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BACKGROUND: Current vital sign monitoring uses skin sensors connected to monitors via wires. Emerging technologies include
non-contact and wireless wearable systems. This systematic review aims to determine the current stage of development of these
technologies and the prospect for clinical translation.
METHODS: A search on Medline, Embase, Cochrane, Scopus, and Engineering Village was conducted for studies published between
January 2014 and August 2024. Two reviewers independently screened articles and extracted data on technology, signals and
feasibility, safety, and accuracy outcomes. Risk of bias was assessed using the QUADAS-2; quantitative and qualitative analyses were
conducted.
RESULTS: Sixty observational studies were included: 43 (72%) non-contact and 17 (28%) wireless sensors. All used a reference
sensor, with a median sample of 10 patients (IQR: 6–29); and median participant characteristics were moderately preterm infants
around 34 weeks of age (IQR: 31–35). Studies typically monitored a single vital sign using offline data processing with good
accuracy. Risk of bias and applicability concerns were driven by small samples, unclear participant selection, and limited reporting.
CONCLUSION: Next generation non-contact and wireless wearable technologies have the potential to enhance neonatal vital sign
monitoring, but research addressing limitations and exploring feasibility and safety are needed. Standardized reporting frameworks
and greater transparency are necessary for comparisons across studies.

Pediatric Research; https://doi.org/10.1038/s41390-025-04469-0

IMPACT:

● Most emerging technologies are non-contact technologies monitoring one vital sign, usually respiratory rate (RR), and a
minority were wireless wearable sensors monitoring more than one vital sign usually heart rate and RR and showed good
accuracy.

● Studies had small sample sizes, short recording durations, and exclusively focused on accuracy, and often missing important
information about participants and study methodology.

● Wireless and non-contact technologies show promise, and this review provides recommendations to improve study design,
extend recording durations, and enhance transparency in reporting and participant selection.

INTRODUCTION
Over 30,000 infants are born each day and 10–11% require
specialized care, often in the Neonatal Intensive Care Unit (NICU).1,2

These infants receive around the clock care, including continuous
monitoring. This involves expensive specialized medical equipment,
like the wired bedside monitors, which are often inaccessible in low-
resource environments.
Continuous vital signs monitoring is an essential part of patient

care in the NICU. Absolute values and trends in heart rate (HR),
respiratory rate (RR), oxygen saturation (SpO2), and temperature are

used for clinical assessment and may be early indicators of clinical
deterioration, informing management decisions.3 However, current
methods to acquire these signals are challenging to patients, parents,
and health care professionals as vital signs are usually obtained by the
use of skin sensors connected to bedside monitors via wires; HR and
RR by using adhesive electrodes, temperature via a probe secured
to the skin with an adhesive, and SpO2 by securing an oximeter probe
on the extremities, with soft adhesive band or strap.3 Blood pressure
(BP), although not continuously monitored, is routinely checked using
a BP cuff, and in rare cases using invasive arterial sampling.
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Therefore, the standard of care bedside monitoring has some
limitations. First, neonates, especially those born prematurely, have
fragile skin susceptible to injury, and adhesives may cause tearing,
irritation, and/or pain, increasing patient discomfort and the risks of
infection.2 Additionally, the oximeter sensor must be tightly
attached for accurate readings, leading to pressure sores or burns
if not moved regularly.4 Second, wires often become tangled,
restricting patient movement and proper positioning, and compli-
cating the delivery of routine nursing care. Finally, numerous sensors
and wires may negatively impact parents, reinforcing a perception
of a highly medicalized environment, creating physical barriers for
touching, holding, or engaging in kangaroo care.5 These factors may
also contribute to parental fear and anxiety.
New research has focused on the development of a next

generation of neonatal vital signs monitoring technologies. In
recent years, two main solutions have been explored: non-contact
monitoring and wireless wearable sensors. Non-contact methods,
such as camera- and radar-based systems, monitor vital signs from
a distance, without touching the patient, and therefore eliminat-
ing any risks to the skin. Wireless wearable sensors remove issues
associated with wires and allow for unrestricted infant positioning,
handling, and spontaneous movements. This systematic review
aims to determine the current stage of development of these
next-generation systems and whether non-invasive contactless
and/or wireless wearable technologies are ready for clinical use in
the NICU. To achieve this, the review will describe non-contact and
wireless wearable vital sign monitoring technologies that have
been developed and tested for neonatal care, investigate and
describe how these technologies perform in terms of feasibility,
safety, and accuracy, and determine the methodological quality of
the studies.

METHODS
The review was designed in accordance with the PRISMA-P
checklist for reporting systematic reviews.6 A protocol was made
publicly available in Prospero registry for systematic reviews (ID:
CRD42023455724).

Search strategy
A search strategy was developed with the support of two
librarians from McGill University: one from the faculty of Medicine
and Health Sciences, and one from the faculty of Engineering. The
following five databases were searched: Medline, Embase,
Cochrane, Scopus, and Engineering Village. The search strategy
was initially developed for Medline, and subsequently translated
for other databases syntax structure. Keywords were broken down
into three categories: device-related, vital signs, and population.
The selected keywords were then used to search the electronic
databases for relevant articles. The initial search strategy was
conducted in August 2023 and was updated in August 2024. The
full search strategy can be found in Supplementary Table S1.

Eligibility criteria
This review only included original research on non-contact and
wireless wearable vital sign monitoring devices for the NICU,
published after 2014, as the topic of this review pertains to recent
technological advances. Thus, all eligible articles were published
between January 2014 and August 2024. No language restrictions
were applied. Studies needed to have at least one NICU patient,
and a non-contact or wireless wearable technology for continuous
monitoring of vital signs. Vital signs included were HR, RR,
temperature, SpO2, and BP. Studies that did not include any
outcomes directly evaluating the technologies were excluded.

Selection process
Full references were exported into Covidence literature review
software (Veritas Health Innovation, Melbourne, Australia) for

deduplication and screening. Additionally, relevant reviews were
backward searched for additional articles. Selected articles under-
went a two-step screening process by two independent reviewers
(E.S., E.J.) using the pre-defined eligibility criteria. First, a title and
abstract screening process was performed, followed by full text
screening of the selected ones (E.S., E.J., D.R., A.G., A.M., V.A.). In
both screening stages, any conflicts were discussed until a
consensus was reached, or in cases where consensus could not
be reached, a third reviewer was consulted.

Data extraction
A standardized data collection form was developed, with input
from a neonatologist (G.S.) and an engineer (D.R.), to extract the
necessary information (Supplementary Methods S1). To assess
what type of non-contact and wireless vital sign monitoring
technologies have been developed, data related to the type of
technology used, vital signs monitored, sensing principles and/or
sensors used to obtain these signals, signal processing, and type
of wireless communication were collected. To investigate the
feasibility, safety, and accuracy of these new technologies, the
following information was extracted: number and characteristics
of included NICU patients, study recording duration, and outcome
measures (i.e., Bland Altman, signal coverage, formal skin scoring),
and the results. Finally, to appraise the methodological quality of
the included studies, key disclosures related to funding and
conflict of interest, and data exclusions were examined. Also, the
Quality Assessment of Diagnostic Accuracy Studies (QUADAS) 2
checklist was applied. Data extraction was also done by two
independent reviews (E.S., A.M.), and both forms appraised to
reach a consensus.

Data analysis
Both quantitative and qualitative syntheses methods were used to
analyze the data. Descriptive measures of all outcomes were
computed for the two different types of technologies, and values
were tested for statistical significance using the Chi-square test of
independence, or Fischer’s exact test in cases of values <5 for
categorical outcomes, and Mann–Whitney U test for quantitative
outcomes; p values for each statistical test are reported. All
statistical analysis was completed using MATLAB (MathWorks,
Natick, MA). The QUADAS 2 checklist, used to assess risk of bias,
was incorporated in the data collection form. Additionally, a sub-
analysis was conducted to compare results from non-contact and
wireless wearable technologies. Given the diversity in device
types, vital signs monitored, and metrics utilized to examine
technologies, a meta-analysis, which requires comparable data
across studies for meaningful aggregation, was not conducted.
Additional analysis and results presented in the Supplementary

Material will be labeled using the prefix E.
The study references corresponding to the descriptive measures

presented in the results is provided in Supplementary Table S2.

RESULTS
The search strategy yielded a total of 4814 results. After removing
duplicates, 3050 articles underwent title and abstract screening,
and 259 were selected for full-text screening. Ultimately, 60
articles where included (Supplementary Fig. S1).7–66 The majority
were published in the last five years and originated from Europe
(40%), Asia (32%), and North America (18%). A figure and table
specifying the year of publication, title, and journal for each
article included are provided in Supplementary Fig. S2 and
Table S3. All studies were prospective observational and included
a reference sensor for comparison. Included articles focused
on NICU participants, but 13 (22%) also had some non-NICU
patients, 3 included healthy term infants, and 10 included
adults.7,22,31,33,38,45,48,50,52,55 Additionally, one study, which took
place in a Medium Care Neonatal Unit, was included as the study
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population included extremely pre-term infants. The median
number of total and NICU participants in studies was 10 (IQR:
6–29; IQR: 6–21, respectively). Thirty-two (53%) studies detailed
specific inclusion and exclusion criteria or reported on the
gestational age (GA) at birth. Twelve (20%) studies reported on
the postmenstrual age and/or 25 (42%) included days of life at
data recordings. Similarly, 17 studies (28%) reported birthweight,
and/or 24 (40%) the weight at the time of the study. Many studies
included low birthweight (<2500 g) and moderately preterm
infants (see Table 1). In the sub-analysis, studies with wearable
sensors had a significantly larger number of participants (p < 0.05)
with no differences on GA and BW between the groups (Table 1).

Non-contact and wireless vital sign monitoring technologies
A total of 43 (72%) studies were related to non-contact and 17
(28%) to wireless wearable technologies. Overall, most studies
monitored only one vital sign, usually computed via offline signal
processing (Table 2). A Venn Diagram showing the frequency of
the specific combinations of vital signs monitored is provided in
Supplementary Fig. S3. Non-contact technologies used predomi-
nantly a single-device system (67%), mostly RGB cameras (74%).
Frequently monitored signs were RR (72%) and HR (51%). Vital
sign generation occurred offline (79%), and rarely utilizing wireless
communication. The torso was the most frequently defined region
of interest, followed by the head. Details on non-contact sensing
methods are provided in Table 3 and Supplementary Table S4.
Wireless wearable devices also primarily utilized a single-device
system (77%) often applied to the torso, and typically usings
bands/elastic straps (41%). The majority computed vital signs in
real-time and transmitted information using Bluetooth (76%).
Most wearable devices monitored more than one vital signal
(59%)—HR (71%) and RR (47%). HR was primarily achieved via

electrocardiography (54%), and RR used a variety of techniques,
including impedance, acoustics, and accelerometry. For SpO2, all
wearable devices relied on photoplethysmography (PPG). Details
about wearable devices sensing methods are provided in Table 4
and Supplementary Table S5.

Feasibility, safety, and accuracy of the new technologies
Feasibility was often measured as the amount of usable data or the
processing times of the technologies. Assessments varied between
the two technologies, reflecting their unique concerns; non-contact
studies primarily focused on the amount of usable data, whereas
wireless wearable studies emphasized coverage, particularly for real-
time vital sign generation. Thirty-eight (63%) studies specified a
planned recording duration, but only 24 (40%) reported the actual
duration per infant. When provided, the median duration was 0.32 h
(IQR: 0.003–1.31). Only 19 studies (32%) reported the total recording
duration across all participants, with a median of 11.3 h
(IQR:1.77–441). In a sub-analysis, wearable studies had longer pre-
defined and total recording durations than non-contact studies.
Details on recording durations are presented in Table 5.
Safety was only examined in 1 study, which focused on the

potential impact on the fragile neonatal skin. Accuracy-related
outcomes were the primary focus of 58 (97%) studies (Table 6).
Accuracy was always assessed by comparing device performance
to a reference measurement and used the Bland-Altman analysis
(Table 6). Analyses of HR and RR using this method revealed low
bias and moderately acceptable 95% limits of agreement (LoA)
(Supplementary Table S6). An accuracy sub-analyses between the
25 (42%) studies, including all data, and 28 (47%) studies that
excluded portions of data showed similar LoA and bias. Non-
contact versus wireless wearable monitoring technologies showed
low bias and LoA (Supplementary Table S6).

Table 1. Participant information.

All (n= 60) Noncontact (n= 43) Wearables (n= 17) p value

Number of participants

Median (IQR) 10 (6–29) 9 (6–19) 28 (10–70) 0.014

Min–Max 1–461 1–50 1–461

NICU participants

Median (IQR) 10 (6–21) 9 (5–19) 20 (10–39) 0.045

Min–Max 1–461 2–50 1–461

Eligibility criteria

Provided 31 (52) 19 (44) 12 (71) 0.065

Gestational age 32 (53) 22 (51) 10 (58) 0.592

Median (IQR) 32.4 (30.7–34.1) 32.5 (30.7–35.0) 31 (28.3–34.2) 0.280

Min–Max 26–38.6 26.0–38.6 28–36

Gestational age at study 12 (20) 6 (14) 6 (35) 0.063

Median (IQR) 33.7 (31.2–35.1) 31.8 (30.9–35.8) 34 (33.3–35.0) 0.378

Min–Max 30.5–38 30.5–36.5 30.9–38

Age at study (days) 25 (42) 18 (42) 7 (41) 0.961

Median (IQR) 23 (14–31) 19 (8–33) 23 (16.3–29.1) 1.00

Min–Max 2–50 2–50 14–36

Birthweight 17 (28) 11 (26) 6 (35) 0.566

Median (IQR) 1600 (1460–2200) 1910 (1598–3016) 1456 (1259–1675) 0.027

Min–Max 1100–3100 1400–3100 1110–2200

Weight at study 24 (40) 16 (37) 9 (53) 0.493

Median (IQR) 2247 (1700–2495) 2274 (1664–2494) 2200 (1750–2530) 1.00

Min–Max 960–3293 960–3293 1245–2600

Legend: results are presented as n (%) or median (IQR).
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Methodological quality of studies
Forty-three (72%) studies reported a funding statement, but 27
(45%) lacked a conflict-of-interest (COI) statement (Supplementary
Table S7). The QUADAS-2 assessment revealed several areas of
concerns regarding risk of bias and applicability. Risk of bias

related to participant selection was deemed unclear in most
studies (60%) due to a lack of inclusion and exclusion criteria and
small sample sizes (Supplementary Fig. S4A). Uncertainty about
the applicability of participant selection was also very common

Table 2. Vital sign monitoring characteristics.

All (n= 60) Noncontact (n= 43) Wearables (n= 17) p value

Signals monitoreda

Respiratory rate 39 (65) 31 (72) 8 (47)

Heart rate 35 (58) 22 (51) 13 (71)

Oxygen saturation 6 (10) 1 (2) 5 (29)

Temperature 3 (5) 0 (0) 3 (18)

Blood pressure 1 (2) 0 (0) 1 (6)

Value generation

Offline 36 (60) 34 (79) 2 (12) p < 0.05

Real-time 19 (32) 4 (9) 15 (88)

Not specified 5 (8) 5 (12) 0 (0)

Number of signs monitored

1 39 (65) 32 (74) 7 (41) 0.058

2 18 (30) 11 (26) 7 (41)

3 3 (5) 0 (0) 3 (18)

Results are presented as n (%).
aSome studies were classified into multiple categories.

Table 3. Non-contact technologies.

Characteristics n= 43

Type of sensora

RGB camera 34 (79)

Infrared camera 12 (28)

Depth camera 5 (12)

Monochrome 5 (12)

Radar 3 (7)

Number of sensors

Single feature device 29 (67)

Multifeatured device 7 (16)

Multiple devices 7 (16)

Information transfera

No wireless transmission 38 (88)

Impulse radio ultra-wideband 2 (5)

Wi-Fi 2 (5)

Cellular data (5 G) 1 (2)

Continuous-wave radar communication 1 (2)

Region of interest (ROI)a

Torso 24 (56)

Head 22 (51)

Variable 9 (21)

Upper limbs 3 (7)

Neck 3 (7)

Lower limbs 2 (5)

No info 3 (7)

Results are presented as n (%).
aSome studies were classified into multiple categories.

Table 4. Wireless wearable technologies.

Characteristics n= 17

Number of devices

1 13 (77)

2 3 (18)

3 1 (6)

Placement (site of contact with body)a

Torso 10 (59)

Lower limbs 6 (35)

Upper limbs 5 (29)

Head 1 (6)

Neck 0 (0)

No info 1 (6)

Method of placementa

Band/strap/elastic 7 (41)

Adhesive 6 (35)

Sock 2 (12)

Vest 1 (6)

Cap 1 (6)

N/A not specified 1 (6)

Information transfera

Bluetooth 13 (76)

No wireless transmission 1 (6)

Near Field Communication 1 (6)

IEEE 802.15.4 protocol 1 (6)

Wi-Fi 1 (6)

Method not specified 1 (6)

Results are presented as n (%).
aSome studies were classified into multiple categories.
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(55%) since many studies lacked key basic descriptors of the
population, such as age and weight, leading to challenges
assessing if the sample was representative of the range of NICU
patients (Supplementary Fig. S4B). Eleven (33%) studies had high

applicability concerns due to exclusions of large groups of NICU
patients, such as those requiring respiratory support or in
incubators. Furthermore, reference measurement presented an
unclear risk of bias in 35 (58%) studies due to the use of

Table 5. Studies design.

Recordings duration All (n= 60) Noncontact (n= 43) Wearables (n= 17) p value

Predefined 38 (63) 25 (58) 13 (76) 0.2412

Median (IQR) 0.25 (0.15–1.00) 0.17 (0.08–0.44) 1 (0.88–8.00) 0.013

Min–Max 0.003–48 0.003–48 0.02–24

Average 24 (40) 19 (44) 5 (29) 0.293

Median (IQR) 0.32 (0.06–1.31) 0.30 (0.05-0.83) 1 (0.17–8) 0.354

Min–Max 0.003–24.2 0.003–5.73 0.003 - 8

Total 19 (32) 13 (30) 6 (35) 0.704

Median (IQR) 11.3 (1.77–441) 11.3 (0.83-42.0) 342 (9.5–657) 0.147

Min–Max 0.04–750 0.04–532 1–750

Results are presented as n (%), or as median (IQR) when applicable.

Table 6. Outcomes Reported.

All (n= 60) Noncontact (n= 43) Wearables (n= 17) p value

Outcomes

Accuracy 58 (97) 42 (98) 16 (94)

Feasibility 16 (27) 12 (28) 4 (24)

Safety 1 (2) 0 (0) 1 (6)

# of outcome categories

1 45 (75) 32 (74) 13 (76) 0.869

2 15 (25) 11 (26) 4 (24)

Accuracy

Compare index to reference 58 (100) 42 (100) 16 (100)

Endpointsa

Bland Altman 39 (67) 28 (65) 11 (69)

Basic descriptive measures 20 (34) 15 (35) 5 (31)

RMSE 21 (36) 21 (49) 0 (0)

Correlation 21 (36) 15 (35) 6 (38)

MAE 20 (34) 19 (44) 1 (6)

Significance testing 11 (19) 7 (16) 4 (25)

Feasibilitya

Amount of usable data 6 (38) 6 (50) 0 (0)

Processing time 4 (25) 3 (25) 1 (25

Coverage 3 (19) 1 (8) 2 (50)

Signal quality 2 (13) 1 (8) 1 (25)

Clinician feedback 2 (13) 1 (8) 0 (0)

Effect of environmental factors 1 (6) 1 (8) 0 (0)

ROI detection success 1 (6) 1 (8) 0 (0)

Endpointsa

Basic descriptive measures 14 (88) 10 (83) 4 (100)

Significance testing 4 (25) 2 (16) 2 (50)

Other 3 (19) 3 (0.25) 0 (0)

Correlation 2 (13) 0 (0) 2 (50)

Results are presented as n (%).
RMSE root Mean Square Error, MAE mean absolute error.
aSome studies were classified into multiple categories. Only one study assessed safety by examining the peel force required to remove the sensor and
documenting visual inspection of the skin following the removal.
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impedance as the bedside RR standard (Supplementary Fig. S4C).
Applicability concerns for the reference measurement were
generally low (58%), as bedside standards were deemed suitable
for addressing the review question. However, 9 (15%) studies had
high applicability concerns, primarily when the chosen reference
was neither the bedside standard nor the gold standard
(Supplementary Fig. S4D). Additionally, some studies provided
incomplete descriptions of reference measurements, only naming
them as “standard” or “routine” monitoring, limiting the ability to
determine the risk of bias.
Risk of bias of the index measurement was determined as

unclear in 34 (57%) studies due to missing information about the
interpretation of results for articles which derived vital signs
offline, and use of short recording sessions, which could
potentially skew the results (Supplementary Fig. S4E). In terms
of applicability of index test, 32 (53%) studies were deemed of low
concern (Supplementary Fig. S4F). However, 8 studies (13%) were
deemed high risk due to stringent experimental conditions, such
as specific lighting, clothing restrictions, and modifications to the
patient incubator. Risk of bias of patient study flow and timing was
determined as low across 42 (70%) studies (Supplementary
Fig. S4G). Regarding key declarations, 22 (51%) non-contact
studies and 9 (53%) wireless wearable studies lack a COI
statement. The QUADAS-2 analysis exhibited similar performance
in terms of risk of bias and applicability concerns between both
technologies. However, studies focusing on wearable devices
tended to provide slightly more detailed information regarding
participant selection criteria and larger sample sizes. The most
notable difference between the two technologies was in the risk
of bias associated with the index tests (p < 0.05); non-contact
studies often used very short recording durations (limited to
periods when the infant was not moving or receiving care),
potentially introducing a positive bias in the results (Supplemen-
tary Table S8).
A summary of the corresponding figures and tables for each

objective is provided on Supplementary Table S9.

DISCUSSION
This systematic review highlights the potential and challenges for
novel non-contact and wireless wearable vital sign monitoring
technologies to be implemented in the NICU. Unfortunately, most
studies included small sample sizes, lacked clear eligibility criteria,
and/or excluded large portions of NICU patients, limiting
generalizability.

Non-contact and wireless vital sign monitoring technologies
The development and testing of these technologies for NICU
patients is increasing, the most frequently investigated technol-
ogies were non-contact devices primarily utilizing RGB camera to
derive RR from either motion change or color changes. Wireless
wearables represented a smaller portion of published studies, and
primarily focused on developing Bluetooth-enabled devices for
monitoring of multiple vital signs, usually HR through miniaturized
ECG’s and RR through a variety of novel methods such as acoustic
and pressure sensors. Both technologies were in early stages of
development, with studies commonly characterized by short
recording durations, small sample sizes, and a focus on stable,
moderately preterm infants. Studies of wearable technologies,
however, tended to report slightly longer recordings and larger
cohorts.

Feasibility, safety, and accuracy
Only a minority of studies examined feasibility or safety. They
featured short recording durations and excluded data recorded
during non-optimal conditions (spontaneous movements or
handling for care), preventing evaluations during a variety of
procedures and levels of activity. Other feasibility factors, such as

signal coverage or gaps, processing time, cost, battery life, and
wireless connection reliability, were not systematically evaluated.
Moreover, healthcare providers’ and parents’ perspectives were
not explored.
Only one study addressed safety by examining the impact of a

wearable device on the skin. For wearable devices, evaluations of
skin injury and pain associated with adhesives removal should be
incorporated. Non-contact technologies also present unique
safety concerns, such as the impact of cutting holes in incubators
for cameras, and the reliability of optical methods for different skin
pigmentations. Privacy concerns, particularly around de-identified
video data, also need attention. Additionally, broader structural
concerns related to interoperability, cybersecurity, and alarm
management will need to be proactively addressed as wireless
and non-contact monitoring technologies move closer to clinical
implementation. In the NICU, these systems will be required to
operate within a complex ecosystem of existing devices like
bedside monitors, ventilators, and infusion pumps. Ensuring
seamless interoperability across devices from multiple manufac-
turers will be essential. New technologies must also avoid
contributing to alarm fatigue by minimizing unnecessary or non-
actionable alerts. Wireless signal interference from other devices
may affect signal integrity, with potential implications for patient
safety. From a cybersecurity standpoint, wireless devices, espe-
cially those using Wi-Fi, introduce new vulnerabilities that require
robust encryption and secure data transmission protocols.
Bluetooth-based systems, while limited to local communication,
present their own challenges, including risks of device mispairing,
especially in open-bay NICUs. These risks highlight the need for
intuitive yet secure authentication mechanisms to ensure correct
device-to-patient matching. Ultimately, the success of these
technologies will depend not only on performance but also on
their thoughtful and safe integration into the broader NICU
infrastructure.
Accuracy was the most commonly reported outcome, typically

using the Bland-Altman method, with most studies reporting low
bias and good LoA. However, few studies evaluated clinical
accuracy using tools such as Clarke Error Grids or Event Analysis,
which provide context on the clinical relevance of the agreement.
Including these metrics would enhance clinicians’ ability to
interpret the practical implications for patient care.

Methodological quality of the studies
Significant inconsistencies and gaps in the methodology and
reporting practices across studies were identified, making it
challenging to assess selection bias or applicability. Demographics
such as GA, postmenstrual age at study, birth weight, and/or
weight at study were often missing, and only a minority of
investigations reported details on respiratory support or active
diagnoses. Furthermore, descriptions of reference technologies
were frequently inadequate, typically labeled as “standard
physiological monitors”. Data collection protocols lacked clear
descriptions, including pre-defined and actual recording durations
and any adjustments, such as restricting recordings to non-care
periods, uncovered infants, or specific body positions. Transparent
data analysis, including total data collected and explanations for
any exclusions, and any data processing, is also crucial. Finally,
many studies lack disclosure statements on funding and potential
conflicts of interest. This is especially important given the high
potential for commercialization.

Prospect for clinical application
To obtain regulatory approval from agencies such as the U.S. Food
and Drug Administration or Health Canada, new monitoring
devices must demonstrate strong performance across multiple
domains, either through novel evidence or by establishing
substantial equivalence to an existing device.67,68 Beyond
accuracy, which is the single focus of most studies, devices
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intended for use in the NICU must show consistent performance
with respect to signal availability, data integrity, and processing
under real-world conditions.69 Safety considerations are critical
and should include biocompatibility (for skin-contacting devices),
thermal and electrical safety, and compliance with wireless
emission standards.70–72 Moreover, usability and integration into
clinical workflows must be validated with intended end-users,
such as NICU allied health care providers and parents.73 Research
should therefore extend beyond accuracy to a comprehensive
evaluation of these additional aspects of device performance.

Proposed framework
To improve consistency and quality in this field, and to address
the challenges identified in this review, we propose two published
initiatives aimed at enhancing both methodological rigor and
reporting standards.
First, to address reporting inconsistencies, we present an

expanded checklist adapted from the 2016 CONSORT extension
for pilot and feasibility studies, tailored specifically for research
involving novel monitoring technologies in the NICU74. This
checklist aims to promote standardized, comprehensive reporting,
thereby improving research quality, interpretability, and relevance,
and supporting the development of more robust study designs
(Supplementary Table S10)72.
Additionally, we have developed and published a study

protocol for a wireless wearable monitoring system that outlines
clear methodology for data collection, and includes a detailed
assessment of device accuracy, safety, and feasibility.75

Beyond standard vital sign monitoring
This review focused on the minimum general monitoring
requirements for all patients in the NICU: HR, RR, SpO2,
temperature, and BP. However, most infants in the NICU will also
undergo additional monitoring tailored to their clinical status,
including neurological, gastrointestinal, and advanced hemody-
namic assessments. Next-generation non-contact and wireless
technologies are increasingly being developed to address these
needs, with novel devices targeting non-rudimentary parameters
such as wireless EEG for neurological monitoring, acoustic sensors
for bowel motility, wireless near-infrared spectroscopy for cerebral
oxygenation, and systems to monitor phototherapy expo-
sure.66,76–79 These innovations reflect a broader movement toward
more comprehensive, non-invasive monitoring in the NICU, with
the potential to reduce patient burden and expand the range of
parameters captured in both acute and longitudinal care.

Limitations
This review has some limitations. First, studies that included NICU
patients but did not present separate outcome data were
excluded, potentially leading to the exclusion of some relevant
investigation. Also, the inconsistencies in reporting patient
demographics or duration of recordings, using means, medians,
or ranges, introduced variability in the pooled descriptive data
that may affect the precision of aggregated summaries. Further,
this heterogeneity prevented more detailed analysis of the
characteristics of key participant subgroups, like premature or
low birthweight infants. Finally, while included studies showed
promising accuracy results, the potential for publication bias
toward positive findings should be acknowledged. As a result,
accuracy may have been overestimated, and outcomes related to
feasibility or suboptimal performance underreported or omitted.

CONCLUSION
Next generation non-contact and wireless wearable technologies
have the potential to enhance vital sign monitoring in the NICU,
but future research addressing current limitations and exploring
feasibility and safety are needed. Standardized reporting

frameworks and greater transparency are necessary for compar-
isons across studies.

DATA AVAILABILITY
Full set of extracted data used in the systematic review will be made available upon
reasonable request.
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