L. Dellacà2 and Chiara Veneroni2

© The Author(s) 2025

BACKGROUND: We introduce a novel physiological parameter derived from electrical impedance tomography (EIT) to evaluate
oxygenation-guided lung recruitment maneuvers in preterm infants on high-frequency oscillatory ventilation (HFOV).
METHODS: In this prospective observational study, EIT was performed during a single, stepwise oxygenation-guided lung
recruitment maneuver in extremely preterm infants. At each step of continuous distending pressure (CDP), we calculated the
median oscillations in the aerated region (MOR), defined as the median of oscillatory impedance amplitudes within the air-
containing region multiplied by the number of pixels in that region. Recruitability was determined by a ≥15% increase in MOR or
oxygenation (S/F-ratio) during deflation compared to inflation at any CDP. Gas exchange parameters were compared between
lungs identified as recruitable for MOR or oxygenation.
RESULTS: Of the 56 EIT measurements from 47 infants (mean weight 685 ± 140 g) analyzed, 43 lungs were recruitable by
oxygenation criteria, but only 23 met recruitability criteria based on MOR. MOR-recruitable maneuvers significantly improved
transcutaneous pCO2 by 4.8 mmHg, while non-recruitable maneuvers showed no change.
CONCLUSIONS: The novel EIT parameter, MOR, helps identify effective lung recruitment maneuvers and detect overdistention in
extremely preterm infants on HFOV, offering the potential to distinguish beneficial from harmful maneuvers.

Pediatric Research (2025) 98:2240–2248; https://doi.org/10.1038/s41390-025-04173-z

IMPACT:

● We introduced a novel parameter, the median oscillations in aerated lung regions (MOR), derived from electrical impedance
tomography (EIT), to evaluate oxygenation-guided lung recruitment in preterm infants on HFOV.

● The MOR parameter helps in identifying effective lung recruitment in terms of gas exchange and detecting overdistention,
offering potential to differentiate beneficial from harmful lung recruitment maneuvers.

● This study presents a practical EIT-based parameter to evaluate lung recruitment and overdistention, providing a precise
complement to conventional oxygenation metrics.

● The findings could optimize ventilation strategies in extremely preterm infants, potentially reducing lung injury and improving
survival without bronchopulmonary dysplasia.

INTRODUCTION
Bronchopulmonary dysplasia (BPD) is still one of themost important
complications in prematurely born infants and is associated with
severe pulmonary and neurocognitive sequelae.1,2 The incidence of
BPD remains high, affecting up to 60% of preterm infants born
before 26 weeks of gestation.3–5 BPD is primarily triggered by
ventilation-induced lung injury (VILI) and oxygen exposure.3,6

Consequently, strategies to avoid mechanical ventilation and
facilitate oxygenation from the first minutes of life have gained
importance.7 However, despite the use of noninvasive respiratory
support, nearly half of the infants born before 28 weeks of gestation
require mechanical ventilation within the first week of life.8,9

In response, lung protective ventilation strategies have been
developed to mitigate lung injuries caused by ventilation. These

strategies rely on two key concepts: the open lung principle and
tidal volume targeting.10–14 Both principles form the foundation of
high-frequency oscillatory ventilation (HFOV), an alternative
ventilation strategy that minimizes tidal volumes and pressure
changes in the distal airways.11,15–17 To approach the optimal lung
volume during HFOV, lung recruitment maneuvers (LRMs) guided
by oxygenation have been introduced.18,19 Stepwise variation in
the continuous distending pressure (CDP) helps to resolve lung
inhomogeneities, particularly at the initiation of HFOV.20

However, using oxygenation as the sole guide for lung recruitment
presents two major concerns.21,22 First, oxygenation can be
influenced by hemodynamic changes due to fluctuations in
intrathoracic pressure.23,24 Second, oxygenation alone is insufficient
to detect lung overdistension.23–30 Therefore, recruitment maneuvers
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should not be used solely to improve oxygenation but rather to
increase functional lung volume, i.e., the lung volume that contributes
to ventilation.21,30,31 Various techniques have been proposed to
assess regional lung volume in clinical practice.32,33 Among these,
electrical impedance tomography (EIT) has proven feasible at the
bedside, including in preterm infants.34 EIT is noninvasive and
radiation-free, offering the advantage of real-time, continuous
monitoring of regional ventilation.29,35–38

Using EIT, Miedema et al. successfully tracked the
pressure–volume curve and identified the lower and upper
inflection points in the dorsal and ventral lung regions for most
infants with respiratory distress syndrome (RDS).34 However, this
approach requires stable, high-quality EIT data throughout the
procedure, along with the application of a wide range of pressures.
Recent animal studies have proposed employing EIT during
recruitment maneuvers to assess overinflated regions (aerated at
end-expiration with low tidal volume), recruited regions (aerated at
end-expiration with significant tidal volume), tidally recruited/de-
recruited regions (non-aerated but with significant tidal volume),
and collapsed regions (non-aerated with negligible tidal
volume).39,40 At present, an EIT-derived index that is sensitive to
both recruitment and overdistention, accommodating heteroge-
neous ventilation distribution, and robust against noise and
electrode displacement, has yet to be developed.
In this study, we aimed to introduce a novel EIT parameter

capable of assessing the oscillating lung volume involved in gas
exchange and to examine its changes during standardized LRMs
in extremely preterm infants on HFOV. We hypothesized that this
parameter could differentiate between LRMs that enhance gas
exchange and those that do not.

METHODS
This study is a sub-trial of a randomized controlled trial (ClinicalTrials.gov
ID: NCT04289324) investigating recruitment maneuvers during HFOV. It
was conducted at the neonatal intensive care unit of the Medical
University of Vienna, Austria, between March 2020 and October 2023, and
received approval from the local ethics committee (EK 1161/2019).41

Preterm infants born before 28 weeks of postmenstrual age, without any
congenital anomalies of the heart and/or the lungs (as determined by
ultrasound and/or fetal magnetic resonance imaging) were eligible. Infants
on HFOV were enrolled based on the availability of the study team to
perform measurements during a LRM announced by the caregiving
physicians. Written informed consent was obtained in advance from the
parents or legal guardians.

Study protocol
HFOV and monitoring. The ventilator used in this study was the Acutronic
Fabian HFOi (Vyaire, US). The CDP, amplitude, and frequency were set by
the caregiving physicians, with the inspiratory to expiratory ratio fixed at
1:2. The HFOV frequency was not altered during the LRMs. Vital signs were
continuously monitored during the measurements, including SpO2

(Covidien-Nellcor, Boulder, CO, US) transcutaneous pCO2 (tcpCO2, SenTec
Digital Monitor, Therwil, Switzerland, with a probe temperature of 41 °C),
heart rate via ECG electrodes (Micro NeoLead, Neotech Products, CA, US),
and invasive blood pressure via a peripheral arterial line connected to a
pressure transducer (TruWave pressure transducer, Edwards Lifesciences,
CA).

LRM on HFOV. LRMs were recommended under the conditions described
in ref. 41. Starting at the current CDP (initial CDP, CDPin), the CDP was
increased (inflation limb) approximately every 5 min by 2 cmH2O or
1 cmH2O when the CDP exceeded 20 cmH2O. The fraction of inspired
oxygen (FiO2) was reduced stepwise to maintain SpO2 within the
predefined target range (88–96% or 90–96% in the presence of pulmonary
hypertension requiring medication). The inflation trial ended when SpO2

ceased to improve or when FiO2 was ≤0.25.
From the maximal CDP (open CDP, CDPop), the CDP was gradually

decreased (deflation limb) approximately every 5min by 2 cmH2O or
1 cmH2O when CDP was lower than CDPin until a sustained SpO2 drop of
at least 5% or a SpO2 value below 88% indicated that the closing CDP

(CDPcl) had been reached. The minimum allowed CDP was 5 cmH2O. The
pressure amplitude was adjusted to maintain tcpCO2 within the target
range of 35–65mmHg. CDPfin was defined as CDPcl + 1 or +2 cmH2O and
set after returning to CDPop or CDP prior to CDPop (re-open CDP, CDPre-
op).

18 The time, HFOV settings, HFOV tidal volume (HFO-TV), and all
monitoring parameters were recorded before each CDP change.

Electrical impedance tomography. For the EIT recordings, the neonatal
textile LuMon Belt was applied around the infant’s chest, at the nipple line,
and attached to the LuMon Connector, which transmitted the EIT signal to
the LuMon Monitor (Sentec, Landquart, Switzerland).42 Small electrical
currents (3 mA, 198 kHz) were repeatedly injected in rotation, and voltage
changes were measured by all electrode pairs (scan rate 50.86 Hz). The
GREIT image reconstruction algorithm generated a 32 × 32 matrix of local
impedance.43 The EIT measurements were reprocessed to disable the built-
in 6.7 Hz filter, which had been applied in the real-time version of the
LuMon Monitor software (tic-sw: 1.6.6.000, BL 1.3.1).

Signal processing of the electrical impedance signal
EIT data were imported into MATLAB R2018 (MathWorks Inc., Natick, MA).
Following the approach by Miedema et al.,34 we manually selected a stable
30-s segment from the summative impedance signal vs. the end of each
CDP interval.34

To calculate the EIT-based oscillating volume for each CDP step, we
applied a narrow bandpass filter centered at the HFOV frequency (±0.2 Hz)
to the selected 30-s segments. We then calculated the median of all local
maxima and the median of all local minima for each impedance pixel
individually, and generated a difference image by subtracting the minima
image from the maxima image. The resulting 32 × 32 matrix ΔZosc
represented the regional distribution of EIT-based oscillating tidal volume.
Following the approach described by Gartner et al.,44 this matrix was
normalized to body weight and adjusted by the ratio of HFOV amplitude at
CPDin to the current CDP. The sum of all entries in ΔZosc serves as a
surrogate for the oscillating tidal volume.44

Median oscillating amplitudes in the aerated lung regions (MOR). To
identify air-containing regions at each CDP step, we first calculated the
difference image ΔZ as the change between the averaged impedance
image (median over 30 s) at CDPin and CDPop. Following the approach
described by Liu et al., we defined air-containing regions as those pixels
exceeding 25% of the maximum ΔZ value.39 These regions remained fixed
across all CDP steps. To ensure that regions with significant oscillations
were not excluded, we additionally identified pixels exceeding 50% of the
maximum ΔZosc value at each CDP step. We then unified these regions
with the previously defined air-containing regions, allowing the combined
region to expand with increasing CDP if necessary. Finally, we calculated
the median oscillatory impedance amplitude within the unified region and
multiplied it by the number of pixels in that region. This resulting
parameter, denoted as MOR, incorporates two key features: first, it uses the
median of oscillations, thereby penalizing instances where high oscillations
in a small region compensate for low oscillations in a larger aerated area—
as seen in cases of overdistension (see Fig. S1 in the Supplementary
Material), and second, it accounts for pixels in the regions containing
(oscillatory) air, thus penalizing collapsed lung areas (see Fig. S4 in the
Supplementary Material). We reasoned that this index may be sensitive to
the recruitment of functional lung volume. Because it is based largely on
relative values of ΔZosc, the MOR parameter is minimally affected by
impedance jumps caused by movement artifacts or slight displacements of
the EIT belt (Fig. S2 in the Supplementary Material). The complete process,
from the raw EIT signal to the calculation of MOR, is illustrated in Fig. 1.

Lung recruitability. Gattinoni et al. used a 9% cut-off for recruitable lung
tissue to distinguish recruiters from non-recruiters.45 In our study, we
applied a higher threshold to account for measurement inaccuracies. A
lung was considered recruitable if the MOR parameter during deflation
exceeded that during inflation by more than 15% at any CDP level of the
same magnitude or at the initial CDP of equal or lower magnitude (see
example in Fig. 1d). Similarly, for oxygenation, a lung was considered
recruitable if the S/F-ratio during deflation exceeded inflation by over 15%
for at least one such CDP level.
Using this method, we categorized lungs into four groups: the group

with recruitable lungs and the group with non-recruitable lungs, each in
terms of oxygenation or MOR. For each group, we calculated the change in
oxygenation, tcpCO2 (corrected for the current amplitude), HFO tidal
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volume (corrected for the current amplitude), and the MOR parameter at
the following CDP values: CDPin and CDPin + 2 cmH2O, CDPop−2 cmH2O,
CDPop, CDP

defl
op−2 cmH2O, CDP

defl
in + 2 cmH2O, and CDPdeflin. If the CDP

values for inflation did not match those for deflation, linear interpolation
was used to estimate all measurements at the appropriate CDP values.
Normally distributed data are presented as means with standard

deviations (SDs), while nonparametric data are reported as medians with
first and third quartiles (Q1, Q3) or minimum and maximum values (min,
max). A Friedman’s repeated-measures rank test, followed by pairwise
multiple comparisons using Tukey’s test, was employed to compare data
across more than two CDPs, where applicable based on the data
distribution. If more than one LRM was recorded for the same participant,
these events were treated as independent since they were performed on
different days. Consequently, no correction was applied for multiple
measurements in the same patient. Differences were considered
statistically significant at p < 0.05.

RESULTS
We included 47 preterm infants, from whom we obtained 56
complete measurements during a LRM. The patients’ character-
istics are presented in Table 1.
The median (min, max) initial, open, closed, re-open, and final

CDP values were 11 (7, 15), 20 (13, 24), 8 (5, 13), 19 (11, 24), and 10

(6, 14) cmH2O, respectively (Fig. 2). We achieved a significant
improvement in oxygenation, with a median (Q1, Q3) increase in
the S/F-ratio of 60 (20, 130) during the LRM. No significant
changes were observed in tcpCO2 and HFO-TV. MOR showed a
significant decrease near CDPop (see Fig. 3).
We observed that 43 lungs (76.8%) were recruitable in terms of

oxygenation, while 23 lungs (41.1%) were recruitable in terms of
MOR. Seventeen lungs (30.4%) were recruitable for both
oxygenation and MOR, 26 (46.4%) were recruitable for oxygena-
tion only, 6 (10.7%) were recruitable for MOR only, and 7 lungs
(12.5%) were non-recruitable for both oxygenation and MOR.
Examples of recruitable and non-recruitable lungs are provided in
the Supplementary Material (Fig. S3).
A comparison of the individual changes between the initial

value and the inflating and deflating CDP levels for MOR-
recruitable lungs, revealed a significant improvement in tcpCO2
(median tpcCO2 of −4.8 mmHg between CDPin and CDPcl,
p= 0.039), as shown in Fig. 4 and Table 2. The improvement in
tcpCO2 was slightly greater in patients with a higher recruitability
threshold (15% vs. 30%), see Table 2.
When the LRMs were grouped according to the maximum

change in MOR between inflation and deflation, a decrease in
tcpCO2 could be observed in 37 (66%) maneuvers (Fig. 5a).
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However, in 19 (34%) LRMs no clear improvement in MOR was
noted. In no fewer than 14 (25%) cases, LRMs worsened both MOR
and tcpCO2, suggesting that recruitment likely led to over-
distention. In the remaining 5 (9%) cases, MOR improved while
tcpCO2 increased, possibly indicating overdistention in lung areas
not captured by the MOR parameter.
When the LRMs were grouped according to the maximum

change in the S/F-ratio between inflation and deflation (Fig. 5b),

tcpCO2 increased in 19 cases (34%), suggesting that oxygen-
guided LRMs may have led to overdistention.
The mean (SD) FiO2 and S/F ratio at the start of the LRM for

recruitable vs. non-recruitable lungs, based on the MOR para-
meter, were 61 (23)% vs. 63 (25)% and 176 (88) vs. 174 (78),
respectively. For recruitable vs. non-recruitable lungs in terms of
oxygenation, the values were 64 (22)% vs. 56 (28)% and 164 (70)
vs. 207 (109), respectively. None of these comparisons was
statistically significant.

DISCUSSION
In this prospective observational study, we described a novel EIT
parameter (MOR) that quantifies the oscillations in the aerated
regions and evaluated its changes in relation to gas exchange
during standardized, oxygenation-guided, stepwise LRMs in
extremely preterm infants receiving HFOV. We found that LRMs
with a gain in MOR significantly improved both oxygenation and
CO2 removal. Thus, MOR might be helpful to distinguish between
effective maneuvers and potentially harmful overdistension,
providing valuable insights for managing the open lung concept
during HFOV.
The concept of MOR is inspired by the approach of Liu et al.39

However, unlike their method, which used impedance values at
zero PEEP for image reconstruction and the impedance image at
6 mbar PEEP as a reference, we employed a different approach to
identify air-containing regions and additionally incorporated
impedance amplitudes to characterize changes in lung function.
Costa et al. proposed another EIT method in a decremental PEEP
trial, utilizing the best pixel compliance to define percentages of
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Table 1. Baseline characteristics.

Patients (n= 47)

Median PMA at birth (min, max), [wks
+d]

24+ 0 (22+ 4, 27+ 6)

Mean weight at birth (SD), [g] 622 (124)

Male, n (%) 19 (40%)

Measurements (n= 56)

Median PMA, (min, max), [wks+d] 25+ 1 (23+ 1, 28+ 6)

Median day of life, (min, max), [d] 4.5 (1, 23)

Mean weight (SD), [g] 685 (140)

Mean FiO2 (SD) at the start of LRM, [%] 62 (24)

Mean FiO2 (SD) at the end of LRM, [%] 44 (21)

LRM with HFOV amplitude changed, n
(%)

32 (57)

HFOV high-frequency oscillatory ventilation, LRM lung recruitment man-
euvers, PMA postmenstrual age, SD standard deviation.
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lung collapse and hyperinflation.46 The best pixel compliance can
only be determined at the end of the PEEP trial. In contrast, MOR is
simple to calculate, relying solely on impedance values from the
initial, the current and the open CDP step, and can be readily
implemented in any EIT system. Furthermore, MOR is robust
against motion artifacts and impedance jumps, such as those that
occur when the EIT belt needs to be repositioned (see Fig. S2 in
the Supplementary Material). Given that EIT systems can now be
easily utilized in very small premature babies, this parameter has
the potential for clinical application.
MOR was designed to follow changes in functional lung volume

during LRMs. It decreased when the maximal CDP was reached,
signaling lung overdistension. In lungs categorized as non-recruitable

with respect to MOR, we observed a significant decrease in MOR at
high pressure levels. Although these lungs exhibited improved
oxygenation, CO2 elimination did not improve, suggesting that the
recruitment may have been detrimental due to overdistention, as
indicated by EIT but not reflected in the S/F-ratio (see Fig. 3). In this
context, MOR could serve as a valuable complementary tool
alongside oxygenation for assessing LRM, particularly given oxygena-
tion’s limitations in detecting overdistension. However, further
investigation is needed to determine whether utilizing MOR for lung
recruitment during HFOV can help reduce VILI and, more specifically,
lower the risk of BPD in extremely preterm infants.
As expected from the nature of the recruitment maneuver,

oxygenation improved on average, consistent with its role as the
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guiding parameter in this approach. This finding aligns with the
seminal study by de Jaegere et al.18 However, aside from
oxygenation, none of the other parameters showed significant
changes. Tingay et al. demonstrated that tcpCO2 dropped when
CDP was decreased during a stepwise recruitment maneuver in
HFO-ventilated term or near-term infants receiving muscle
relaxants.22 We attribute the discrepancy between our findings
and those of Tingay et al. to the fact that a substantial proportion
of the lungs in our study may not have been recruitable. When we
limited the analysis to lungs categorized as recruitable based on
oxygenation, tcpCO2 actually decreased during deflation. This was
also the case when we used MOR to classify lung recruitability.
Raising the MOR threshold percentage to tighten the recruitability
criterion appeared to further improve tcpCO2, similar to the effect
seen with oxygenation. This observation highlights the potential
of the MOR parameter in assessing lung recruitability, particularly
in identifying lungs that respond to recruitment maneuvers with
enhanced CO2 elimination.
A decrease in pCO2 during oxygenation-guided lung recruit-

ment indicates a reduction in dead-space fraction.21,47 This leads

to two possible interpretations. First, during LRMs where tcpCO2

increases, the lungs may either be non-recruitable or hyperin-
flated. Second, oxygenation may only be adequate for assessing
lung recruitment when a significant increase in the S/F-ratio is
expected, such as in cases of severe RDS.18 Therefore, tcpCO2

should be considered an additional parameter for evaluating LRMs
as previously suggested by Tingay et al.22 However, it should be
noted that in five cases classified as recruitable according to MOR,
no improvement in tcpCO2 was observed. This could be because
the MOR only accounts for the lung region covered by the EIT belt,
or due to altered peripheral perfusion affecting tcpCO2 as a result
of the hemodynamic changes induced by the recruitment
maneuvers. In 19 LRMs, no clear improvement in MOR was
observed, despite an improvement in tcpCO2. We assume that in
these cases, the MOR—limited to the region of the EIT belt—could
not reflect improvements in lung areas outside the belt’s range.
Transcutaneous pCO2 measurements show a moderate correla-

tion with blood gas CO2 in premature infants weighing <1000 g.48

Additionally, tcpCO2 responds to changes in PaCO2 with a delay,
meaning that waiting for stable values could prolong
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overinflation. Patient-initiated breathing can further influence
tcpCO2, making it challenging to use as a direct indicator of lung
mechanics. Meanwhile, SpO2 has limitations in detecting over-
distention. The MOR parameter may help address some of these
challenges. Although it does not represent the entire lung, we
believe it sufficiently reflects major lung regions to guide LRM
effectively. However, these assumptions require validation in
future clinical trials.
In contrast to tcpCO2, we did not observe any significant changes in

HFOV tidal volume in the subgroup analysis. This may be because
changes in HFOV tidal volume at high frequencies are small at airway
opening and beyond the resolution of the flow sensor.
In the future, LRM should be refined in two ways: First, we

should consider parameters and clinical information to determine
whether an LRM is likely to improve lung mechanics and thus
justify its application. Second, LRM guidance should be based not
only on oxygenation but also on other variables, such as tcpCO2

and EIT parameters. Both approaches need to be validated in
clinical studies.

Limitations
This study has several limitations. First, the time intervals for the
CDP steps varied, which could introduce recruitment bias.
Additionally, the duration of some CDP steps, determined solely
by oxygenation, may have been too short to achieve lung volume
stability, particularly in heterogeneous lung diseases.49 Second,
some infants breathed spontaneously during HFOV, while others
were administered muscle relaxants. We hypothesize that seda-
tion and muscle paralysis may influence the effects of lung
recruitment. Third, HFOV settings, particularly the HFO frequency,
were not consistent across all patients. The impact of different
HFO frequencies on the efficacy of LRMs remains unknown.
Fourth, the definition of lung recruitability is based primarily on
oxygenation observations, but limited data support this concept.

Table 2. Comparison of tcpCO2 differences between the initial CDP and five different CDP levels at inflation (CDPinflin +2 and CDPop) and deflation
(CDPdeflin +2, CDPdeflin, and CDPcl) for all lung recruitment maneuvers and for recruitable and non-recruitable lungs, where the recruitability cutoff
was defined as a 15% (30%) change in the MOR or S/F-ratio, respectively.

CDP level CDPinflin+2 CDPop CDPdeflin+2 CDPdefl in CDPcl

Criterion N tcpCO2 difference with CDP initial, median (Q1, Q3), [mmHg]

ALL 56 0.0 (−2.3, 1.23) −0.85 (−6.15, 3.23) −1.75 (8.3. 2.95) −1.85 (−5.1, 2.1) −1.75 (−5.25, 1.55)

MOR gain
>15%

23 0.0 (−1.7, 3.0) −1.1 (−11.86, 1.38) 4.3* (−11.35, −2.15) −4.5 (−5.8, 1.18) −4.8* (−6.25, −0.6)

MOR gain
≤15%

33 −0.2 (−2.93, 0.43) −0.5 (−5.91, 1.55) −0.4 (−3.83, 5.93) −0.4 (−3.68, 3.23) −0.6 (−3.13, 2.13)

S/F gain >15% 43 0.0 (−1.8, 1.4) −0.9 (−7.0, 2.5) −1.8 (−9.0, 0.8) −3.0 (−5.8, 1.39) −2.2 (−6.1, 0.31)

S/F gain≤15% 13 −0.9 (−3.33, 0.5) −0.8 (−3.5, 5.28) −0.6 (−6.05, 6.35) −0.4 (−4.83, 5.53) −0.3 (−4.25, 4.5)

MOR gain
>30%

17 0.5 (−1.98, 3.25) −2.6 (−13.03, 1.03) −5.2* (−11.63, −2.63) −4.8 (−6.08, 1.83) −4.8 (−5.96, −1.78)

MOR gain
≤30%

39 0.0 (−2.7, 0.48) −0.7 (−4.46, 3.31) −0.6 (−4.68, 5.03) −1.3 (−4.35, 2.75) −1.4 (−5.21, 2.18)

S/F gain>30% 31 0.0 (−2.7, 1.24) −1.8 (−10.28, 1.4) −3.45* (−10.41, 0.35) −3.3 (−6.75, 0.26) −3.7* (−7.25, −0.65)

S/F gain≤30% 25 0.0 (−1.98, 0.89) 0.1 (−2.45, 5.28) −0.65 (−3.93, 6.91) −0.4 (−4.13, 5.53) 0.3 (−3.3, 3.6)

In cases where the CDP values did not match the displayed values, a linear interpolation of the values was performed.
CDP continuous distending pressure, CDPinflin initial CDP during the inflation limb, CDPop open CDP, CDPdeflin initial CDP during the deflation limb, CDPcl closed
CDP, Q1 and Q3 first and third quartiles, MOR median of oscillatory impedance amplitudes within the aerated region, S/F-ratio ratio of peripheral oxygen
saturation to the fraction of inspired oxygen, tcpCO2 transcutaneous partial pressure of carbon dioxide.
*p < 0.05 (post hoc analysis for the Kruskal‒Wallis test in comparison with the value at CDPin).
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Fifth, tcpCO2 is a parameter influenced by peripheral perfusion
and, therefore, does not solely reflect ventilatory aspects.50 Lastly,
the EIT parameter only refers to a transverse scan of the lung and
does not represent the entire lung.

CONCLUSION
Our study showed that regional lung data from EIT can track
oscillations in aerated lung regions during recruitment maneu-
vers in preterm infants. The MOR parameter derived from EIT
may offer insights into lung recruitment alongside oxygenation,
potentially aiding in the management of regional hyperinflation
and lung collapse during HFOV. Further research is needed to
develop lung protection strategies that incorporate guidance
from median impedance oscillations in aerated regions during
recruitment.
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