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Targeting AKR1BI inhibits metabolic reprogramming to
reverse systemic therapy resistance in hepatocellular carcinoma
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% and Jiahong Dong'™

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, and resistance to systemic therapies remains a
significant clinical challenge. This study investigated the mechanisms by which metabolic reprogramming contributes to systemic
treatment resistance in HCC. We established HCC cell lines with multidrug resistance characteristics and observed enhanced
metabolic activity in these cells. Integrated multiomics analyses revealed hyperactive glucose-lipid and glutathione metabolic
pathways that play critical roles in supporting tumor cell proliferation and survival. We constructed a metabolic reprogramming
atlas for HCC-resistant cells and identified aldo-keto reductase (Aldo-keto reductase family 1 Member B1, AKR1B1) as a key regulator
of this reprogramming, which sustains drug resistance by regulating energy metabolism and enhancing stress tolerance.
Importantly, AKR1B1 expression levels are closely associated with drug resistance and poor prognosis in HCC patients. The secretory
nature of AKR1B1 not only underscores its predictive value but also facilitates the intercellular transmission of drug resistance. In
terms of overcoming resistance, the AKR1B1 inhibitor epalrestat significantly mitigated drug resistance when it was used in
combination with standard therapies. These findings underscore the importance of metabolic reprogramming in the development
of HCC resistance. AKR1B1, a key enzyme that regulates metabolic reprogramming, has been identified as a potential biomarker

and therapeutic target, providing new insights into overcoming resistance in HCC treatment.
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INTRODUCTION

HCC, one of the leading causes of cancer-related mortality
worldwide, is characterized by persistently high incidence and
mortality rates.! The majority of patients are diagnosed at
advanced stages of the disease, necessitating systemic therapy
as the primary treatment approach.””* However, the emergence of
tumor resistance to therapeutic agents poses a significant clinical
challenge, frequently leading to suboptimal therapeutic outcomes
and unfavorable prognoses.” As first-line tyrosine kinase inhibitors
for advanced HCC, lenvatinib and sorafenib exhibit distinct
receptor-targeting profiles despite their shared antiangiogenic
properties. Lenvatinib potently inhibits VEGFR1-3, FGFR1-4, and
PDGFRa,® preferentially disrupting angiogenic signaling. In con-
trast, sorafenib broadly targets RAF kinase alongside VEGFR2/3
and PDGFRB,’ enabling dual inhibition of proliferation and
angiogenesis pathways. These differential selectivity patterns
may contribute to the heterogeneous resistance mechanisms
observed in clinical practice®® Traditionally, the mechanisms
underlying tumor resistance have been attributed to factors such
as alterations in drug efflux pumps, dysregulation of intracellular
signaling pathways, variations in drug metabolism, and enhanced
DNA repair mechanisms.'® HCC develops heterogeneous

; https://doi.org/10.1038/541392-025-02321-9

resistance to lenvatinib and sorafenib through genetic, signaling,
and microenvironmental adaptations. Mutation-driven resistance
mechanisms include KRAS variants that sustain EGFR pathway
activation, bypassing TKI targeting.!' Signaling plasticity is
evidenced by EGFR-STAT3-ABCB1 axis reactivation in lenvatinib-
resistant models'> and FGFR4-ERK pathway dependency in
sorafenib-refractory cases.'®> Noncoding RNAs further modulate
resistance phenotypes, with circTTC13 enhancing sorafenib
tolerance via SLC7A11 upregulation,'* whereas LINC01056 loss
promotes compensatory survival signaling.'® Microenvironmental
contributions span hypoxia-induced HIF-Ta-mediated stem-
to immune cell-mediated cytokine networks that sustain
therapeutic tolerance.'®'® Notably, emerging evidence implicates
exosomal cross-talk in the dissemination of resistance factors
across tumor subclones.”® With the advent of single-cell tran-
scriptomics, the ability to investigate resistance-related cellular
heterogeneity at the single-cell level and analyze the genetic
characteristics of resistant cells has provided unprecedented
insights, facilitating a more precise elucidation of the mechanisms
underlying therapeutic resistance.

In recent years, metabolic reprogramming in tumor cells has
been identified as a novel mechanism contributing to therapeutic
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resistance, attracting considerable attention within the field. Tumor
metabolic reprogramming refers to the adaptive process by which
cancer cells alter their metabolic pathways to meet the heightened
demands for energy and biosynthetic precursors, thereby facilitat-
ing cellular proliferation and promoting survival under adverse
conditions.?’ The concept of metabolic reprogramming traces back
to the early 20th century, when Otto Warburg first reported that
tumor cells exhibit an abnormally high rate of glycolysis even
under aerobic conditions, a phenomenon now acknowledged as a
hallmark of the extensive metabolic rewiring that defines cancer
cells.?? This metabolic reprogramming not only perturbs conven-
tional metabolic networks but also critically contributes to tumor
cell proliferation, survival, immune evasion, and metastasis. With
the advent of advanced multiomics technologies, researchers have
increasingly focused on characterizing the intricate metabolic
reprogramming landscape of tumor cells. Such efforts hold the
promise of revealing the mechanisms underlying resistance and
pinpointing key metabolic enzymes that shape therapeutic
outcomes. In our previous review of studies on metabolic
reprogramming in resistant HCC cells, we reported that, compared
with their nonresistant counterparts, resistant HCC cells undergo a
striking metabolic shift, which is characterized by increased energy
storage, elevated energy production, and increased antioxidant
capacity.®> However, to date, no study has comprehensively
integrated metabolite- and enzyme-level analyses to construct a
comprehensive metabolic reprogramming atlas of resistant HCC.
Leveraging multiomics approaches provides a promising frame-
work for identifying novel therapeutic targets, thereby paving the
way for more effective treatment strategies against HCC.

Through an integrated approach combining transcriptomics,
metabolomics, and metabolic flux analysis, we identified AKR1B1
as a key enzymatic target implicated in therapeutic resistance in
HCC. AKR1B1, a rate-limiting enzyme in the polyol pathway,
catalyzes the reduction of glucose to sorbitol and consequently
modulates cellular metabolism and energy homeostasis.>**
Previous studies have demonstrated that, in lung cancer cells,
AKR1B1 can interact with STAT3 to regulate the expression of the
cystine transporter SLC7A11, thereby promoting resistance to
TKIs.%® For the first time, our study revealed that AKR1B1 is critically
involved in mediating resistance in HCC by modulating metabolic
reprogramming. However, its precise role in the context of precise
HCC diagnosis and targeted therapy warrants further investigation.

This study aims to comprehensively investigate the metabolic
reprogramming mechanisms underlying therapeutic resistance in
HCC, with an emphasis on delineating the metabolic features
linked to resistance. By constructing a detailed atlas of glucose and
lipid metabolic reprogramming in resistant HCC cells, this work
offers valuable insights into the metabolic adaptations that
underpin resistance. Notably, our findings highlight AKR1B1 as a
secreted protein with considerable potential as a biomarker for the
early detection of HCC resistance. Furthermore, as a key metabolic
enzyme influencing resistance, AKR1B1 has been identified as a
promising therapeutic target for combination treatment strategies.
Importantly, we demonstrated that the combined use of epalrestat,
a clinically approved AKR1B1 inhibitor commonly used for the
treatment of diabetic peripheral neuropathy, effectively mitigates
Lenvatinib resistance. These findings not only offer a novel
perspective for understanding the mechanisms of resistance in
HCC but also lay a theoretical foundation for the development of
novel predictive biomarkers and therapeutic approaches aimed at
overcoming resistance in HCC.

RESULTS

Metabolic alterations accompanying drug resistance in
hepatocellular carcinoma

The development of resistance to systemic therapies in HCC
patients poses a significant barrier to extending patient survival.
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To elucidate the mechanisms of resistance and identify potential
strategies for improvement, we established lenvatinib and
sorafenib-resistant HCC cell lines, Huh-7 LR and Huh-7 SR,
respectively, through a prolonged drug escalation method in
Huh-7 cells (Fig. 1a and Supplementary Fig. 1a, b). Compared with
the parental cell line (Huh-7 P), the resistant variants presented
substantially greater ICso values for lenvatinib and sorafenib.
Specifically, the 1Csy value for lenvatinib in Huh-7 LRs increased
3.89-fold, and the ICs, value for sorafenib in Huh-7 SRs increased
2.46-fold, indicating stable resistance characteristics (Fig. 1a and
Supplementary Fig. 1c). Further analysis revealed cross-resistance
between the two cell lines, in which Huh-7 LRs exhibited
resistance to sorafenib and Huh-7 SRs displayed resistance to
lenvatinib (Fig. 1a and Supplementary Fig. 1c). We also assessed
the sensitivity of these resistant cell lines to other clinically
relevant tyrosine kinase inhibitors (regorafenib, gefitinib, and
lapatinib) and chemotherapeutic agents (5-fluorouracil, irinotecan,
and oxaliplatin). The results indicated a general reduction in
sensitivity to these drugs (Fig. 1b, Supplementary Fig. 2, and
Table 1). In 3D cultured tumor spheroids, we observed that
spheroids derived from resistant cells similarly exhibited resistance
to both targeted and chemotherapeutic agents, with a lower rate
of cell death (Supplementary Fig. 3). Moreover, compared with
spheroids derived from Huh-7 P cells, those from resistant lines
demonstrated enhanced tolerance to commonly used clinical
treatment regimens for HCC patients (Supplementary Fig. 4).

When implanted into nude mice and subjected to lenvatinib
intervention, tumors derived from resistant cells demonstrated
heightened drug tolerance, characterized by increased tumor
volumes and masses (Fig. 1¢, d and Supplementary Fig. 5a, b).
Consistent with the antiangiogenic properties of lenvatinib,
quantitative CD31 IF demonstrated a significant reduction in
microvascular density in treated parental tumors (78.87%
decrease vs. solvent), whereas resistant tumors retained elevated
vascularization (Fig. 1c and Supplementary Fig. 5c, d). This
persistence of vascularization in resistant models aligns with their
accelerated growth kinetics despite TKI administration. However,
the volume of the Huh-7 LR-resistant cell-derived xenografts did
not decrease, and the cells remained highly proliferative,
indirectly suggesting the presence of alternative nutrient path-
ways supporting tumor growth (Supplementary Fig. 5e, f).
Multicolor IF analysis revealed elevated expression of key
enzymes associated with glucose and lipid metabolism (GLUT1
for glucose transport; FASN for fatty acid synthesis; CD36 and
FABPs for fatty acid transport) in resistant tumor tissues compared
with parental cells, which was unaffected by lenvatinib treatment,
indicating metabolic reprogramming in resistant tumors (Fig. 1e,
f). Furthermore, in tumor samples collected from certain HCC
patients, metabolic enzymes related to glucose and lipid synthesis
and transport were significantly upregulated in tissues from
resistant patients compared with those from untreated patients
and those from patients with a therapeutic response (Fig. 1g, h
and Supplementary Table 1).

Single-cell transcriptome sequencing highlights increased
stemness and metabolic activity in drug-resistant cells

To gain deeper insights into the molecular alterations associated
with the acquisition of drug resistance in HCC cells, we performed
an integrated analysis utilizing bulk RNA sequencing and single-
cell transcriptomics. A total of 1,292 commonly upregulated genes
were identified in two drug-resistant cell lines (Huh-7 LR and Huh-
7 SR) (Fig. 2a, Supplementary Fig. 6a, and Supplementary Data
1-3). Gene Ontology (GO) biological process analysis revealed that
these upregulated genes were enriched predominantly in path-
ways associated with cellular metabolism, exosome biogenesis,
and extracellular matrix (ECM) organization (Fig. 2b). Further
analysis via the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database revealed significant enrichment in
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metabolic pathways, ECM-receptor interactions, drug metabolism,
lysosomal processes, ATP-binding cassette (ABC) transporters, and
pyruvate metabolism in drug-resistant cells (Fig. 2c and Supple-
mentary Data 4). Gene set enrichment analysis (GSEA) additionally
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demonstrated that fatty acid metabolism and epithelial-mesench-
ymal transition (EMT)-related processes were markedly upregu-
lated in drug-resistant cell lines compared with their parental
counterparts (Supplementary Fig. 6b).
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Fig. 1 Multidrug resistance and associated metabolic adaptations in drug-resistant cells. a Schematic representation of the drug-resistant cell
model development process alongside lenvatinib and sorafenib ICso values. The drug concentrations used for induction ranged from 1-20 pM
for the Huh-7 LR cells and from 1-5 pM for the Huh-7 SR cells. Schematic figures were generated with BioRender (https://app.biorender.com/).
b Drug sensitivity testing for targeted therapies and chemotherapeutic agents in drug-resistant and parental cells, presented as 1C5, values.
c Drug sensitivity evaluation in CDX models derived from drug-resistant and parental cells (n =5/group). CDX model drug application
concentrations: solvent: 5%o carboxymethyl cellulose sodium; lenvatinib: 5 mg/kg/d. d Tumor growth kinetics in CDX models derived from
drug-resistant and parental cells. Testing method: Unpaired Student’s t-test. @ Multicolor IF staining of metabolic enzymes in tumor tissues
from CDX models of drug-resistant and parental cells. GLUT1 (yellow), FABPs (purple), CD31 (red), FASN (blue), CD36 (green), and DAPI (gray).
Scale bar = 100 pm. f Quantification of multicolor IF staining intensity in tumor tissues from CDX models. Testing method: Unpaired Student'’s
t-test. g Multicolor IF staining of metabolic enzymes in tumor tissues from HCC patients treated with or without systemic therapy. GLUT1
(yellow), FABPs (purple), CD31 (red), FASN (blue), CD36 (green), and DAPI (gray). Scale bar = 100 pm. h Quantification of multicolor IF staining

intensity in patient-derived tumor tissues. Testing method: Unpaired Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

<
Table 1. 1C5, values and fold increase in drug resistance of parental vs. drug-resistant cells
Drugs Huh-7 P Huh-7 LR Huh-7 SR
1C50 (1M) 1C50 (uM) Resistant Index 1C50 (1M) Resistant Index

Lenvatinib 13.02+0.73 50.61+4.62 3.89+042 33.52+2.10 2.57+0.22
Sorafenib 6.78+0.13 21.06 £ 0.66 3.11+0.11 16.70+1.15 246+0.18
Regorafenib 6.40 £ 0.24 8.53+0.59 1.33£0.11 10.31 +0.40 1.61+0.09
Gefitinib 13.78 £0.55 2537270 1.84£0.21 2243 +1.37 1.63+£0.12
Lapatinib 14.13+£0.51 18.78+£0.75 1.32+0.07 2547 +1.15 1.80 + 0.09
5-Fluorouracil 25.19+1.64 42.74 +3.58 1.70+£0.18 3731261 1.48+0.13
Irinotecan 2454+ 1.44 22.00+1.43 0.90 = 0.08 40.76 +£3.72 1.66+0.18
Oxaliplatin 39.98 = 1.60 59.25+4.59 148 £0.13 79.75£4.39 1.99+0.12

Single-cell transcriptomic sequencing revealed significant het-
erogeneity between drug-resistant cells and their parental
counterparts. The t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction analysis clearly distinguished
drug-resistant cell lines from drug-sensitive ones (Supplementary
Fig. 7). Pseudotime trajectory analysis, performed via the
Monocle2 algorithm, classified the cells into 9 distinct states, with
states 1-3 corresponding to the parental Huh-7 P cells and states
4-9 representing the drug-resistant Huh-7 LR cells (Fig. 2d and
Supplementary Fig. 8). GSVA of each state revealed a gradual
increase in stemness-related regulation as cells transitioned from
parental to drug-resistant states. In contrast, pathways related to
metabolism and cell survival initially declined, followed by peak
activity at state 9 (Fig. 2e). Furthermore, CytoTRACE analysis
indicated that, overall, drug-resistant cells displayed significantly
higher stemness levels than did parental cells (Supplementary Fig.
9). Both the resistant and parental populations exhibited notable
intratumoral heterogeneity, consisting of subpopulations with
differing levels of stemness (Fig. 2f).

To characterize the molecular distinctions between drug-
resistant and parental cells further, we classified the resistant cells
into two clusters (clusters 0 and 1) and the parental cells into three
clusters (clusters 2, 3, and 4) (Fig. 2g). Transcription factor (TF)
analysis revealed that KLF4, CEBPG, SMAD3, and FOS were
upregulated in Huh-7 LR cells, whereas NR1H4, CEBPD, and
SOX5 were downregulated (Fig. 2h). Further investigation
demonstrated that the transcription factors KLF4 and CEBPG in
resistant cells primarily modulate biological processes related to
metabolism, the cell cycle and differentiation, immune and
inflammatory responses, and ECM remodeling (Fig. 2i, Supple-
mentary Fig. 10, and Supplementary Data 5). Notably, KLF4 has
been demonstrated to induce cancer stem cell-like phenotypes in
nonstem cancer cells,”” whereas CEBPG has been implicated in
promoting disease progression across various cancers.?2=° Con-
versely, TFs silenced in resistant cells, such as CEBPD and NR1H4,
play critical roles in promoting immune and inflammatory gene
expression while enhancing tumor cell chemosensitivity®' 3

SPRINGERNATURE

(Supplementary Fig. 11 and Supplementary Data 6). GSEA of the
identified clusters highlighted unique biological profiles. Cluster 0
(resistant cells) displayed the upregulation of genes associated
with EMT, metabolism, the cell cycle, and immune evasion
pathways. Clusters 1 (resistant cells) and 2 (parental cells) were
associated with pathways related to mitochondrial function and
signal transduction. Clusters 3 (parental cells) and 4 (parental cells)
were associated with pathways involving adherens junctions,
immune and inflammatory responses, HCC-specific signaling, and
ECM organization (Fig. 2j and Supplementary Fig. 12). Additionally,
a multidimensional pathway analysis was conducted using nine
publicly available datasets, including drug-resistant cell lines, CDX
(cell line-derived xenograft) models, and HCC tissues. This analysis
revealed that genes upregulated in drug-resistant cells, compared
with their parental counterparts, were associated primarily with
lipid metabolism, drug resistance, glutathione metabolism, and
signal transduction pathways (Fig. 2k and Supplementary Data 7).

Metabolic reprogramming features of drug-resistant HCC cells and
their association with resistance mechanisms

The metabolomic analysis revealed substantial variations across
multiple metabolite categories, including heterocyclic com-
pounds, lipids, nucleotides, and organic oxygen compounds,
between the drug-resistant HCC cell line and its parental
counterpart (Fig. 3a and Supplementary Data 8). Significant
alterations in FFA metabolism, including carbon chain elongation
and increased unsaturation, were evident in the drug-resistant
cells (Fig. 3b and Supplementary Data 9). Pathway enrichment
analysis of significantly upregulated metabolites in drug-resistant
cells revealed notable alterations in pathways, including -alanine
metabolism, the Warburg effect, glutamine metabolism, de novo
triglyceride synthesis, and glutathione metabolism, all of which
are pivotal for cellular growth, energy production, and substrate
availability (Fig. 3c and Supplementary Data 10). This study
corroborated the phenomenon of aerobic glycolysis, as first
described by Otto Warburg, whereby tumor cells produce high
levels of lactate even under aerobic conditions, using a Seahorse
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extracellular flux analyzer. Compared with their parental counter-
parts, drug-resistant cells presented significantly increased glyco-
lytic activity, glycolytic capacity, and glycolytic reserve,
emphasizing the centrality of glycolysis as a primary energy
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source (Fig. 3d and Supplementary Fig. 13). The substantial
increase in the levels of NAD", a primary hydrogen acceptor
involved in both glycolysis and the TCA cycle, further indicated an
increased metabolic state of glycolysis and increased TCA cycle
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Fig. 2 Transcriptomic analysis highlights stemness characteristics and metabolic reprogramming in drug-resistant cells. a Venn diagram
depicting the upregulated genes shared between Huh-7 LR and Huh-7 SR (FC > 1.5, p < 0.05) based on bulk RNA sequencing. b PPl network
analysis using ClueGo for commonly upregulated genes in the Huh-7 LR and Huh-7 SR. ¢ KEGG analysis identified the top 20 enriched
pathways of commonly upregulated genes in Huh-7 LR and Huh-7 SR cells. d Pseudotime trajectory analysis via Monocle2 and cell state
clustering derived from single-cell sequencing of drug-resistant and parental cells. e Heatmap generated through GSVA via the MSigDB
hallmark dataset for the 9 states derived from pseudotime analysis. f Stemness assessment of drug-resistant and parental cells from single-cell
sequencing data conducted via CytoTRACE. g Clustering visualization through t-SNE dimensionality reduction from single-cell sequencing
data. h Transcription factor analysis derived from single-cell sequencing of drug-resistant and parental cells. i PPl network analysis of
downstream target gene clusters regulated by the transcription factors KLF4 and CEBPG. j GSEA was performed on clustering data from
single-cell sequencing of drug-resistant and parental cells. k Proportional KEGG pathway enrichment analysis of upregulated genes across

drug resistance-related datasets from multiple GEO database sources

«

activity in the drug-resistant cells. Moreover, the observed
increases in NADP* and NADPH levels, which are linked to the
pentose phosphate pathway, biosynthesis, biotransformation, and
antioxidant responses, suggest enhanced energy metabolism and
biosynthetic capacity in drug-resistant cells (Supplementary Fig.
14).

In the evaluation of energy storage metabolites, the triglyceride
content in drug-resistant cells was significantly greater than that
in parental cells, which aligns with lipid content assessments in
tumor tissues (Supplementary Fig. 15a). Analysis of the lipid
droplet size, number, and distribution via the neutral lipid dye Nile
Red revealed significant increases in both the quantity and size of
lipid droplets in drug-resistant cells compared with those in
parental cells (Supplementary Fig. 15b-e). Raman spectroscopy
(Raman shift: 2850 cm™), which is utilized for lipid molecule
identification, further confirmed the elevated lipid content in the
drug-resistant cells (Supplementary Fig. 16). Stimulated Raman
scattering (SRS) vibrational imaging with a deuterium-labeled
palmitic acid (D3;-PA) probe was employed to observe lipid
uptake, revealing a significantly stronger CD_ channel signal
(Raman shift: 2107 cm™) in drug-resistant cells than in parental
cells (Supplementary Fig. 17). Real-time quantification of FFA
uptake, conducted with an FFA tracer and high-content fluores-
cence imaging, corroborated the findings from SRS imaging,
which revealed markedly increased fatty acid uptake in drug-
resistant cells (Supplementary Fig. 18 and Supplementary Data
11). Additionally, the level of FFA [-oxidation (FAO) was
significantly elevated in drug-resistant cells, indicating enhanced
metabolic activity that supports survival and proliferation under
drug-induced stress (Supplementary Fig. 19). Importantly, the ICs5q
values of lenvatinib and sorafenib enabled us to define four
resistance stages (So, S1, Sz, and S3) during the establishment of
the drug-resistant cell model. The quantification of lipid droplet
accumulation at each stage revealed a progressive increase in lipid
droplet abundance corresponding to the development of
resistance. (Fig. 3e and Supplementary Fig. 20). A strong
correlation was observed between the degree of resistance and
the number of lipid droplets (Fig. 3f). Furthermore, exposure of
parental cells to palmitic acid (PA) demonstrated that increased
lipid droplet accumulation facilitates both cell proliferation and
drug resistance. These findings highlight the pivotal role of lipid
droplet accumulation in the progression of drug resistance
(Supplementary Fig. 21).

By integrating transcriptomic data, which reflect the expression
of metabolic enzymes, with metabolomic data, which capture
metabolite levels, a comprehensive metabolic reprogramming
map associated with hepatocellular carcinoma drug resistance
was constructed. This integrative analysis revealed a high degree
of concordance between the regulation of metabolic enzymes and
metabolites in drug-resistant cells, with glucose, lipid, and amino
acid metabolic pathways demonstrating significantly elevated
activity (Fig. 3g and Supplementary Data 2, 8). Metabolic flux
analysis via '*C-labeled glucose further revealed significantly
increased activity across several critical metabolic pathways,
including glutathione metabolism, the TCA cycle, glycolysis, the
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pentose phosphate pathway, and the hexosamine biosynthetic
pathway (Fig. 3h, Supplementary Fig. 22-24, and Supplementary
Data 12). These findings highlight the pivotal role of these
metabolic pathways in meeting the elevated energy demands and
supporting the survival of drug-resistant cells.

Knocking down AKR1B1 enhances drug sensitivity in drug-
resistant hepatocellular carcinoma cells

Through metabolomic analysis, metabolic pathways significantly
enriched during the progression of drug resistance in HCC were
identified. Key rate-limiting enzymes upregulated within these
pathways were further identified through the integration of
transcriptomic data. As shown in Fig. 4a, AKR1B1 was identified as
a prominently upregulated rate-limiting enzyme closely associated
with fructose metabolism, the pentose phosphate pathway,
glutathione metabolism, and triglyceride metabolism (Supple-
mentary Data 13). Previous studies have established the critical
role of the fructose metabolism pathway in tumor progres-
sion.>** To elucidate the underlying mechanisms, key enzymes
involved in the polyol-fructose-lipid metabolic axis, including
AKR1B1, sorbitol dehydrogenase (SORD), ketohexokinase (KHK),
aldolase B (ALDOB), a-glucosidase 14 (AGPA14), and diacylglycerol
O-acyltransferase 1 (DGAT1), were analyzed (Supplementary Fig.
25a). Notably, the majority of these enzymes were progressively
upregulated during acquired resistance (Supplementary Fig. 25b).
ALDOB, while included for completeness, presented baseline
expression levels below reliable detection thresholds (FPKM < 1.0)
across all the cell models. The silencing of these rate-limiting
enzymes universally enhanced drug sensitivity, with AKR1B1, the
most upstream enzyme in this pathway, demonstrating the most
pronounced effect (Supplementary Fig. 25c, d).

As shown in Fig. 4b and Supplementary Fig. 26, AKR1B1 protein
expression levels were significantly elevated in drug-resistant cells
compared with their parental counterparts, with a progressive
increase observed during the development of resistance (Fig. 4c).
Notably, AKR1B1 expression was strongly positively correlated
with the 1Csq values of lenvatinib and sorafenib in Huh-7 LR and
Huh-7 SR cells (Fig. 4d). To further validate these findings, tissue
and blood samples from HCC patients who had undergone
systemic therapy for more than 3 months and those without such
treatment were analyzed. IHC and IF staining revealed substan-
tially greater AKR1B1 expression in the treated group than in the
untreated group (Fig. 4e and Supplementary Fig. 27). Moreover,
the serum levels of AKR1B1 were markedly elevated in patients
receiving sustained treatment compared with those in untreated
individuals (Fig. 4f and Supplementary Table 2). These results
suggest that AKR1B1 is upregulated during drug therapy, thereby
mediating cellular survival under therapeutic stress conditions,
indicating its potential utility as a biomarker for predicting
therapeutic resistance in HCC patients.

Silencing AKR1B1 in drug-resistant cells substantially improved
their sensitivity to the therapeutic agents responsible for inducing
resistance (Supplementary Fig. 28). Heatmap analysis of multidrug
resistance further demonstrated that AKR1B1 silencing signifi-
cantly increased cellular sensitivity across a spectrum of targeted
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Metabolic adaptations in drug-resistant HCC cells. a Nontargeted metabolomics profiling of parental and Huh-7 LR cells. b FFA profiling in
parental and Huh-7 LR cells. ¢ Enrichment analysis of upregulated metabolites (FC > 1.2, p < 0.05) in Huh-7 LR cells compared with parental cells.
d Seahorse extracellular flux analysis of glycolytic activity (ECAR) in parental and drug-resistant cells. Testing method: Unpaired Student’s t-test.
e Visualization of intracellular lipid droplet accumulation during drug resistance development. Lipid droplets (green), the cell membrane (red), and
the nucleus (blue). Scale bar = 25 pm. IC5, values: Huh-7 LR_lenvatinib (Sq: 13.02 pM; Sq: 19.15 pM; S,: 36.40 pM; Ss: 50.61 pM); Huh-7 SR_sorafenib
(So: 6.77 uM; Sy: 9.46 uM; Sy: 13.53 uM; S3: 19.46 pM). f Correlation analysis between the intracellular lipid droplet content and drug ICs in drug-
resistant cells. Testing method: Pearson’s correlation coefficient test. g Integrated metabolomic (four replicates per cell type, averaged in pairs),
transcriptomic (two repllcates per cell type), and supplementary kit-based assay profiling to map metabolic adaptations in drug-resistant cells.

3C-glucose metabolic flux analysis of glycolysis, the TCA cycle, and glutathione metabolism pathways. The “M+number”
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therapies and chemotherapeutic agents, including regorafenib, Table 3). To further investigate the functional implications of

gefitinib, lapatinib, irinotecan, 5-fluorouracil, and oxaliplatin,

underscoring AKR1B1’s pivotal role in mediating dr

phenotypes (Fig. 4g, Supplementary Fig. 29, and Supplementary
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AKR1B1 in vivo, tumor growth assays were performed in a nude
mouse model. Compared with control tumors, tumors derived
from AKR1B1-silenced cells presented significantly reduced
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Fig. 4 AKR1B1 overexpression in drug-resistant cells modulates drug sensitivity. a Integrated transcriptomic (upregulated genes, FC > 2,
p < 0.05) and metabolomic profiling identified the key enzymes implicated in HCC drug resistance. b IF validation of AKR1B1 expression in
parental and drug-resistant cells. AKR1B1 (red) and DAPI (blue). Scale bar =25 um. ¢ WB analysis of AKR1B1 expression in cells during the
development of drug resistance. d Correlation analysis of AKR1B1 expression levels with drug resistance in drug-resistant cells. Testing
method: Pearson’s correlation coefficient test. e IHC staining of AKR1B1 in tumor tissues from HCC patients treated with or without systemic
therapy. The results of the IHC quantification of AKR1B1 are presented in the right panel. Scale bar =100 pm. Testing method: Unpaired
Student’s t-test. f Quantification of serum AKR1B1 levels in HCC patients treated with or without systemic therapy. Testing method: Unpaired
Student’s t-test. g Heatmap illustrating drug sensitivity in Huh-7 LR cells following AKR1B1 knockdown. h Drug sensitivity evaluation in CDX
models derived from drug-resistant cells following AKR1B1 knockdown (n = 5/group). CDX model drug application concentrations: solvent:
5%o carboxymethyl cellulose sodium; lenvatinib: 5 mg/kg/d. i Tumor growth kinetics in CDX models generated from drug-resistant cells
following AKR1B1 knockdown. Testing method: Unpaired Student’s t-test. j Tumor weight measurements in CDX models generated from
drug-resistant cells following AKR1B1 knockdown. Testing method: Unpaired Student’s t-test. k Visualization of intracellular lipid droplet levels
in drug-resistant cells following AKR1B1 knockdown. Lipid droplets (green), the cell membrane (red), and the nucleus (blue). Scale
bar =25 pm. Testing method: Unpaired Student’s t-test. | WB analysis of key glutathione-regulating enzymes in drug-resistant cells following
AKR1B1 knockdown via statistical analysis. Testing method: Unpaired Student’s t-test. m Quantification of intracellular GSH levels in drug-
resistant cells following AKR1B1 knockdown. GSH (teal green), the cell membrane (red), and the nucleus (blue). Scale bar = 25 pm. Testing
method: Unpaired Student’s t-test. n Quantification of ROS levels in drug-resistant cells following AKR1B1 knockdown. ROS (red), nuclei (blue).
Lenvatinib: 50.61 uM (ICsp), 12 h; sorafenib: 16.70 pM (ICs0), 12 h. Scale bar =25 pm. Testing method: Unpaired Student’s t-test. *p < 0.05,

**p <0.01, ¥***p <0.001, ****p < 0.0001
<

volumes, slower growth rates, and lower tumor masses (Fig. 4h—j
and Supplementary Fig. 30a). Additionally, Lenvatinib-treated
tumors presented reduced vascular density, as indicated by Ki-
67 staining, indicating pronounced suppression of tumor prolif-
eration in the AKR1B1-silenced group (Supplementary Fig. 30b-d).
Even in untreated tumors, proliferation was moderately inhibited,
although to a comparatively lesser extent. Collectively, these
findings highlight AKR1B1 as a compelling therapeutic target for
enhancing the sensitivity of HCC cells to conventional treatments.

AKR1B1 enhances drug resistance in HCC cells via multiple
pathways

To determine the established role of AKR1B1 in cellular drug
resistance, this study further investigated the impact of altered
AKR1B1 expression on the metabolic phenotype of resistant cells.
Figure 4k and Supplementary Fig. 31 revealed that silencing of the
AKR1B1 gene led to a marked reduction in lipid droplet
accumulation and triglyceride content within resistant cells,
accompanied by a significant decrease in FAO levels. Integrated
transcriptomic and metabolomic profiling revealed coordinated
hyperactivation of glutathione metabolism, glycolysis, and polyol/
fructose metabolic pathways during acquired resistance (Fig. 3¢, g,
h). Among these pathways, the glutathione pathway has been
shown to play a pivotal role in maintaining cell survival. Research
has demonstrated that AKR1B1 modulates cystine uptake and
glutathione synthesis flux in lung cancer cells via the STAT3/
SLC7A11 signaling axis.2® Consistently, this study revealed similar
patterns in drug-resistant HCC cells, where AKR1B1 knockdown
significantly suppressed STAT3 phosphorylation and SLC7A11
protein expression (Fig. 4l). To further elucidate the role of AKR1B1
in regulating the glutathione regulatory pathway in drug-resistant
HCC cells, the baseline activity of this pathway was assessed. The
results revealed that the glutathione regulatory pathway was
significantly upregulated in resistant cells compared with parental
cells (Supplementary Fig. 32a). The quantification of glutathione
levels further confirmed that compared with parental cells, drug-
resistant cells presented significantly increased glutathione levels
(Supplementary Fig. 32b). Concurrently, measurement of ROS
levels revealed that parental cells exhibited increased sensitivity to
drug treatment with increased ROS accumulation (Supplementary
Fig. 32¢). These findings suggest that resistant cells utilize a robust
self-protective mechanism involving increased glutathione levels
and decreased ROS accumulation, both of which contribute to
increased cell survival. However, upon AKR1B1 knockdown, this
self-protective adaptation was effectively disrupted. The glu-
tathione regulatory pathway was significantly suppressed, as
evidenced by the suppressed expression of key regulatory
proteins, leading to a decrease in intracellular glutathione levels
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and a pronounced increase in ROS levels following drug treatment
(Fig. 4l-n). Furthermore, in vivo experiments validated the in vitro
findings and further confirmed that AKR1B1 plays a pivotal role in
the glutathione regulatory pathway in drug-resistant HCC cells
(Supplementary Fig. 33). These results highlight the pivotal
regulatory role of AKR1B1 in sustaining the metabolic adaptations
that underlie chemoresistance in HCC.

To further investigate the mechanisms underlying the
upregulation of AKR1B1 in response to drug-induced selective
pressure, we employed multiple predictive tools, including
Cistrome, TCGA_LIHC, hTFtarget, and ENCODE, to identify
potential transcription factors regulating AKR1B1 expression.
By integrating these predictions with RNA-seq data from drug-
resistant cells, we identified FOSL2, a member of the FOS
transcription factor family, as a key regulator of AKR1B1
expression (Supplementary Fig. 34). This finding aligns with
the results from single-cell transcriptomic sequencing (Fig. 2h).
Previous studies have reported that FOSL2 can indirectly
promote angiogenesis in tumor tissues, even when classical
VEGF signaling is inhibited by anti-VEGF antibodies or axitinib.>®
These findings suggest that FOSL2 may be adaptively upregu-
lated in response to antiangiogenic therapies such as lenvatinib
and sorafenib. In support of this hypothesis, our data demon-
strated that FOSL2 expression was markedly elevated in drug-
resistant cells compared with their parental counterparts.
Additionally, GO enrichment analysis revealed significant upre-
gulation of the Wnt signaling pathway, which may have
contributed to the observed increase in FOSL2 expression
(Supplementary Fig. 35a). We observed significant nuclear
accumulation of nonphospho (active) B-catenin, a critical protein
in the Wnt pathway, in drug-resistant cells (Supplementary Fig.
35b). Furthermore, the Wnt signaling inhibitor XAV9393 down-
regulated FOSL2 expression, underscoring the regulatory role of
the Wnt pathway in modulating FOSL2 expression (Supplemen-
tary Fig. 35c). This observation is consistent with previous
reports, which demonstrated the role of the Wnt pathway in
promoting TKI resistance in liver cancer cells*’ 73 and enhancing
FOSL2 expression in drug-resistant colorectal carcinoma cells.*°
Through analysis via the JASPAR database,*' a potential binding
motif for FOSL2 was predicted on the AKR1B1 promoter region:
“CAGTGACTCAT” (Supplementary Fig. 36a, b). Furthermore,
analysis of downstream target genes potentially regulated by
FOSL2 via GO enrichment analysis revealed that these genes
were associated primarily with the regulation of cellular
metabolic processes (Supplementary Fig. 36¢, d). These findings
suggest a critical role for FOSL2 in driving the adaptive
upregulation of AKR1B1 and orchestrating broader metabolic
reprogramming in drug-resistant cancer cells.
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AKR1B1 mediates the transmission of drug resistance and
correlates with poor prognosis

These findings demonstrate that AKR1B1 expression is induced
during the development of drug resistance. Moreover, patients
with intrinsically elevated AKR1B1 expression tend to exhibit
primary resistance to therapy. To explore this phenomenon, we
collected pretreatment tumor tissues from HCC patients and
stratified them into two groups on the basis of their clinical
response: partial response (PR) and disease progression (DP) (Fig.
5a and Supplementary Table 1). IHC analysis of AKR1B1 expression
revealed markedly higher AKR1B1 levels in tumors from DP
patients than in those from PR patients (Fig. 5a, b and
Supplementary Fig. 37). Consistently, proteomic data from Jiang
et al. revealed markedly elevated AKR1B1 expression in the tumor
tissues of HCC patients with poor prognosis compared with
adjacent nontumorous tissues.*” AKR1B1 expression is progres-
sively increased in higher-grade malignant subtypes*? (Supple-
mentary Fig. 38). Additionally, data from David A. Wheeler’s study,
which employed the iCluster algorithm to integrate information
from five molecular platforms (DNA copy number variation, DNA
methylation, mRNA expression, miRNA expression, and RPPA
proteomics), classified HCC patients into three molecularly distinct
subgroups. Among these clusters, iCluster_3 exhibited marked
chromosomal instability, increased TP53 mutation rates, and
widespread hypomethylation at multiple CpG loci*® Survival
analysis of TCGA data revealed that patients in this group with
high AKR1B1 expression had significantly shorter survival times,
highlighting the robust correlation between elevated AKR1B1
expression and unfavorable outcomes in HCC (Fig. 5¢).

To further investigate the causal relationship between AKR1B1
and drug resistance, a stable AKR1B1-overexpressing cell line was
established from parental Huh-7 cells, and its drug sensitivity was
assessed (Supplementary Fig. 39). As shown in Fig. 5d and
Supplementary Table 4, AKR1B1 overexpression substantially
diminished the sensitivity of Huh-7 cells to various targeted
therapies and chemotherapeutic agents, including regorafenib,
gefitinib, lapatinib, irinotecan, 5-fluorouracil, and oxaliplatin,
underscoring its critical function in mediating the drug response.
Intriguingly, AKR1B1 overexpression also resulted in notable
accumulation of intracellular lipid droplets, elevated glutathione
levels, increased glutathione-regulating pathway activity, and the
upregulation of key related proteins (Supplementary Fig. 40).

AKR1B1 was previously identified as a secreted protein
detectable in the serum of patients with HCC (Fig. 4f). Consistent
with these findings, increased AKR1B1 secretion was observed in
the supernatants of drug-resistant cells. On the basis of these
findings, we hypothesized that AKR1B1 may mediate the
intercellular transmission of drug resistance, contributing to the
increased resistance of previously sensitive cells. To validate this
hypothesis, parental Huh-7 cells were cocultured with CM derived
from drug-resistant cells (Fig. 5e). This approach significantly
increased the resistance of parental Huh-7 cells to lenvatinib and
sorafenib (Supplementary Fig. 41a and Supplementary Table 5).
Furthermore, live/dead staining in 3D microtissue models
confirmed that CM from drug-resistant cells protected against
drug-induced cell death, as demonstrated by a decreased number
of dead cells (Fig. 5f). We further examined the exosomal content
in the conditioned medium, and WB analysis revealed high
expression levels of the exosome marker proteins CD81 and CD63
(Supplementary Fig. 41b). Following the enrichment and extrac-
tion of exosomes from Huh-7 LR cells via nanoporous ultrafiltra-
tion, nanoparticle tracking analysis (NTA) revealed characteristic
vesicle dimensions (D50: 89.0 +36.7 nm; D10-D90: 63-134 nm)
and an initial particle concentration of (2.49 + 0.08) x 10" particles
over 24 h from 1 x 10 cells (Supplementary Fig. 41¢, d). This size
distribution is consistent with previously reported HCC exosome
profiles in Hep3B/MHCC97H models** and Huh-7 SR systems.*
Moreover, we examined the involvement of exosomes in
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mediating drug resistance by depleting exosomes from condi-
tioned medium. Exosome-depleted medium or medium contain-
ing an exosome secretion inhibitor (GW4869) was unable to
confer enhanced drug resistance to parental cells (Supplementary
Fig. 41e, f). The use of cell-tracking probes (green fluorescence)
offered initial evidence supporting the role of exosomal vesicles in
mediating drug resistance (Supplementary Fig. 42 and Supple-
mentary Data 14). We observed significantly elevated levels of
AKR1B1 in the supernatants of drug-resistant cells (Supplementary
Fig. 43a). The colocalization of cell-tracking probes with AKR1B1 IF
(red fluorescence) revealed that exosomal vesicles transport
AKR1B1 from drug-resistant Huh-7 LR cells to parental Huh-7
cells, thereby promoting the acquisition of resistance (Fig. 5g).
Furthermore, IF imaging confirmed the colocalization of AKR1B1
with the exosomal marker CD81 (Supplementary Fig. 43b),
confirming that AKR1B1 can be transmitted via exosomes. Finally,
the HepG2 and Hep3B cell lines, which exhibit low endogenous
AKR1B1 expression, presented a significant decrease in drug
sensitivity after exposure to CM from drug-resistant Huh-7 cells,
mirroring the results observed in Huh-7 P cells (Fig. 5h, i and
Supplementary Fig. 44). Collectively, these findings demonstrate
that AKR1B1 mediates drug resistance transmission through
extracellular exosomal vesicles, highlighting the strong association
between AKR1B1 expression and poor prognosis in HCC patients.

Clinical translational potential of the AKR1B1 inhibitor epalrestat in
reversing HCC drug resistance

Encouragingly, a clinically approved drug, epalrestat, has emerged
as a promising therapeutic agent that targets the key molecule
AKR1B1. Epalrestat, which is currently approved for the prevention
and treatment of diabetic peripheral neuropathy, has also demon-
strated potential in oncology, as supported by its ongoing clinical
trial for the treatment of metastatic triple-negative breast cancer
(NCT03244358). To evaluate the effects of epalrestat on HCC cells,
we initially assessed its cytotoxic effects on both parental and drug-
resistant cell lines (Supplementary Fig. 45). The results demon-
strated that epalrestat elicited markedly stronger growth-inhibitory
effects in drug-resistant cells than in parental cells (ICso of Huh-7 P:
85.01 £ 1.01 pM; ICso of Huh-7 LR: 53.96 + 0.98 uM; ICso of Huh-7 SR:
67.22 + 0.99 uM). Notably, combination drug testing revealed that
epalrestat significantly enhanced the anticancer efficacy of
lenvatinib or sorafenib in drug-resistant cell lines (Huh-7 LR and
Huh-7 SR) and exhibited robust synergistic effects across various
concentration combinations (combination index (Cl) < 1) (Fig. 6a, b
and Supplementary Fig. 46).

The therapeutic potential of epalrestat was further confirmed in
vivo through a xenograft mouse model. After fully evaluating the
safety of epalrestat in vivo, we conducted drug combination
experiments (Supplementary Fig. 47). Compared with monother-
apy with either epalrestat or lenvatinib, the combination of
epalrestat and lenvatinib resulted in a significant reduction in
tumor volume, slower tumor growth, and decreased tumor weight
(Fig. 6c—e and Supplementary Fig. 48a, b). IHC staining for Ki-67
revealed that, compared with single-agent treatment, combina-
tion therapy significantly inhibited the proliferation of drug-
resistant tumor cells (Fig. 6f and Supplementary Fig. 48c).

To further investigate the clinical relevance of epalrestat-
lenvatinib combination therapy, we employed patient-derived
organoid models of HCC. Four organoids derived from different
HCC patients were selected, and AKR1B1 protein expression was
subsequently quantified. Among these, organoid #3 presented
comparatively elevated AKR1B1 expression (Supplementary Fig.
49a). Histopathological analyses, including H&E staining, IHC, and
IF staining of the corresponding patient tumor tissues, confirmed
that organoid #3 accurately recapitulated the expression patterns
of key tumor-specific markers, such as AFP and CK18 (Fig. 6g and
Supplementary Fig. 49b, c). Subsequent experiments demon-
strated that the combination of lenvatinib and epalrestat
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Fig. 5 Associations of AKR1B1 expression with HCC patient prognosis and primary drug resistance. a The HCC cohort was divided into three
clinical therapy subcohorts: no chemotherapy (NC), partial response (PR), and disease progression (DP). Clinical parameters are indicated in the
heatmap. MVI: microvascular invasion; T stage: tumor stage; TACE: transcatheter arterial chemoembolization; HAIC: hepatic arterial infusion
chemotherapy. b Comparison of AKR1B1 expression levels in tumor tissues among HCC patients in the NC, PR, and DP subcohorts. ¢ OS rate of
patients in the TCGA HCC iCluster_3 cohort in relation to AKR1B1 expression levels. Testing methods: Comparison of survival differences
between the two groups: log-rank test; calculation of the hazard ratio (HR): Cox regression model. d Heatmap illustrating drug sensitivity in
parental cells following AKR1B1 overexpression. e Schematic representation of CM extraction from drug-resistant cells and its application to
parental cells. Schematic figures were generated with BioRender (https://app.biorender.com/). f Live/dead fluorescent probe analysis of drug
resistance transfer and cell mortality in parental 3D microtissues cultured with conditioned medium from drug-resistant cells. Scale bar = 50 pm.
Testing method: Unpaired Student’s t-test. g Cell tracing and IF analysis of AKR1B1 transfer from drug-resistant cells to parental cells. Cell tracing
(green): drug-resistant cells; AKR1B1 (red); nuclei (blue). Scale bar =20 um. h WB analysis of AKR1B1 expression in various HCC cell lines and
drug-resistant cells via statistical analysis. i Drug sensitivity evaluation was performed on the basis of IC5 values to assess drug resistance transfer
between multiple HCC cell lines via CM. Testing method: Unpaired Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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significantly inhibited the growth of organoids and induced In brief, this study demonstrated that in drug-sensitive HCC
extensive cell death, thereby effectively countering drug resis- cells, conventional therapies primarily exert their antitumor
tance in HCC (Fig. 6h—j, Supplementary Fig. 50, and Supplemen- effects by inducing oxidative stress-mediated cell death and
tary Data 15). reducing angiogenesis, ultimately leading to tumor shrinkage.
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Fig. 6 A combination therapy strategy mitigates drug resistance in HCC. a Evaluation of the activity of drug-resistant cells treated with
epalrestat (IC3o = 27.50 pM) in combination with lenvatinib (IC3o = 43.32 pM) or sorafenib (IC3o = 8.89 pM). Testing method: Unpaired Student’s
t-test. b Cl analysis for the coadministration of epalrestat with lenvatinib or sorafenib. ¢ Drug sensitivity evaluation in CDX models derived
from drug-resistant cells following coadministration of epalrestat and lenvatinib (n = 5/group). CDX model drug application concentrations:
solvent: 5%o carboxymethyl cellulose sodium; epalrestat: 50 mg/kg/d; lenvatinib: 5 mg/kg/d; combined regimen: epalrestat 50 mg/kg/
d + lenvatinib 5 mg/kg/d. d Tumor weight measurements in CDX models generated from drug-resistant cells following coadministration of
epalrestat and lenvatinib. Testing method: Unpaired Student’s t-test. @ Tumor growth kinetics in CDX models generated from drug-resistant
cells following coadministration of epalrestat and lenvatinib. Testing method: Unpaired Student’s t-test. f Ki-67 IHC staining of tumor tissues
from nude mice treated with the combination therapy. Scale bar = 100 um. g IF analysis of AKR1B1-expressing HCC PDOs. DAPI (gray), AFP
(yellow), AKR1B1 (red), CK19 (orange), and Ki-67 (green) are shown. Scale bar = 10 pm/20 pm. h Brightfield microscopy image of the impact of
coadministration of epalrestat and lenvatinib on HCC PDOs at 0 h and 48 h. Scale bar = 100 pm. Organoid drug application concentrations:
Epalrestat: 53.96 pM; lenvatinib: 50.61 pM; combined regimen: Epalrestat 53.96 pM + lenvatinib 50.61 pM. i Resazurin assay to evaluate the
viability of HCC PDOs after 48 h of coadministration of epalrestat and lenvatinib. Testing method: Unpaired Student’s t-test. j Live/dead probe
staining was used to assess the survival rate of HCC PDOs following 48 h of coadministration of epalrestat and lenvatinib. Scale bar = 500 pm.
k Schematic representation of metabolic reprogramming in drug-resistant cells and the role of AKR1B1 in HCC drug resistance. *p < 0.05,

**p <0.01, ¥***p <0.001, ****p < 0.0001
<

However, prolonged exposure to standard therapies enables
tumor cells to activate protective mechanisms, culminating in the
development of complete drug resistance. Notably, while TKIs
continue to suppress angiogenesis in resistant tumors, tumor
growth remains unchecked. Our research revealed that AKR1B1 is
a critical enzyme that plays a dual role in regulating glucose and
lipid metabolism to increase energy supply and stress resistance,
as well as modulating oxidative phosphorylation, thereby
promoting cellular protection and the development of multidrug
resistance. Importantly, we demonstrated that targeting AKR1B1
with the specific inhibitor epalrestat markedly enhances the
therapeutic efficacy of existing systemic treatments (see
mechanism illustration in Fig. 6k).

DISCUSSION

Resistance remains a critical obstacle to improving patient
prognosis and prolonging survival in the systemic treatment of
advanced HCC. The emergence of multidrug resistance (MDR) is
recognized as a key contributor to the failure of systemic
therapies. Currently, substantial research efforts are dedicated to
unraveling the mechanisms underlying MDR, aiming to counteract
this phenomenon and establish a theoretical basis for clinical
strategies.'”*®* In this study, drug-resistant HCC cell models were
successfully established via the first-line targeted therapeutic
agents sorafenib and lenvatinib, facilitating a comprehensive
investigation of resistance mechanisms in systemic HCC treat-
ment. After confirming the resistance of the constructed cell lines,
cross-resistance and MDR phenomena were further observed in
these cells. These findings indicate that resistance is more likely
due to the adaptive reprogramming of tumor cells at the systemic
level rather than the evasion of specific drug cytotoxic mechan-
isms. Furthermore, consistent with clinical observations, resistance
frequently arises in combination therapy contexts, with resistant
cells displaying analogous resistance profiles across various
therapeutic regimens.

The mechanisms underlying tumor resistance are multifaceted
and include tumor burden, growth kinetics, intratumoral
heterogeneity, physical barriers, immune system interactions,
the tumor microenvironment, untargeted cancer-driving factors,
and the impact of therapeutic pressure.*® Insights from single-
cell transcriptomic sequencing revealed that drug-resistant cells
display heightened activity in stemness-related properties
and metabolic regulation, conferring enhanced self-renewal
capacity and adaptive plasticity. These alterations allow tumor
cells to resist pharmacological interventions, thereby presenting
increasingly complex therapeutic challenges. Notably, as EMT
phenotypes and tumor stem cell-like characteristics are
acquired, resistant cells exhibit markedly increased invasive
poterlgial, further amplifying resistance via a positive feedback
loop.

Signal Transduction and Targeted Therapy (2025)10:244

In recent years, metabolic reprogramming has attracted
increasing attention for its critical role in mediating resistance
to systemic cancer therapies. This phenomenon involves path-
ways related to nutrient uptake, biosynthesis, storage, transfor-
mation, and rapid ATP production, with glycolysis, fatty acid
synthesis, and glutathione metabolism being particularly promi-
nent. The ultimate goal of these reprogrammed metabolic
pathways is to provide the essential building blocks necessary
to satisfy the nutritional and energetic demands of cancer cells,
thereby supporting their growth and resilience to environmental
stressors.”®>! In this study, we utilized both in vitro and in vivo
models to elucidate the critical roles of glucose—lipid metabolic
reprogramming and the glutathione metabolic pathway in
enabling resistant cells to sustain growth and survive under
pressure. Specifically, assessments of glycolytic energy produc-
tion, triglyceride levels, lipid droplet accumulation, and the fatty
acid-driven energy supply revealed that the metabolic activity of
resistant cells was markedly elevated compared with that of their
parental counterparts. This upregulation of energy and substrate
metabolism enables resistant cells to adapt to stress-inducing
conditions, functioning as a key driver of resistance. Further
multiomics analyses revealed marked upregulation of molecules
and metabolites associated with glucose-lipid and glutathione
metabolic pathways, highlighting the strong association
between resistance and hyperactivation of these processes.
While the glucose-lipid metabolic pathway predominantly fulfills
the energy demands essential for tumor cell survival, the
glutathione metabolic pathway mitigates oxidative stress and
prevents cell death. Collectively, these findings elucidate a
comprehensive resistance mechanism wherein resistant cells
leverage multiple metabolic reprogramming pathways to survive
and evade therapeutic pressures. Notably, the drug-resistant
models we developed are resistant not only to TKis but also to
common chemotherapeutic drugs. Given that the primary
mechanism of action of many chemotherapeutic agents involves
interference with DNA metabolism,**>* we propose that drug-
resistant cells counteract these effects by actively supplying
abundant nucleic acid synthesis precursors through glycolysis,
the PPP, one-carbon metabolism, and the TCA cycle, thereby
driving therapeutic resistance.

Previous studies have shown that high fructose intake facilitates
the initiation and progression of HCC in in vivo models with a
complex tumor microenvironment.3*** Furthermore, fructose
metabolism plays a critical role in shaping cancer cell invasion
and migration phenotypes.>>™>” Fructose uptake and metabolism
in vascular endothelial cells activate the Akt and Src signaling
pathways, thereby significantly enhancing endothelial cell pro-
liferation, migration, and tube formation.>® In this study, we
identified a positive role of fructose metabolism in drug-resistant
HCC cells. Through metabolic reprogramming, resistant cells
activate the fructose metabolic pathway to promote lipogenesis
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and sustain survival. Our findings indicate that resistant cells
depend not only on glycolysis-derived intermediates for lipid
synthesis but also on alternative lipid biosynthesis pathways to
sustain survival and growth under therapeutic pressure. Integrated
transcriptomic and metabolomic analyses revealed AKR1B1 as a
key enzyme that regulates both glucose-lipid metabolism and
glutathione metabolism. AKR1B1 exerts pleiotropic effects on
physiological processes and has been implicated in the progres-
sion of various diseases, including cancer.®® In studies on breast
and lung cancer, AKR1B1 was shown to promote tumor growth
and metastasis by modulating the NF-kB-Twist2 axis and the
glucose—polyol-EMT pathway.”’®*® However, the precise role of
AKR1B1 in HCC progression and drug resistance development
remains unclear.

We conducted a comprehensive investigation of AKR1B1
expression in drug-resistant HCC models from multiple perspec-
tives. Our findings revealed significant upregulation of AKR1B1
expression in resistant cells compared with their parental
counterparts. Both in vitro and in vivo experiments demonstrated
that this elevated expression critically influences the development
of drug resistance by regulating key metabolic processes.
Furthermore, analysis of pathological samples from clinical HCC
patients revealed high AKR1B1 expression in the tumor tissues of
drug-resistant patients, whereas AKR1B1 expression was signifi-
cantly lower in those who achieved partial remission. These
findings suggest that AKR1B1 expression could serve as a
predictive biomarker for the onset of drug resistance. Notably,
as a secreted protein, AKR1B1 appears to mediate resistance
transmission, suggesting that resistant cells may promote tumor
heterogeneity by conferring resistance to previously drug-
sensitive cells. Exosome secretion is primarily mediated through
classical and nonclassical pathways. The classical pathway involves
the formation of multivesicular bodies (MVBs), which are
characterized by endosomal membrane invagination to form
intraluminal vesicles (ILVs). These MVBs subsequently fuse with
the plasma membrane, releasing ILVs into the extracellular space
as exosomes. Nonclassical pathways include autophagy-mediated
mechanisms, mitochondrial pathways, nuclear envelope path-
ways, secretory autophagy, and plasma membrane budding.
These mechanisms facilitate exosome secretion through distinct
processes that are generally independent of the conventional
MVB-plasma membrane fusion mechanism.>'%> AKR1B1, on the
basis of tracking/staining assays of exosomes derived from drug-
resistant cells, may be secreted via a combined mechanism
involving both the classical pathway and nonclassical plasma
membrane budding, potentially modulating the extracellular
microenvironment.

This study is the first to establish a bidirectional relationship
between AKR1B1 expression and resistance development in HCC.
Specifically, AKR1B1 upregulation drives drug resistance acquisi-
tion in tumor cells, whereas resistance emergence further
amplifies AKR1B1 expression. This reciprocal relationship high-
lights AKR1B1 as not only a critical biomarker of resistance but also
a promising therapeutic target for overcoming resistance.
Encouragingly, epalrestat, an AKR1B1 inhibitor already approved
for diabetic neuropathy treatment, effectively mitigated drug
resistance in both in vitro and in vivo HCC models. In combination
with lenvatinib, this therapeutic strategy significantly enhanced
tumor suppression in vivo compared with lenvatinib monother-
apy. Importantly, epalrestat was well tolerated in our in vivo
studies. The treated mice maintained a stable body weight,
showed no significant hematological or biochemical abnormal-
ities, and exhibited no treatment-related mortality during the
2-week administration period. This favorable safety profile
supports its potential for combination therapy in HCC. Notably,
prior studies have demonstrated the therapeutic potential of
epalrestat in nonalcoholic steatohepatitis (NASH). In NASH mouse
models, epalrestat mitigated hepatic inflammation and improved
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pathological conditions by suppressing NLRP3 inflammasome
activation.®* In addition to its hepatic benefits, epalrestat has
protective effects on other systems. In ischemic stroke mouse
models, it preserves blood-brain barrier (BBB) integrity by
maintaining endothelial barrier function in brain microvascular
endothelial cells (BMVECs), which is mediated through the
modulation of the AR/AKT/mTOR signaling pathway, which
suppresses apoptosis and excessive autophagy in BMVECs.%® In
db/db mouse models of type 2 diabetes and its complications,
epalrestat has been shown to have protective effects against
diabetic nephropathy (DN) through the inhibition of aldose
reductase and the regulation of the polyol pathway in renal
inflammatory cells, suggesting a potential therapeutic strategy for
DN.?® These findings, together with the multisystem protective
effects of epalrestat and its demonstration of HCC-specific
chemosensitization, suggest a favorable therapeutic window for
its repurposing in combination oncology strategies. Future
investigations should explore the potential context-dependent
metabolic effects of AKR1B1 inhibition in nonmalignant hepatic
compartments during anti-HCC therapy.

In summary, this study confirmed the occurrence of MDR in
drug-resistant cell models during systemic therapy. Compared
with their parental counterparts, resistant cells presented sig-
nificantly elevated energy metabolism and glucose-lipid meta-
bolic activity. Integrated multiomics analyses further revealed
increased activity in the glucose-lipid and glutathione metabolic
pathways, thereby constructing a comprehensive metabolic
reprogramming map of drug-resistant HCC cells. Importantly, this
study highlights the clinical importance of AKR1B1. Through
rigorous analysis of clinical samples, we validated the feasibility of
AKR1B1 as both a serum biomarker and a tissue biomarker.
Furthermore, we comprehensively elucidated its potential as a
therapeutic target and proposed a viable clinical drug application
strategy. These findings offer valuable insights with significant
potential for advancing the diagnosis and treatment of HCC,
providing a solid foundation for future therapeutic interventions.

MATERIALS AND METHODS

The experimental details, including methods, antibody informa-
tion, gene intervention sequences, and probe information, are
provided in the Supplementary Information File.

Cell culture and clinical samples

HCC cell lines, including Huh-7, HepG2, and Hep3B, were cultured
in complete DMEM (12100046, Gibco). The growth medium was
supplemented with 10% (vol/vol) fetal bovine serum (04-001-
1ACS, Biological Industries) and penicillin-streptomycin (100 U/ml)
(15140-122, Gibco) in a 5% CO,-humidified incubator at 37 °C. The
cells were passaged every 2-3 days.

To establish drug-resistant HCC cell models, we employed a
long-term dose-escalation method by culturing parental Huh-7
cells in media containing lenvatinib (HY-10981, MedChemExpress)
or sorafenib (HY-10201A, MedChemExpress). Specifically, lenvati-
nib or sorafenib was dissolved in complete culture medium via
ultrasonic agitation and vortexing. The initial drug concentration
was set at 1 uM, and the medium was changed every two days.
The drug concentration was increased incrementally by
0.5-1.0 uM per step when the cells exhibited stable growth
without signs of cytotoxicity. The maximum concentrations were
20 uM for lenvatinib and 5 uM for sorafenib, with resistant cells
maintained and passaged at these concentrations. If cell growth
became unstable, the drug concentration was reduced, and
escalation was resumed once stability was restored. The develop-
ment of resistant cell lines required 10 months for lenvatinib-
resistant cells and 6 months for sorafenib-resistant cells.

Tissues, serum, and organoids derived from clinical HCC
patients in this study were obtained from the Biospecimen Bank
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of Beijing Tsinghua Changgung Hospital, with all patients
providing informed consent. This study adheres to the Declaration
of Helsinki. This study received approval from the Ethics
Committee of Beijing Tsinghua Changgung Hospital (Approval
Numbers 23587-0-01 and 25332-0-01).

Cell viability assay

Cell viability in 2D cultures was evaluated via the Cell Counting Kit-8
(CCK-8) assay (C0038, Beyotime Biotechnology). Specifically, cell
suspensions (5000 cells/100 pl per well) were seeded into 96-well
plates and cultured for 24 h. Targeted or chemotherapeutic agents
were applied to each well at various concentrations and cultured for
48 h. Subsequently, 10 pl of CCK-8 reagent diluted at a 1:10 ratio
(CCK-8 reagent:complete culture medium) was added to each well,
including background wells. The plates were incubated for an
additional 2-4 h, and the absorbance at 450 nm was measured via a
multifunctional microplate reader (Synergy H1, BioTek). Each
concentration gradient was tested in triplicate to ensure reprodu-
cibility. Cell viability was calculated via the following formula: cell
viability = (absorbance of experimental wells — background wells)/
(absorbance of control wells — background wells).

Immunofluorescence (IF) staining and immunohistochemical (IHC)
staining

For IF staining, cells and spheroids were fixed in 4% PFA,
permeabilized with 0.2% Triton X-100, blocked with 10% goat or
donkey serum, and incubated with primary antibodies at 4°C
overnight. The samples were then incubated with secondary
antibodies for 1h in the dark at room temperature, followed by
incubation with 4/,6-diamidino-2-phenylindole (DAPI) for nuclear
staining. Images of cultured cells, spheroids, and organoids were
captured via an Operetta high-content imaging system (PerkinEl-
mer) equipped with a 20x Plan Fluor objective.

Multicolor immunofluorescence labeling experiments were
performed on paraffin-embedded and frozen sections via the
NEON-DendronFluor® Multicolor Fluorescent Labeling System Kit
(Histova Biotechnology) following the manufacturer’s protocol.
After multiple rounds of antigen retrieval, blocking, primary
antibody incubation, and incubation with a fluorescent secondary
antibody, the slides were mounted and scanned via the
Phenolmager HT system (AKOYA).

For IHC, tumor tissues were fixed in 4% PFA, embedded in
paraffin, and sectioned into 5 um slices. Subsequent steps were
performed via a vector kit (VECTASTAIN® Elite” ABC-HRP Kit_PK-
6200, Avidin/Biotin Blocking Kit_SP-2001, Vector NovaRED" Sub-
strate Kit_SK-4800, Vector Laboratories) according to the manu-
facturer’s instructions. IHC images were captured via a digital slide
scanner (3D Histech).

Metabolomics and metabolic flux analysis
Metabolomic and metabolic flux analyses were conducted by
LipidALL Technologies Co. Ltd. A brief description of the
experimental methods is provided below.

Untargeted Metabolomics: Polar metabolites were extracted
from cells and analyzed via LC-MS via the same system as
described above. Metabolites were separated via both reversed-
phase liquid chromatography (RPLC) and hydrophilic interaction
liquid chromatography (HILIC) columns, with specific scan ranges
set for each. MS/MS analyses were performed in information-
dependent acquisition mode, and the data were processed to
annotate ion identities via MarkerView 1.3 and PeakView
2.2 software.

FFA analysis: FFAs were extracted via a modified Bligh and Dyer
method and analyzed via high-performance liquid chromatogra-
phy (HPLC) coupled with a triple quadrupole/ion trap mass
spectrometer. Normal-phase HPLC was employed for lipid
separation, and FFAs were quantified via internal standards for
accurate measurement.
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High-resolution metabolic flux analysis: Polar metabolites were
extracted and analyzed for metabolic flux, with alpha-keto acids
derivatized for enhanced detection. The analysis was conducted
on an Agilent 1290 Il UPLC coupled to a Sciex 5600+ quadrupole-
TOF MS, with specific columns and MS parameters applied.
Internal standard normalization was applied to correct for
endogenous metabolites in the samples.

RNA sequencing assay

Total RNA was extracted via TRIzol reagent. Two independent
samples from each group (Huh-7 P, Huh-7 LR, and Huh-7 SR) were
used for RNA sequencing, which was conducted by Biomarker
Technologies (Beijing, China). Protein—protein interaction (PPI)
networks for differentially expressed genes were predicted via the
Search Tool for the Retrieval of Interacting Genes (STRING; http://
string-db.org). Cytoscape bioinformatics software was used to
visualize the molecular interaction networks. The Molecular
Complex Detection (MCODE) algorithm was applied to identify
molecular complexes and densely connected regions within the
PPI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was conducted via OmicShare tools, an online bioinfor-
matics platform (https://www.omicshare.com).

AKR1B1-enzyme-linked immunosorbent assay kit (ELISA) detection
The levels of AKR1B1 protein in the serum of HCC patients and cell
culture supernatants were measured via an ELISA kit (EH2164,
FineTest). Briefly, reagents and samples were equilibrated to room
temperature, and washing buffer was prepared. Biotin-labeled
antibodies and streptavidin-avidin-biotin complex (SABC) working
solutions were prepared. Standards and samples were added to
the microplate, incubated at 37°C, and washed. Biotin-labeled
antibodies and SABC were subsequently added, followed by an
additional washing step. Subsequently, 3,3’,5,5'-tetramethylbenzi-
dine (TMB) substrate was added, and the mixture was incubated in
the dark. A stop solution was added, and the absorbance at
450 nm was measured with a microplate reader. The concentra-
tion of the target protein in the samples was calculated on the
basis of the standard curve.
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