

BRIEF COMMUNICATION

OPEN

DARolutamide Observational (DAROL) study in patients with nonmetastatic castration-resistant prostate cancer: prespecified third interim analysis

Evan Y. Yu¹✉, Hiroyoshi Suzuki², Christopher M. Pieczonka³, Geoffrey Gotto⁴, Alberto Briganti⁵, Murilo Luz^{6,24}, Declan Murphy⁷, Ryan Malone⁸, Joelle Hamilton^{9,25}, Jonathan E. Chan¹⁰, Paul Sieber¹¹, Robert W. Given¹², Eva Hellmis¹³, Thomas Kretz¹⁴, Philipp Spiegelhalder¹⁵, Antonio Gómez-Caamaño¹⁶, Yaovi Messan Amela¹⁷, Xavier Artignan¹⁸, Hiroji Uemura¹⁹, Naoki Fujita²⁰, Patrick Adorjan²¹, Mercedeh Ghadessi²², Frank Verhollen²¹ and Andrew J. Armstrong¹

© The Author(s) 2025

BACKGROUND: DAROL is an ongoing study of real-world safety and effectiveness of darolutamide in patients with nonmetastatic castration-resistant prostate cancer (nmCRPC).

SUBJECTS/METHODS: This prespecified interim analysis included 550 patients with nmCRPC who completed ≥6 months of treatment with darolutamide 600 mg twice daily.

RESULTS: Darolutamide showed consistent safety and effectiveness in DAROL vs ARAMIS. Most treatment-emergent adverse events were grade 1/2. Two-year overall survival and metastasis-free survival rates and prostate-specific antigen responses were similar to ARAMIS.

CONCLUSIONS: These findings indicate that darolutamide offers effectiveness and a favorable safety profile in the broad range of patients seen in clinical practice.

Prostate Cancer and Prostatic Diseases; <https://doi.org/10.1038/s41391-025-01047-7>

Darolutamide is an androgen receptor inhibitor that is structurally different by design, with limited potential for drug–drug interactions and low blood–brain barrier penetration [1–5]. In phase 3 trials, darolutamide significantly improved metastasis-free survival (MFS) and overall survival (OS) in patients with nonmetastatic castration-resistant prostate cancer (nmCRPC), and significantly improved OS (with docetaxel) and radiologic progression-free survival (without docetaxel) in patients with metastatic hormone-sensitive prostate cancer, with a favorable safety profile in all phase 3 studies [6–9]. It is important to validate results from clinical trials with real-world evidence. Here, we report findings from a planned interim analysis of the DARolutamide Observational study (DAROL, NCT04122976).

DAROL is an ongoing, global, open-label, single-arm, non-interventional real-world study in patients with nmCRPC for whom the decision to treat with darolutamide was made according to local practice before enrollment. The study was approved by the ethics committee/institutional review board at

each participating center; all patients provided informed consent before participation.

The primary objective of DAROL is the assessment of safety outcomes, including treatment-emergent adverse events (TEAEs). Key secondary outcomes of DAROL include OS, MFS, time to prostate-specific antigen (PSA) progression, and PSA reduction of ≥90% (PSA90) from baseline. In DAROL, PSA progression did not require confirmation, reflecting real-world practice where treatment adjustment sometimes occurs after even just one PSA rise; this differed from ARAMIS, where PSA progression confirmation was mandatory. In DAROL, safety analyses include all patients who received at least one dose of darolutamide; effectiveness was assessed in the full analysis set, comprising patients who received at least one dose of darolutamide, met all eligibility criteria, and had at least one post-baseline assessment after the first dose of darolutamide.

This third planned interim analysis (IA3) of DAROL included 550 patients overall (North America 35%, Europe 36%, Asia–Pacific 28%, Latin America 1.5%), of whom 470 were included in the full

¹Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, USA. ²Toho University Sakura Medical Center, Chiba, Japan. ³Associated Medical Professionals of NY, Syracuse, NY, USA. ⁴University of Calgary, Southern Alberta Institute of Urology, Calgary, AB, Canada. ⁵Urological Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy. ⁶Hospital Erasto Gaertner, Curitiba, Brazil. ⁷University of Melbourne and Peter MacCallum Cancer Centre, Melbourne, Australia. ⁸First Urology, Jeffersonville, IN, USA. ⁹Urology Centers of Alabama, Homewood, AL, USA. ¹⁰Department of Surgery, University of Toronto, Toronto, ON, Canada. ¹¹Keystone Urology Specialists, Lancaster, PA, USA. ¹²Urology of Virginia, Virginia Beach, VA, USA. ¹³Urologicum Duisburg, Duisburg, Germany. ¹⁴Urologie-Heinsberg, Heinsberg, Germany. ¹⁵Urologie Neandertal, Mettmann, Germany. ¹⁶Hospital Clínico Universitario, Santiago de Compostela, Spain. ¹⁷Centre Bourgogne, Hôpital Privé le Bois, Lille, France. ¹⁸Centre Hospitalier Privé Saint-Grégoire, Saint-Grégoire, France. ¹⁹Yokohama City University Medical Center, Yokohama, Japan. ²⁰Hirosaki University Graduate School of Medicine, Hirosaki, Japan. ²¹Bayer Consumer Care AG, Basel, Switzerland. ²²Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA. ²³Duke University School of Medicine, Durham, NC, USA. ²⁴Present address: Icahn School of Medicine at Mount Sinai, New York, USA. ²⁵Present address: Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA. ✉email: evanyu@uw.edu

Received: 11 June 2025 Revised: 1 October 2025 Accepted: 16 October 2025

Published online: 01 November 2025

Table 1. Treatment-emergent adverse events in DAROL IA3 and ARAMIS.

TEAEs, n (%)	DAROL IA3 SAF (n = 550)	ARAMIS darolutamide arm (n = 954) ^a [6]
Any grade	313 (56.9)	764 (83.2)
Worst grade		
Grade 3/4	84 (15.3)	236 (24.7)
Grade 5	10 (1.8)	37 (3.9)
Serious	85 (15.5)	237 (24.8)
Leading to darolutamide discontinuation	38 (6.9)	85 (8.9)
TEAEs occurring in $\geq 2.5\%$ of patients in DAROL IA3		
Fatigue ^b	85 (15.5)	115 (12.1)
Asthenia	31 (5.6)	36 (3.8)
UTI	25 (4.5)	47 (4.9)
Hot flush	23 (4.2)	50 (5.2)
Constipation	20 (3.6)	60 (6.3)
Diarrhea	17 (3.1)	66 (6.9)
Dizziness	17 (3.1)	35 (3.7)
Falls ^b	15 (2.7)	36 (3.8)
Hematuria	15 (2.7)	41 (4.3)
Anemia	14 (2.5)	0
Nausea	14 (2.5)	48 (5.0)
Rash ^b	14 (2.5)	28 (2.9) ^c
COVID-19	14 (2.5)	N/A

Data for ARAMIS are adapted from Fizazi K, et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. *N Engl J Med.* 2019;380:1235–1246 [6].

COVID-19 coronavirus 2019 disease, IA3 third interim analysis, N/A not applicable, SAF safety analysis set, TEAE treatment-emergent adverse event, UTI Urinary tract infection.

^aOnly 945/955 patients started treatment with darolutamide.

^bTEAE commonly associated with androgen receptor inhibitor therapy; other TEAEs commonly associated with androgen receptor inhibition include hypertension (reported in nine patients in DAROL IA3), bone fracture (seven patients), and mental impairment disorders (four patients).

^cGrouped term.

analysis set. In DAROL IA3 versus ARAMIS, patients were slightly older (median 79 years, interquartile range [IQR] 73–84, vs 74 years, IQR 68–80), had proportionally greater representation of Asian and Black patients (35% vs 16%), a wider range of Eastern Cooperative Oncology Group performance status (0–1 81%, 2–3 5.8%, missing 13%, vs 0–1 100% in ARAMIS), and higher proportion with Gleason score ≥ 8 at diagnosis (49% vs 40%). Median (IQR) PSA before study start was lower in DAROL vs ARAMIS (4.1 ng/mL [2.3–9.5] vs 9.0 ng/mL [4.4–6.6], and fewer patients had PSA doubling time ≤ 6 months (40% vs 70%). At the data cut-off date for DAROL IA3 (July 17, 2023), median (IQR) follow-up and treatment durations were 17 months (12–23) and 15 months (10–21), respectively.

Incidences of any-grade TEAEs and serious TEAEs were numerically lower in DAROL IA3 than in ARAMIS, with a similar proportion of TEAEs leading to treatment discontinuation (Table 1). Only fatigue and asthenia had an incidence $\geq 5\%$ (15.5% and 5.6%, respectively).

OS, MFS, and time to unconfirmed PSA progression data were not mature at DAROL IA3. However, OS rates at 24 months were similar to rates in ARAMIS (DAROL 88%; ARAMIS 90%), as were PSA progression-free rates at 24 months (DAROL 55%; ARAMIS 58%).

PSA90 decline rates at any time were also similar (DAROL 54%; ARAMIS 51%). MFS rates at 24 months were numerically higher in DAROL than in ARAMIS (DAROL 78%; ARAMIS 70%).

The aim of DAROL is to assess the safety and effectiveness of darolutamide in patients with nmCRPC under real-world conditions, to support the findings from the phase 3 ARAMIS study. The DAROL IA3 population was more diverse than the ARAMIS population randomized to darolutamide; nevertheless, the safety profile of darolutamide in DAROL was consistent with that in ARAMIS [6, 7], with low TEAE incidences and no new safety signals. Darolutamide discontinuation incidences were low in DAROL IA3, with $<10\%$ of patients discontinuing due to TEAEs, similar to ARAMIS and to the frequency (10.2%) reported in a retrospective study of patients with nmCRPC treated in US urology practices (DEAR); in DEAR, darolutamide was associated with the lowest frequency of discontinuations due to adverse events among all androgen receptor inhibitors (including apalutamide and enzalutamide) [10]. The lower incidence of TEAEs and similar frequency of discontinuations may indicate that patients in the real world are less likely to report low-grade TEAEs but as likely to discontinue treatment once TEAEs become intolerable. These findings are important, because nmCRPC is usually asymptomatic, and TEAEs can reduce patients' quality of life; the availability of efficacious and well-tolerated treatments has been a key unmet need for patients with nmCRPC.

Although DAROL IA3 survival data are immature, 2-year MFS was numerically higher and OS and PSA progression-free rates were similar to the rates in ARAMIS [6, 7]. Moreover, darolutamide produced a PSA response in most patients that was consistent with ARAMIS, with $>50\%$ of patients reaching PSA90 at any time. These results indicate that the effectiveness of darolutamide in real-world settings could be consistent with efficacy demonstrated in clinical trials.

Findings from DAROL IA3 should be interpreted with caution, especially considering limitations inherent to noninterventional, real-world evidence studies. Visits were not on a fixed schedule, which could lead to capture of fewer adverse events or delays in notifications of death or progression events. In a single-arm study, it is not possible to distinguish between treatment effectiveness and the natural course of the disease. However, there can be relative confidence that observations reflect actual treatment effects, given the similarity in findings between DAROL IA3 and ARAMIS [6, 7]. Moreover, real-world studies have fewer eligibility criteria compared with clinical trials, which could introduce confounding factors, such as comorbidities and concomitant medications, potentially resulting in drug–drug interactions. Nevertheless, including a broader range of patients than in ARAMIS provides supporting evidence for use of darolutamide in the wide spectrum of patients seen in clinical practice. It increases the heterogeneity of the patient population and often includes patients with greater comorbidities and more limited performance status. Despite these differences, there was considerable consistency between DAROL and ARAMIS data, indicating that darolutamide offers favorable effectiveness and safety profiles in the real-world setting.

DAROL IA3 supports the established safety and effectiveness profiles of darolutamide in patients with nmCRPC in a varied and clinically diverse population in real-world settings. The study is ongoing, and the anticipated last patient last visit date is July 2026.

DATA AVAILABILITY

Availability of the data underlying this publication will be determined according to Bayer's commitment to the EFPIA/PhRMA "Principles for responsible clinical trial data sharing". This pertains to the scope, time point, and process for data access. Bayer commits to sharing, on request from qualified scientific and medical researchers, patient-level clinical trial data, study-level clinical trial data, and protocols from

clinical trials in patients for medicines and indications approved in the USA and EU as necessary for conducting legitimate research. This applies to data on new medicines and indications that have been approved by the EU and US regulatory agencies on or after January 1, 2014. Interested researchers can use www.vivli.org to request access to anonymized patient-level data and supporting documents from clinical studies to conduct further research that can help advance medical science or improve patient care. Information on the Bayer criteria for listing studies and other relevant information is provided in the member section of the portal. Data access will be granted to anonymized patient-level data, protocols, and clinical study reports after approval by an independent scientific review panel. Bayer is not involved in the decisions made by the independent review panel. Bayer will take all necessary measures to ensure that patient privacy is safeguarded.

REFERENCES

1. Moilanen AM, Riikonen R, Oksala R, Ravanti L, Aho E, Wohlfahrt G, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling-directed prostate cancer therapies. *Sci Rep.* 2015;5:12007.
2. Zurth C, Sandmann S, Trummel D, Seidel D, Gieschen H. Blood-brain barrier penetration of [¹⁴C] darolutamide compared with [¹⁴C] enzalutamide in rats using whole body autoradiography. *J Clin Oncol.* 2018;36:345.
3. Zurth C, Koskinen M, Fricke R, Prien O, Korjamo T, Graudenz K, et al. Drug-drug interaction potential of darolutamide: in vitro and clinical studies. *Eur J Drug Metab Pharmacokinet.* 2019;44:747–59.
4. Shore N, Zurth C, Fricke R, Gieschen H, Graudenz K, Koskinen M, et al. Evaluation of clinically relevant drug-drug interactions and population pharmacokinetics of darolutamide in patients with nonmetastatic castration-resistant prostate cancer: Results of pre-specified and post hoc analyses of the phase III ARAMIS trial. *Target Oncol.* 2019;14:527–39.
5. Williams SCR, Mazibuko N, O'Daly O, Zurth C, Patrick F, Kappeler C, et al. Comparison of cerebral blood flow in regions relevant to cognition after enzalutamide, darolutamide, and placebo in healthy volunteers: A randomized crossover trial. *Target Oncol.* 2023;18:403–13.
6. Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, et al. Darolutamide in nonmetastatic, castration-resistant prostate cancer. *N Engl J Med.* 2019;380:1235–46.
7. Fizazi K, Shore N, Tammela TL, Ulys A, Vjaters E, Polyakov S, et al. Nonmetastatic, castration-resistant prostate cancer and survival with darolutamide. *N Engl J Med.* 2020;383:1040–9.
8. Smith MR, Hussain M, Saad F, Fizazi K, Sternberg CN, Crawford ED, et al. Darolutamide and survival in metastatic, hormone-sensitive prostate cancer. *N Engl J Med.* 2022;386:1132–42.
9. Saad F, Vjaters E, Shore N, Olmos D, Xing N, Pereira de Santana Gomes AJ, et al. Darolutamide in combination with androgen-deprivation therapy in patients with metastatic hormone-sensitive prostate cancer from the phase III ARANOTE trial. *J Clin Oncol.* 2024;42:4271–81.
10. George DJ, Morgans AK, Constantinovici N, Khan N, Khan J, Chen G, et al. Androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer. *JAMA Open Netw.* 2024;7:e2429783.

ACKNOWLEDGEMENTS

We thank the patients and their families, and all the investigators for their involvement in the DAROL study. Statistical analyses were supported by Kevin Clark, Virginie Aris, Julie Xu, and Jessica Abramowski of Bayer. Writing and editorial support for the development of this manuscript was provided by Alex Morrison, MSc, and Sara Black, ISMPP CMPP™, of Luna, OPEN Health Communications (London, UK) and funded by Bayer HealthCare Pharmaceuticals, Inc., in accordance with Good Publication Practice (GPP) guidelines (www.ismpp.org/gpp-2022). The authors retained full editorial control over the content of the manuscript and the decision to publish.

AUTHOR CONTRIBUTIONS

EYY had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. EYY, HS, CMP, AB, ML, DM, and AJA were involved in conceptualization, investigation, resource provision, and writing, reviewing, and editing of the manuscript. GG, RM, JH, JEC, PS, RWG, EH, TK, PS, AGC, YMA, HU, and NF were involved in resource provision, investigation, and writing, reviewing, and editing of the manuscript. PA and FV were involved in conceptualization and writing, reviewing, and editing of the manuscript. MG was involved in data curation, formal analysis, and writing, reviewing, and editing of the manuscript.

FUNDING

This study was supported by Bayer AG. Bayer was involved in the design of the study; collection, management, analysis, and interpretation of the data; and preparation, review, and approval of the manuscript.

COMPETING INTERESTS

EYY certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (e.g., employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patients filed, received, or pending), are the following: the DAROL study was sponsored by Bayer, which also funded medical writing and editorial support in the development of this manuscript; EYY has received consulting fees from Johnson & Johnson, Bayer, Merck, Advanced Accelerator Applications/Novartis, AstraZeneca, Oncternal Therapeutics, Tolmar, Bristol-Myers Squibb, Loxo/Lilly, Aadi Bioscience, and Lantheus, and research funding paid to his institution from Dendreon, Merck, Seagen/Pfizer, Blue Earth Diagnostics, Bayer, Lantheus Medical Imaging, Tyra Biosciences, and Oncternal Therapeutics; HS has received fees and payment or honoraria from Janssen Research & Development, AstraZeneca, Astellas Pharma, Bayer Yakuhin, Bayer, Janssen Oncology, Pfizer, Takeda, Sanofi, Nippon Shinyaku, Daiichi Sankyo, Novartis, Kissei Pharmaceutical, and Merck Biopharma, and research funding paid to his institution from AstraZeneca, Astellas Pharma, Janssen, Nihon Kayaku, and Bayer Yakuhin; CMP has received fees from Pfizer/Astellas, Bayer, Janssen Oncology, Tolmar, Sun Pharma, Dendreon, AstraZeneca, Merck, Bristol-Myers Squibb, and Novartis, payment or honoraria from Bayer, Dendreon, Pfizer, Astellas Pharma, Sun Pharma, Myovant Sciences, Janssen Oncology, AstraZeneca, Merck, Bristol-Myers Squibb, and Novartis, has held leadership or fiduciary roles and stock in Associated Medical Professionals of New York and US Urology Partners, and has received research funding from Bayer, Pfizer, Astellas Pharma, Merck, AstraZeneca, Advantagene, Dendreon, Janssen Oncology, and InVitae; GG has received fees and honoraria from Janssen, Astellas Pharma, Bayer, Merck, AstraZeneca, Ferring, Pfizer, Tolmar, McKesson, EMD Serono, Bristol-Myers Squibb, and Sanofi, support for attending meetings and/or travel from Janssen and Pfizer, and research funding from Janssen; AB has received fees and honoraria from Astellas Pharma, Janssen-Cilag, OPKO Health, MDxHealth, Ferring, Bayer, AstraZeneca, Hauora, and Pfizer, and research funding from Sandoz-Novartis and Merck Sharp & Dohme; ML has received fees and payment or honoraria from Bayer, Janssen, and Astellas Pharma, support for attending meetings and/or travel from Device Technologies; RM has received payment or honoraria from Dendreon and Johnson & Johnson, participated on a data safety monitoring board or advisory board for Novartis, Ferring, AstraZeneca, Caris, Dendreon, and Telix, and has held a leadership or fiduciary role in Indiana Urologic Society; JH has consultancy agreements with Bayer HealthCare Pharmaceuticals, Johnson & Johnson, Dendreon, and Pfizer; JEC has received payment or honoraria from Boston Scientific Corporation, Bayer, Janssen (Johnson & Johnson), Laborie Medical Technologies, Tolmar, Tersera, and Angiodynamics, support for attending meetings and/or travel from Angiodynamics, Janssen, Tolmar, Tersera, and Laborie Medical Technologies, and has participated on data safety monitoring boards or advisory boards for Janssen, Tolmar, Tersera, and Bayer; PS has received consulting fees from Pfizer, Accord, and Verity, payment or honoraria for speakers' bureau for Astellas, Bayer, Dendreon, Janssen, Merck, Myovant, and Pfizer, and research funding from Astellas, AstraZeneca, Bayer, Dendreon, Janssen, Merck, Myovant, Orion, and Pfizer; RWG has received payment or honoraria from Janssen, Bayer, and Myovant, and support for attending meetings and/or travel from Francis Medical; EH has received consulting fees from Johnson & Johnson, Ipsen, Bristol-Myers Squibb, Roche, Takeda, AstraZeneca, Bayer Vital, Pfizer, Eisai, Merck Sharp & Dohme, Hexal, Merck, Apogeapha, Astellas, Novartis, Merck, Orion, and Accord, payment or honoraria from Johnson & Johnson, Ipsen, Bristol-Myers Squibb, Roche, Takeda, AstraZeneca, Bayer Vital, Eisai, Apogeapha, Pfizer, Merck Sharp & Dohme, Hexal, and Merck, support for attending meetings and/or travel from Bayer HealthCare, Johnson & Johnson, Pfizer, and AstraZeneca, and has participated on data safety monitoring boards or advisory boards for Johnson & Johnson, Bayer HealthCare, AstraZeneca, and Pfizer; AGC has received payment or honoraria and support for attending meetings or travel from Astellas, Bayer, and Janssen; HU has received payment or honoraria from Pfizer, Bayer, AstraZeneca, Ferring Pharma, and Takeda, and has participated on a data safety monitoring board or advisory board for Janssen; PA, MG, and FV are employees of Bayer; AJA has received consulting fees from Astellas Scientific and Medical Affairs Inc, AstraZeneca, Bayer, Bristol-Myers Squibb, Epic Sciences, Exelixis, FORMA

Therapeutics, GoodRx, IDEAYA Biosciences, Janssen, Merck, Myovant Sciences, Novartis, and Pfizer, support for attending meetings and/or travel from Astellas Scientific and Medical Affairs Inc., and research funding to his institution from Amgen, Astellas Pharma, AstraZeneca, Bayer, BeiGene, Bristol-Myers Squibb, Constellation Pharmaceuticals, Dendreon, FORMA Therapeutics, Gilead Sciences, Janssen Oncology, Merck, Novartis, Pfizer, and Roche/Genentech; all other authors report no additional conflicts of interest.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Evan Y. Yu.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025