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Plasma extracellular vesicles-derived microRNAs provide
potential biomarkers in distinguishing between focal cortical
dysplasia type I and II
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BACKGROUND: Preoperative pathological information of focal cortical dysplasia (FCD) is critical for surgical planning, but non-
invasive diagnostic methods are currently unavailable. This study aimed to identify potential biomarkers for FCD subtyping by
screening microRNAs (miRNAs) in plasma extracellular vesicles (EVs).
METHODS: We identified the most representative pathological subtypes based on the clinical characteristics of FCD Type I and II in
439 pediatric FCD patients. Differential expression analysis of miRNA was performed in plasma EVs and brain tissues from samples
of representative pathological subtypes. Potential biomarkers and downstream target genes were identified by integrating brain
tissue transcriptome data. Target genes underwent enrichment and protein-protein interaction analyses, with
immunohistochemical validation in brain tissue.
RESULTS: FCD Ia and IIb represent the clinical characteristics between FCD Type I and II, respectively. Eight differentially expressed
miRNAs common to plasma EVs and brain tissue were identified, which had 241 target genes in brain tissue. These target genes
were enriched in immune-related functions, cytokine-cytokine receptor interaction, p53, and NF-κB signaling pathways. Among
nine core proteins, CDKN1A and CD274 were confirmed to be elevated in FCD IIb lesions compared to FCD Ia.
CONCLUSION: Differentially expressed miRNAs in extracellular vesicles may serve as potential non-invasive biomarkers for FCD
subtyping.

Pediatric Research; https://doi.org/10.1038/s41390-025-04343-z

IMPACT:

● Lesional characteristics, surgical approaches, and prognosis are different between FCD type I and II.
● Eight differentially expressed miRNAs in plasma extracellular vesicles between FCD type I and II were identified.
● Target genes of these miRNAs were significantly enriched in immune and inflammatory responses and cytokine pathways.
● The identified miRNAs may represent potential pre-operative biomarkers for FCD subtyping, potentially guiding surgical

strategies and outcome prediction, especially for FCD type II.
● Extracellular vesicle-mediated immune responses may differ between FCD type I and II, offering insight into FCD pathogenesis,

epileptogenic mechanisms, and the identification of novel therapeutic targets.

INTRODUCTION
Focal cortical dysplasia (FCD) is the most common cause of drug-
resistant epilepsy in pediatric patients undergoing surgery.1 FCD
can be categorized as type I, type II, type III, mMCD (mild
malformations of cellular development), MOGHE (mMCD with
oligodendroglial hyperplasia in epilepsy), and no definite FCD on
histopathology by the ILAE classification criteria.2 FCD type I and
type II have the highest proportion in pediatric patients submitted
to epilepsy surgery, accounting for 6.4% and 17.0%, respectively.1

FCD type I is characterized by architectural disorganization of the

neocortex, where Ia has an abundance of neuronal microcolumns
and heterotopic neurons in the white matter, Ib shows the
disruption of the six-layered anatomical organization, and Ic
exhibits both vertical and horizontal structural abnormalities.2 FCD
type II is an isolated lesion characterized by cortical dyslamination
and dysmorphic neurons (DNs) without (type IIa) or with balloon
cells (type IIb).2

In terms of structure, FCD type I lesions are mainly MRI-negative and
more extended than FCD type II,3,4 while FCD type II lesions are more
localized and display characteristic imaging features, such as the
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“transmantle” sign.3,5,6 Notably, MRI-negative cases approach one-third
in FCD type II, complicating preoperative differentiation between the
two FCD subtypes.3,7 From the aspect of functional network
connectivity, FCD type I exhibits higher excitability than type II in the
ictal zone and brain regions distant from the ictal zone.8,9 The
epileptogenic zone and connectivity patterns in type I are larger and
more intricate than in type II, indicating that FCD type I tends to form a
more extended epileptogenic network than type II.8,9 In fact, resection
for FCD type I demands greater amounts and extent of brain tissue, and
the proportion of patients adopting disconnection surgery is also
higher than that of FCD type II surgery.9,10 Preoperative pathological
subtyping may provide important information for surgical decision-
making. However, there are no relatively objective biomarkers to
differentiate between FCD type I and type II preoperatively. And the
underlying biological mechanism of differences in functional network
connectivity is unclear.
Beyond the physical connectivity between brain regions, the

formation of extensive epileptogenic networks and the interac-
tions among their constituent nodes may also be modulated by
specific humoral factors. Extracellular vesicles (EVs) represent one
such potential mediator.11,12 Extracellular vesicles (EVs) are lipid-
bilayer-containing granules that are released by cells and are
incapable of self-replication.13 Particular protein, lipid, and nucleic
acid molecules are encapsulated in EVs, which are transported by
body fluids from one cell to another. This mechanism, which is
universally observed in nature, regulates different cellular
processes.14–16 MicroRNA (miRNA) is a noncoding double-
stranded RNA molecule with a length of 20–22 nucleotides,
processed from RNA precursors. These small RNA molecules
mainly regulate gene expression at the post-transcriptional level
by attaching to the 3’-untranslated region (3’-UTR) of the target
mRNA.17 EVs provide a stable environment for miRNA, which can
traverse the blood-brain barrier and blood-cerebrospinal fluid
barrier via EVs. This allows miRNA to regulate an extensive
spectrum of cell activities and get involved in several neurological
disorders, such as epilepsy.18–20

Using clinical data from our pediatric epilepsy center, we
analyzed the differences between FCD types I and II and the four
pathological subtypes in terms of the location and number of
lobes involved in the lesions, as well as the surgical method used.
The two pathological subtypes with the highest differences were
chosen as representative samples to assess the differences in
miRNA expression in plasma extracellular vesicles (EVs) between
FCD types I and II. In this exploratory study, we aim to discover the
differences in biological characteristics between FCD types I and II,
which may assist in the screening of potential biomarkers for
preoperative diagnosis of FCD types I and II, in addition to further
understanding of the pathogenic mechanisms of FCD.

METHODS
The study population of clinical research
Patients were queried from clinical databases in the Pediatric Epilepsy Center
of Peking University First Hospital (PECPUFH) between January 1, 2014, and
November 31, 2022. Patients were selected based on the following criteria:
(1) Age of operation ≤ 18 years old; (2) Drug-resistant refractory epilepsy
according to the criteria defined by the International League Against
Epilepsy (ILAE): failure of adequate trials of two tolerated and appropriately
chosen and used antiepileptic drug (AED) schedules (whether as mono-
therapies or in combination) to achieve sustained seizure freedom21; (3)
Clinicopathologic diagnosis of FCD confirmed by independent pathologist
and excluded from “dual pathology” according to the ILAE 2022 classification
guidelines.2 (4) Follow up at least 3 months after surgery. Exclusion criteria
included: (1) pathological diagnosis of FCD associated with hippocampal
sclerosis, cerebrovascular diseases, brain tumors, and acquired lesions
(including traumatic injury, ischemic injury, or encephalitis); and (2) cases in
which no definite pathological diagnosis could be obtained. All research
protocols were approved by the institutional review board of the ethics
committee of Peking University First Hospital.

Dysmorphic neuron identification
The pathological categorization for each sample was made according to
the ILAE 2022 classification guidelines.2 All the pathological reports of the
patients were reviewed by two independent investigators. Dysmorphic
neurons are exclusively characterized by the following set of severe
cytologic abnormalities: (1) Neuronal cell diameters are significantly
enlarged, ranging from 16–43 μm compared to 12–25 μm in normal-
appearing pyramidal neurons in layer 3; (2) the cell nucleus diameter is also
significantly enlarged, ranging from 15–28 μm compared to 10–18 μm in
normal pyramidal cells in layer 3; (3) Nissl substance is aggregated and
displaced toward the cell membrane; (4) phosphorylated (antibody 2F11)
and non-phosphorylated neurofilament isoforms (SMI-32) accumulate in
their cytoplasm.2,22

Sequencing sample information and sample collection
A total of 10 patients with FCD Ia and 6 patients with FCD IIb were enrolled,
who underwent epilepsy surgical treatment from January 1, 2019, to
November 31, 2022, in our pediatric epilepsy center. Blood samples
(10mL) were drawn from a central venous catheter, placed in EDTA tubes,
gently inverted five or six times to mix, and centrifuged for 10min at
3000 g and 4 °C. The upper layer (plasma) was aspirated and stored at
−80 °C before usage. Brain tissue was surgically resected to treat drug-
resistant epilepsy at PECPUFH. Resected tissue was fresh-frozen for
subsequent analysis. The flow diagram of sample processing is presented
in Fig. 1. All protocols were approved by the Ethics Committee of Peking
University First Hospital.

Isolation and purification of plasma EVs
For each patient, 3 mL of plasma was utilized, and to remove cell debris,
the plasma was centrifuged at 3000×g for 15min after it had been thawed
at 37 °C. The supernatant is diluted with seven volumes of phosphate-
buffered saline (PBS), centrifuged for thirty minutes at 13,000 × g, and then
run through a 0.22 μm filter to get rid of big particles. To pellet the EVs, the
supernatant was ultracentrifuged using a P70AT rotor (RP70AT; Hitachi) at
150,000×g (45,200 rpm) and 4 °C for 4 h. To resuspend the pellet, mix it
with PBS and centrifuge it at 150,000 × g and 4 °C for 2 h. The EVs-enriched
pellet was resuspended in 100 μL of PBS following PBS washing, then
stored at −80 °C.

Transmission electron microscopy (TEM)
Following ultracentrifugation, the EVs were diluted from 5 μL to 10 μL and
forwarded for analysis. Take 10 μL of the sample dropwise, make it
precipitate on a copper mesh for one minute, and then absorb the float
with the filter paper. The copper mesh received 10mL of phosphotungstic
acid dropwise for 1 minute, and the filter paper absorbed the float. For a
few minutes, leave it to dry at room temperature. 80 kV for imaging using
electron microscopy.

Nanoparticle tracking analysis (NTA)
The EVs sample was diluted to 30 μL by 5 μL and passed on for analysis.
Before loading the EVs sample, the instrument performance test with the
standard is utilized. The NanoFCM device (Flow NanoAnalyzer) could be
used to determine the particle size and concentration once the sample has
been evaluated.

Western blot (WB)
The EV-enriched fractions were denatured in 5× sodium dodecyl sulfonate
(SDS) buffer and subjected to western blot analysis (10% SDS-
polyacrylamide gel electrophoresis; 50 μg protein/lane) using rabbit
polyclonal antibody TSG101 (Santa Cruz, sc-13,611), syntenin (Abcam,
ab133267), and calnexin (Abcam, ab22595). The membranes were
visualized on a ChemiDoc MP Imager (BioRad) following development
with Clarity Western Enhanced Chemiluminescence Blotting Substrate
(BioRad).

Immunohistochemistry (IHC)
Immunohistochemistry was performed on 4 µm sections from formalin-
fixed, paraffin-embedded (FFPE) focal cortical dysplasia (FCD) tissues.
Following deparaffinization and rehydration, antigen retrieval was
conducted by heating sections in a pressure cooker for 2 min, using
citrate buffer (pH 6.0; G1201, Servicebio) for CDKN1A detection or TE buffer
(pH 9.0; G1203, Servicebio) for CD274 detection. Endogenous peroxidase
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activity was quenched with 3% H2O2, and non-specific sites were blocked
with 3% BSA. Sections were then incubated overnight at 4 °C with primary
antibodies: recombinant anti-p21 mouse monoclonal antibody (targeting
CDKN1A, 1:1000; GB15153, Servicebio) and anti-PD-L1 rabbit polyclonal
antibody (targeting CD274, 1:300; GB115736, Servicebio). Subsequently,
sections were incubated with HRP Goat Anti-Mouse IgG (1:200; GB23301,
Servicebio) for 1 hour at room temperature for CDKN1A detection or with
S-vision poly-HRP conjugated Goat Anti-Rabbit IgG (H + L) (G1302,
Servicebio) for 20min at room temperature for CD274 detection.
Immunoreactivity was visualized using 3,3’-diaminobenzidine (DAB), and
sections were counterstained with hematoxylin, dehydrated, cleared,
coverslipped, and imaged using a white light microscope.

RNA isolation
Total RNA was extracted and purified from EV samples using the miRNeasy
Mini kit (Qiagen, cat. No. 217,004). Each EV sample was mixed with 700 μL of
QIAzol Lysis Reagent vigorously with a vortex and incubated for 5min at RT.
Then 100 μL of chloroform was added and mixed vigorously for 15 s,
followed by a 2min incubation at RT. Separation of the aqueous phase that
contained RNA from the organic phase occurred in a centrifuge at 12,000 × g,
4 °C for 15min. The aqueous phase was transferred into a new 1.5mL tube,
and 2 volumes of 100% ethanol were added to the tube and mixed with
pipetting up and down. This ethanol mixture was loaded in the volume of
700 μL into the RNeasy MinElute Column (Qiagen) and spun down at 9000 ×
g for 30 s at RT. The column loading and spinning were repeated with the
remaining ethanol mixture. The column was washed with 500 μL of RWT
buffer (initially prepared in 100% isopropanol) and spun down at 9000 × g
for 30 s at RT. The other 2 washing steps used 500 μL of RPE buffer (initially
prepared in 100% ethanol) and the same spinning condition. Additional
spinning at full speed for 3 min was performed to dry the membrane in the
column. The RNA elution step was undertaken with 30 μL of nuclease-free
water that was applied to themembrane, followed by incubation for 2 min at
RT and spinning at 10,000 × g for 1min.

Library preparation and RNA-Seq for transcriptome
RNA purification, reverse transcription, library construction, and sequen-
cing were performed at Shanghai Majorbio Bio-pharm Biotechnology Co.,
Ltd. (Shanghai, China) according to the manufacturer’s instructions
(Illumina, San Diego, CA). The brain tissue RNA-seq transcriptome library
was prepared following Illumina Stranded mRNA Prep, Ligation from
Illumina (San Diego, CA) using 1 μg of total RNA. Shortly, messenger RNA
was isolated according to the polyA selection method by oligo (dT) beads
and then fragmented by fragmentation buffer first. Secondly, double-
stranded cDNA was synthesized using a SuperScript double-stranded
cDNA synthesis kit (Invitrogen, CA) with random hexamer primers
(Illumina). Then the synthesized cDNA was subjected to end repair,
phosphorylation, and ‘A’ base addition according to Illumina’s library
construction protocol. Libraries were size-selected for cDNA target
fragments of 300 bp on 2% Low Range Ultra Agarose, followed by PCR
amplification using Phusion DNA polymerase (NEB) for 15 PCR cycles. After
being quantified by Qubit 4.0, the paired-end RNA-seq sequencing library
was sequenced with the NovaSeq Xplus sequencer (2 × 150 bp read
length). The raw paired-end reads were trimmed, and quality was
controlled by fastp23 with default parameters. Then clean reads were
separately aligned to the reference genome with orientation mode using
HISAT224 software. The mapped reads of each sample were assembled by
StringTie25 in a reference-based approach.

Library preparation and RNA-Seq for miRNA
RNA purification, reverse transcription, library construction, and sequen-
cing were performed at Shanghai Majorbio Bio-pharm Biotechnology Co.,
Ltd. (Shanghai, China) according to the manufacturer’s instructions
(Illumina, San Diego, CA). Using high-throughput sequencing platforms,
sequence the enriched small RNA fragments of 16–35 nt. The library is
constructed using the SMARTer smRNA-Seq Kit (Illumina, San Diego, CA)
with 10 ng of total RNA, and the operation process is as follows. To
facilitate cDNA synthesis using oligo(dT) primers, treat miRNA with poly(A)
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Fig. 1 The differences between FCD types I and II in lesion location, extent, surgical approach and prognosis. a The proportion of lesion
location, extent, and surgical approach in FCD type I and its pathological subtypes. b The proportion of lesion location, extent, and surgical
approach in FCD type II and its pathological subtypes. c Recurrence-remission proportions for FCD type I and type II following surgery. d The
Kaplan-Meier curve of FCD type I and type II. The difference in surgical prognosis between these two pathology types was statistically
significant (p < 0.05). e Recurrence-remission rates of postoperative seizure in 4 pathological subtypes. f The Kaplan-Meier curve of 4
pathological subtypes. The difference in surgical prognosis among these pathological types was statistically significant (p < 0.05).
Abbreviations: FCD, focal cortical dysplasia.
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polymerase to add a poly(A) tail. 3’ adapter primers are ligated, and the
RNA with the ligated adapters is used as a template to synthesize the first-
strand cDNA via reverse transcription. Then, 5’ adapter primers are ligated,
and template switching occurs to synthesize the complete first-strand
cDNA, followed by the synthesis of the second strand. Amplify the library
using sequencing primers through PCR (11-12 cycles) to enrich the library
concentration. After quantification by Qubit 4.0 and mixing according to
the data ratio for sequencing, bridge PCR amplification was performed to
generate clusters, and the sequencing library was sequenced on the
Illumina NovaSeq Xplus platform. Raw data (raw reads) in FASTQ format
were firstly processed through fastp23 with default parameters. After this
step, clean data (clean reads) were obtained by removing the 3’ end
adapter, reads containing poly-N, low-quality bases (Sanger base quality of
<20) of the 3’ end, and sequencing adapters from raw data with the fastx
toolkit software. All identical sequences of sizes ranging from 18 to 32 nt
were counted and eliminated from the initial data set. The mapped small
RNA tags were first used to identify known miRNA with the miRBaseV2
database (http://www.mirbase.org/) as a reference. Then the rest of the
tags were aligned with the Rfam database and Repbase database to
remove ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA
(snRNA), small nucleolar RNA (snoRNA), and other ncRNA and repeats. The
unannotated tags were predicted to be and identified as novel miRNAs
using mirdeep2.26

Determining representative pathological subtypes
To identify the pathological subtype most representative of the clinical
characteristics of its parent major pathological class (FCD Type I or FCD
Type II), we employed a quantitative strategy based on clinical feature
distribution. This study included a panel of K dichotomous clinical variables
(coded 0 or 1), encompassing lesion location (frontal, temporal, parietal,
occipital, and insular lobes), surgical approach (only lesion-tailored
resection), and lesion extension (lesion involving a single lobe). For each

major pathological class M and each of its constituent subtypes Sj, we first
calculated the proportion of patients exhibiting each clinical variable Vk
(i.e., P Vk ¼ 1jMð Þ for the major class and P Vk ¼ 1jSj ;M

� �
for the subtype).

The dissimilarity in a single clinical variable Vk between subtype Sj and its
parent class M was quantified as follows:

D Sj ; Vk ;M
� � ¼ P Vk ¼ 1ð ÞSj ;M

�� P Vk ¼ 1jMð Þ� �2

A total dissimilarity score (TDS) for each subtype Sj relative to its parent
class M was then computed by summing these individual dissimilarities
across all K clinical variables:

TDS SjjMð Þ ¼
XK

k¼1

DðSjVkMÞ

The pathological subtype S�j yielding the minimum TDS within its major
class M was designated as the most representative of that major class’s
clinical profile. All analyses were performed using R 4.0.3.

Bioinformatic and statistical analysis
The Wilcoxon rank sum test, Fisher’s exact test, and Pearson’s chi-squared
test were applied in R 4.0.3 to compare clinical data between groups. Kaplan-
Meier survival curves were constructed to visually depict the prognosis of the
different groups, and the rate of difference in the occurrence of events was
compared using the log-rankmethod. Multiple comparisons were performed
using the Benjamini-Hochberg method (BH). p < 0.05 was considered
statistically significant. To identify differentially expressed genes (DEGs)
between two different samples, the expression level of each transcript was
calculated according to the read counts. Differential expression analysis was
performed using the DESeq2.27 DEGs or differential expression miRNAs
(DEMs) with |log2(Fold Change)| ≧ log2(1.5) and p <0.05 were considered to
be significantly differently expressed. The multiMiR package28 was used to

Table 1. The demographic and surgical information of FCD type I and II

Characteristic Overall (N= 439) FCD Type I (N= 119) FCD Type II (N= 320) p-value

Gender 0.5

Male 269 (61.28%) 76 (63.87%) 193 (60.31%)

Female 170 (38.72%) 43 (36.13%) 127 (39.69%)

Seizure onset age (Days) 307 (96.50, 1009) 306 (97.00, 998) 315 (97.25, 1007) 0.7

Surgery age (Days) 1503 (850.00, 2492) 1589 (945.50, 2567) 1438 (800.25, 2486) 0.14

Frequency of seizures >10 times per day 156 (35.54%) 39 (32.77%) 117 (36.56%) 0.5

Surgery side 0.2

Left 228 (51.94%) 68 (57.14%) 160 (50.00%)

Right 211 (48.06%) 51 (42.86%) 160 (50.00%)

Lesion involving

Frontal lobe 259 (59.00%) 53 (44.54%) 206 (64.38%) <0.001

Temporal lobe 180 (41.00%) 67 (56.30%) 113 (35.31%) <0.001

Parietal lobe 206 (46.92%) 53 (44.54%) 153 (47.81%) 0.5

Occipital lobe 125 (28.47%) 48 (40.34%) 77 (24.06%) <0.001

Insula 141 (32.12%) 51 (42.86%) 90 (28.13%) 0.003

Lesion involving single lobe 213 (48.52%) 46 (38.66%) 167 (52.19%) 0.012

Lesion involving multiple lobes 226 (51.48%) 73 (61.34%) 153 (47.81%) 0.012

The number of lobes involved 0.011

1 213 (48.52%) 46 (38.66%) 167 (52.19%)

2 111 (25.28%) 33 (27.73%) 78 (24.38%)

3 25 (5.69%) 9 (7.56%) 16 (5.00%)

4 49 (11.16%) 22 (18.49%) 27 (8.44%)

5 41 (9.34%) 9 (7.56%) 32 (10.00%)

Disconnection surgery 158 (35.99%) 65 (54.62%) 93 (29.06%) <0.001

Only lesion-tailored resection 281 (64.01%) 54 (45.38%) 227 (70.94%) <0.001

*Median (IQR); n (%).
FCD focal cortical dysplasia.
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predict the target genes for the potential miRNAs, and brain tissue DEGs
were cross-referenced with the results. Functional enrichment analyses,
including GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and
Genomes), were carried out in R 4.0.3. Protein-protein interaction (PPI)

networks were constructed using the STRING database (version 12.0, https://
string-db.org) to analyze potential functional associations between target
genes. The interaction data were analyzed and visualized in Cytoscape
(version 3.10.1). Network nodes were ranked and visualized according to
their degree centrality, a key graph-theoretical measure reflecting the
number of direct connections for each protein.

RESULTS
FCD Ia and FCD IIb represent the characteristics of FCD I and II
in lesion location, extension, surgical approach, and outcomes
Out of the 439 participants enrolled, there were 119 FCD type I
patients (Ia = 63, Ib = 56) and 320 FCD type II patients (IIa = 155,
IIb = 165). The demographic and clinical information was
summarized in Table 1 and Supplementary Table S1. Regarding

Table 2. Total Dissimilarity Score for each pathological subtypes

Pathological Type TDS

FCD Type I Ia 0.0493792

Ib 0.0624956

FCD Type II IIa 0.0611547

IIb 0.0539666

FCD focal cortical dysplasia, TDS Total Dissimilarity Score.
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lesion location, FCD type I lesions predominantly involved the
temporal lobe, while FCD type II lesions more frequently affected
the frontal lobe. Notably, FCD type I lesions demonstrate a
significantly higher incidence of involving the occipital and insular
lobes compared to FCD type II (Table 1, Fig. 1A, B). Based on the
number of affected lobes, FCD type I lesions exhibit more
extensive involvement than FCD type II (Table 1, Fig. 1A, B). This
finding is consistent with the observation that dissecting surgery
is typically performed for FCD type I, whereas lesion-tailored
resection is more commonly chosen for FCD type II (Table 1,
Fig. 1A, B). FCD Ia and FCD IIb display the lowest total dissimilarity
score (TDS) within FCD type I and type II, respectively. These two
subtypes consequently exhibit minimal deviation from their
parent types across all three clinical characteristics (Table 2).
The surgical prognosis of FCD type II was better than FCD type I,

with a seizure-free rate of above 80% after surgery (Fig. 1C, D).
There were differences in the prognosis of the four pathological
subtypes of FCD types I and II (Fig. 1F), with the best surgical
prognosis (88.48%) for FCD IIb (Fig. 1E). The surgical prognosis of
FCD Ia, Ib, and IIa was not significantly different (Supplementary
Fig. S1A, B, D), while FCD IIb and FCD Ia showed the greatest
variation in prognosis (Supplementary Fig. S1C).
These findings indicate that the variations between FCD Ia and

IIb in lesion location, extension, surgical approach, and surgical
prognosis represented the differences between FCD types I and II.
Therefore, these two pathological subtypes were selected for
further analysis (Fig. 2).

Isolation and characterization of EVs from plasma
In this study, plasma EVs were isolated from FCD Ia (n= 7) and
FCD IIb (n= 4). The demographic and clinical information of the
participants, including age, sex, resection site, and other relevant
details, were presented in Table 3. The plasma EVs were extracted
from the plasma of 11 FCD patients by ultracentrifugation, and the
morphology and size distribution of the EVs were evaluated by
TEM and NTA. The TEM and NTA analysis showed that EVs present
in the isolated fractions had an oval or bowl-shaped morphology,
with a size ranging from 30 nm to 150 nm (Fig. 3A, B). The EV
markers Syntenin and TSG101 were both shown to be abundant in
the EVs isolated from the plasma (Fig. 3C). In contrast, our isolated

EV-enriched fraction samples did not include Calnexin, which is a
negative sign of EVs (Fig. 3C).

Identification of potential miRNAs and target genes related to
FCD Ia and IIb
The analysis and quantification of RNA extracted from both EV-
enriched fractions and brain tissue were performed. No significant
difference was identified in small RNA species of EVs between FCD
Ia and IIb (Fig. 3D). Most miRNAs and the overall expression level
of the gene were found to be common between both FCD Ia and
IIb in brain tissue (Fig. 3E, F).
The miRNAs in the plasma EVs of 11 FCD patients were

sequenced, and the read counts were used for difference analysis
by DESeq2. There were 9 differentially expressed miRNAs (DEMs)
found to be expressed differently in FCD Ia and IIb (Fig. 4A). Four
miRNAs were up-regulated in FCD IIb compared to FCD Ia, which
were hsa-miR-34a-5p, hsa-miR-455-3p, hsa-miR-873-5p, and hsa-
miR-511-5p. And five miRNAs were down-regulated in FCD IIb
compared to FCD Ia, which were hsa-miR-96-5p, hsa-miR-9-5p,
hsa-miR-183-5p, hsa-miR-381-3p, and X_438/4. The heatmap of
these DEMs is shown in Fig. 4A. All miRNAs were known except for
X_438/4, which was a novel miRNA. A total of 56 DEMs were
identified in the bulk-miRNA sequence of brain tissue (Fig. 4B).
Compared to FCD Ia, FCD IIb had 20 up-regulated miRNAs and 36
down-regulated miRNAs. All of them were known miRNAs except
for 1_1174 and 8_17830, which were novel miRNAs. In the
transcriptome sequence of brain tissue, 422 genes were up-
regulated and 161 genes were down-regulated in FCD IIb
compared to FCD Ia (Supplementary Fig. S2).
A total of 828 miRNAs were identified in plasma EVs, out of

which 703 miRNAs were found to be expressed in brain tissue.
There were nine DEMs in plasma EVs for the two pathology types,
and all eight of them, except X_438/4, were also expressed in
brain tissue. Additionally, hsa-miR-34a-5p exhibited differential
expression in FCD Ia and IIb brain tissue. The relationship of these
miRNAs is shown in Fig. 4E. The 8 plasma extracellular vesicular
DEMs that were also expressed in brain tissue have the potential
to serve as biomarkers.
We utilized the multiMiR package to find the regulatory

relationships between the above 8 DEMs and 583 DEGs in brain

Table 3. The clinical demographics of plasma EVs and brain tissue

Case Pathology
Type

Gender Seizure
onset age
(Days)

Surgery age
(Days)

Surgery
side

Plasma EVs
extraction

Plasma EVs
miRNA
sequence

Brain tissue
and sequence

1 Ia Male 820 2447 R Y N Y

2 Ia Male 232 1983 L Y Y N

3 Ia Male 547 1569 R Y N Y

4 Ia Male 396 1499 R Y Y Y

5 Ia Male 220 831 L Y Y N

6 Ia Female 186 1733 L Y Y N

7 Ia Female 1096 2481 R Y N Y

8 Ia Female 106 473 L Y Y N

9 Ia Male 584 1047 R Y Y N

10 Ia Female 891 1324 L Y Y Y

11 IIb Male 247 902 L Y Y Y

12 IIb Female 1277 1995 L Y N Y

13 IIb Female 1004 1469 R Y Y Y

14 IIb Male 918 1497 R Y Y Y

15 IIb Female 259 747 R Y Y N

16 IIb Male 1495 3417 L N N Y

FCD focal cortical dysplasia, EVs extracellular vesicles.
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tissue, and 421 miRNA-mRNA pairs were found (Supplementary
Table S2). After removing the duplication, a total of 241 target
genes were identified (Supplementary Table S3), followed by GO
and KEGG analysis.

Functional enrichment analysis of target genes
The GO analysis comprised three levels: Biological Process (BP),
Cellular Component (CC), and Molecular Function (MF) (Fig. 4C
and Supplementary Table S4). At the BP level, target genes were
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primarily enriched in immune-related functions, including the
regulation of adaptive immune response, adaptive immune
response based on somatic recombination of immune receptors
constructed from immunoglobulin superfamily domains,
lymphocyte-mediated immunity, and the involvement of leuko-
cytes in immune response, etc. In addition, target genes were also
enriched in functions linked to cell cycle and cell stress, such as
negative regulation of cell cycle, positive regulation of response to
external stimulus, and negative regulation of mitotic cell cycle, etc.
At the CC level, target genes were mainly enriched in various
membrane structures, including the external side of the plasma
membrane, membrane raft, membrane microdomain, etc. The
focal adhesion, cell-substrate junction, and collagen-containing
extracellular matrix were also included. At the MF level, there was
an enrichment of target genes related to immune receptor
activity, cytokine binding, cytokine receptor activity, and extra-
cellular matrix binding.
In the KEGG pathway analysis, target genes were enriched in 217

pathways (Supplementary Table S5). The pathways that showed
enrichment for the highest number of genes were shown in Fig. 4D.
There were 4 pathways whose adjusted p-value (p.adjust) was less
than 0.05. In ascending order of p.adjust values, there were
Cytokine-cytokine receptor interaction, p53 signaling pathway,
NF-kappa B signaling pathway, and Fluid shear stress and
atherosclerosis. Among all the pathways, the “Cytokine-cytokine
receptor interaction” exhibited the largest number of genes.

Protein-protein interaction networks and preliminary
validation of key nodes
A protein-protein interaction network was constructed from the
241 target genes using the STRING database. Following removal of
non-interacting proteins, 175 proteins remained in the network
(Supplementary Table S6). Network topology was analyzed in
Cytoscape using degree-based ranking (Fig. 4G), identifying nine
hub proteins. ICAM1 demonstrated the highest connectivity,
followed by CD274, CXCL10, FOS, IL7R, ANXA2, CDKN1A, RUNX1,
and CHEK1 in descending order of degree (Supplementary
Table S7). CDKN1A and CD274 were markedly elevated in FCD
IIb lesions compared to FCD Ia, indicating differential regulation of
these immunomodulatory proteins across FCD subtypes (Fig. 4F).

DISCUSSION
Clinical value and preliminary exploration of liquid biopsy in
identifying FCD type IIb
Surgical intervention is an effective method for treating children
with drug-resistant epilepsy caused by FCD, with long-term
seizure-free rates varying significantly among different centers,
ranging from 47% to 79%.29 Multiple risk factors contribute to the
suboptimal outcomes of FCD surgery, among which the specific
pathological subtypes of FCD and the extent of lesion resection
are highly correlated with surgical prognosis.30 This study, through
a 5-year follow-up of a large-scale single-center cohort of FCD
cases, found that the extent of surgical resection/disconnection
was significantly greater in FCD Ia cases compared to FCD IIb,
consistent with previous studies.9,10 Striking a balance between
“complete lesion removal” and “preservation of brain function-
ality” is the core principle ensuring good surgical outcomes in

FCD-related epilepsy. Overall, lesions in FCD II, represented by IIb,
are more distinct and have a more localized epileptogenic
network, whereas those in FCD I, represented by Ia, are more
diffuse and subtle, with a more complex epileptogenic network.
Surgical strategies for IIb lesions should ideally involve limited
“tailored resections” to preserve crucial functions, while Ia lesions
might require extensive removal of MRI-negative epileptogenic
sites to achieve seizure freedom. However, in the pre-operative
evaluation phase, besides imaging techniques, there is still a lack
of an objective and effective diagnostic marker that could provide
pathological information about the epileptogenic focus to guide
personalized surgical strategies. This study identified 8 DEMs in
plasma extracellular vesicles and brain tissue samples from
patients with FCD Ia and IIb types through sequencing, suggesting
these DEMs as potential biomarkers for preoperative pathological
typing in FCD. This pre-operative liquid biopsy technique could
assist surgeons in making personalized surgical strategies and
predicting outcomes, especially for FCD IIb.

Fluid regulation mechanisms in epileptogenic networks
Studies have found that even minor structural lesions can
manifest as widespread functional abnormalities,31 and in
U-fibers in FCD I and II, scattered neurons are related to excitatory
circuits in the cortex and contribute to the formation of FCD
epileptogenic networks.32 However, these physical anatomical
structures alone do not fully explain the state regulation between
nodes in epileptogenic networks, such as excitability. The
maintenance of normal neuronal physiological functions relies
not only on the stability of connection structures but also on the
homeostasis of the neuronal microenvironment, where astro-
cytes,33 microglia,34,35 and extracellular fluid components36 play
crucial roles. In larger epileptogenic networks, the functional
connections between nodes must satisfy two conditions: first, they
must be transportable via blood or other extracellular fluids and
maintain stability; second, they must be able to cross the blood-
brain and blood-cerebrospinal fluid barriers. Extracellular vesicles
serve as a form of intercellular communication and can meet these
conditions. Although no studies have directly confirmed the
hypothesis that “extracellular vesicles are involved in the
formation and regulation of epileptogenic networks,” a substantial
body of research has demonstrated their involvement in the
pathogenesis of epilepsy.37–40 This study, through joint analysis of
differentially expressed miRNA and mRNA in FCD patient plasma
EVs and surgically removed brain FCD samples, analyzed the
regulatory networks between brain tissue miRNA-mRNA and
plasma EVs miRNA, proposing new insights into the differences in
fluid-brain interactions between FCD Ia and IIb patients. In the
study of brain epileptogenic networks, besides the regulatory
modes between neural connections, is there participation of fluid
regulation mechanisms? This research observed that miRNAs in
FCD patient plasma EVs have the potential to regulate genes
involved in neural development and neuroimmunity, providing a
preliminary theoretical basis for the fluid regulation theory of
human brain networks. However, the source of the FCD miRNA
and mRNA analyzed in this study is derived from brain tissue, not
from extracellular vesicles in the brain tissue interstitial space, thus
providing only indirect evidence for their origin from brain tissue.
Moreover, this study lacks low-throughput verification of

Fig. 3 Characterization of EVs from participant plasma and RNA expression profile in brain tissue. a TEM images showed EVs to be nucleus-
free oval or bowl-shaped capsules. b NTA results indicated that the diameter of EVs enriched from plasma was around 30-150 nm. c EV markers TSG101
and Syntenin were all identified in EV-enriched fractions isolated from plasma, however, Calnexin, a negative EV marker, was not found in EV samples.
d The bar plot comparing the small RNA species of EVs enriched fractions isolated from FCD Ia and IIb groups. e The bar plot comparing the top 10miRNA
in brain tissue from FCD Ia and IIb groups. (f) The box plot revealed no statistically significant difference in brain tissue gene expression level between the
FCD Ia and IIb groups. FCD focal cortical dysplasia, EVs extracellular vesicles, TEM Transmission electron microscopy, NTA Nanoparticle tracking analysis.
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sequencing data and functional validation of differentially
expressed miRNA-mRNA interactions, relying only on software
predictions for molecular interaction. Further molecular biological
validation is needed to verify the experimental results.

Differential epileptogenic mechanisms in FCD Ia and IIb
Combining transcriptome data from bulk brain tissue RNA-seq and
miRNA target gene predictions, we identified miRNA target genes
differentially expressed in brain tissue. These target genes are
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likely regulated by miRNAs in extracellular vesicles, playing distinct
roles in the pathogenesis of FCD Ia and IIb. Gene function
enrichment analysis revealed that these target mRNAs are
significantly enriched in immune and inflammatory responses
and cytokine pathways. This finding was further validated by
protein-protein interaction (PPI) analysis and immunohistochem-
istry, suggesting notable differences in immune responses
between FCD Ia and IIb. A multicenter multi-omics study also
corroborated these results, revealing that somatic variants in focal
cortical dysplasia (FCD) type IIb brain tissue demonstrated positive
associations with the mTOR pathway and immune-related Gene
Ontology (GO) terms, whereas FCD type I exhibited strong positive
associations for glycosylation-related processes.41 Several factors
contribute to these differences. First, activation of the mTOR
pathway. Germline mutations, somatic mutations, or “second hits”
(germline mutation plus somatic mutation) in mTOR pathway
genes can lead to FCD II, megalencephaly (including classic
hemimegalencephaly), and tuberous sclerosis complex (TSC).42

The mTOR signaling pathway plays a critical role in immune and
inflammatory responses,43 and abnormal activation of mTOR
signaling leads to elevated inflammatory cytokines, a result
confirmed in both TSC44 and FCD II.45 Second, balloon cells are
key drivers of inflammatory responses. Studies on brain tissues
from FCD IIa and IIb patients surgically removed and compared
with autopsy controls found stronger inherent immune, adaptive
immune, and cytokine production in FCD IIb, particularly in
complement activation and antigen presentation, closely asso-
ciated with the load of balloon cells in FCD IIb.46 Additionally, in
KEGG enrichment analysis, target genes were also enriched in
some viral infection pathways, such as infection by human T-cell
leukemia virus type 1, Kaposi’s sarcoma-associated herpesvirus
(human herpesvirus 8, HHV-8), and interactions between viral
proteins and cytokine-cytokine receptor pathways. Studies in
surgically removed specimens from patients with mesial temporal
lobe epilepsy have detected infections of HHV-6 (human
herpesvirus 6), herpes simplex virus type 1, and HHV-8.47 Similar
evidence of viral infections has also been reported in surgically
removed specimens from patients with FCD IIb, including the
detection of human papillomavirus (HPV) oncoproteins E6 and E7
in FCD IIb, and transfection of E6 and E7 oncoproteins into fetal
mouse brains via uterine electroporation causes FCD.48 These
results suggest that pathogen (e.g., viral) infections may cause
cortical developmental abnormalities and induce immune-
inflammatory responses.

Innovation and future work
This study, selecting the clinically most distinct FCD type Ia and IIb,
first demonstrated the differential expression of DEMs in
extracellular vesicles between these two pathological subtypes,

which could serve as potential biomarkers for preoperative typing
in FCD, aiding in surgical decision-making. Future research could
involve more FCD pathological subtypes to more comprehensively
explore the biological markers of FCD, expand the sample size,
and evaluate the predictive efficacy, enhancing its feasibility as a
clinical diagnostic tool. Combining the sequencing results from
EVs and brain tissue, the study matched the identified DEMs with
DEGs in brain tissue and conducted gene function enrichment
analysis, selecting functionally distinct cellular pathways. Future
studies could target these cellular pathways and target genes for
functional validation, aiding in further understanding the patho-
genesis and epileptogenic mechanisms of FCD and exploring new
targets for drug treatment.
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