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Narcolepsy as a potential risk factor for Schizophrenia
Reyhane Eghtedarian 1, Anniina M. Tervi1, Samuel E. Jones 1, FinnGen*, Markku Partinen2, Essi Viippola1 and
Hanna M. Ollila 1,3,4,5✉

© The Author(s) 2025

Narcolepsy is a severe sleep disorder with characteristics of fatigue, fragmented sleep, cataplexy and hypnagogic hallucinations.
Earlier clinical studies have reported the onset of schizophrenia after narcolepsy but the causality behind narcolepsy and
schizophrenia is unknown. Our goal was to understand the causality between narcolepsy and schizophrenia. To estimate the
comorbidity between narcolepsy and schizophrenia, we employed data from the FinRegistry that contains data for the total
population of Finland in total 7.2 million individuals (N= 1664 individuals with narcolepsy and 55,372 with schizophrenia). We then
used Mendelian randomization and previously published genome-wide association data to test the causality between narcolepsy
and schizophrenia. We observed a robust causal association from narcolepsy to schizophrenia using the HLA-independent lead
variants (P-value= 6.0 × 10−4), which was accentuated when including the HLA locus (P-value= 4.48 × 10−7). Furthermore, we
observed a modest bidirectional causality from schizophrenia to narcolepsy (P-value= 0.015). There was no evidence of pleiotropy.
Our findings indicate a causal relationship where narcolepsy may increase the risk for schizophrenia, and a bidirectional causality
from schizophrenia to narcolepsy. Additionally, our results clarify the psychiatric burden in narcolepsy.
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INTRODUCTION
Narcolepsy is a severe neurological sleep disorder with likely an
autoimmune origin [1]. It was first described in 1880 by Gélineau,
with symptoms of daytime sleepiness, fragmented nighttime
sleep, loss of muscle tone by positive emotions (cataplexy) and
sleep attacks that can occur during the day and result in a
tendency to fall asleep suddenly [2, 3]. Based on clinical
manifestation and symptoms in narcolepsy it has been divided
into narcolepsy type 1 (NT1) with cataplexy, and narcolepsy type 2
(NT2) without cataplexy. The severity of NT1 may be related to the
loss of the majority of hypocretin/orexin neurons that produce
wake-consolidating neurotransmitter, hypocretin. At least some of
the hypocretin neurons are still partially present in NT2 and it is
currently unknown whether NT2 also has an autoimmune origin
[4]. The prevalence of NT1 is estimated to be around 0.02%, which
mainly stems from the prevalence of cataplexy being 0.02% [5].
Yet the prevalence of narcolepsy without cataplexy is not well-
established although the prevalence of NT2 is larger than NT1 and
estimated around 0.06% [3]. The age of onset of narcolepsy can
vary but according to epidemiological studies, it has two peaks
around ages 15 and 35. Furthermore, narcolepsy affects men and
women approximately at similar rates [6].
In addition to classical sleep symptoms, narcolepsy is related to

lower mood [7–9]. However, sometimes patients with narcolepsy
have symptoms that overlap with other psychiatric diseases, most
importantly schizophrenia [10, 11].
Schizophrenia, is a severe psychiatric disorder, and is character-

ized by delusions, hallucinations, catatonic behavior, and

diminished emotional expression [12] and has a clear genetic
component (heritability= 79%) [13]. The lifetime prevalence of
schizophrenia is estimated at 0.87% [14], although this number
could vary significantly regarding economic, geographical, and
migration status and being a part of an ethnic minority [15].
Schizophrenia is more prevalent in men than women with a
median risk ratio of 1.4:1 [16].
Furthermore, both narcolepsy and schizophrenia have under-

lying genetic associations with immune factors, particularly in the
Human Leukocyte Antigen (HLA) region [17, 18]. The HLA locus is
positioned on 6p21 and encodes genes playing crucial roles in
immune system regulation and is implicated in susceptibility to
several diseases with immune components [19]. More than 90% of
the people with NT1 carry at least one copy of the HLA-
DQB1*06:02 allele located at the extended HLA region. This allele
has been reported in earlier work to increase the risk for
narcolepsy with the majority of NT1 cases being DQB1*06:02
positive [20–22].
Clinicians have reported several cases of dual diagnosis of both

narcolepsy and schizophrenia, where the patients have com-
plained about hallucinations, delusions, sleeping problems and
catalepsy during the first hospital visits [23]. Unimodal and
multimodal hallucinations are more frequent in schizophrenia and
narcolepsy respectively, with hypnagogic/hypnopompic hallucina-
tions typically occurring in the latter. Anxiety and dissociative
symptoms are mutual among both, however, depressive symp-
toms are more severe in schizophrenia [23]. Consequently, the
patients have received an initial diagnosis of schizophrenia
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[24, 25]. The occurrence of hallucinations and delusions in both
disorders makes the differential diagnosis difficult.
The diagnosis of narcolepsy typically occurs after unsuccessful

treatment with antipsychotic drugs and manifestations of severe
sleeping problems, with improvements for both conditions after
taking measures to treat narcolepsy [24, 25]. Clinical studies in
patient cohorts estimate the schizophrenia prevalence secondary
to narcolepsy to be around 9.8% and ranging between 5–13%
[26–28], approximately 11 times higher than in the general
population. These observations raise the question of shared
causality between narcolepsy and schizophrenia as well as
suggest that narcolepsy may cause symptoms of schizophrenia.

METHODS
Narcolepsy cohorts
Current genetic analyses have focused on NT1, and genome-wide
summary statistics are available for NT1 but not for NT2 specifically. Here
we use data specific for NT1 [1], and data that includes both NT1 and NT2
from FinnGen. NT1 as exposure data: NT1 GWAS summary statistics were
obtained from a previous meta-analysis [1]. In summary, a multi-ethnic
cohort of 6073 individuals with NT1 and 84,856 healthy controls were
included in their study. Some of the subjects were collected from other
studies [29, 30]. All cases were HLA-DQB1*06:02-positive, hypocretin-1
deficient and had cataplexy. GWAS summary statistics (SNPs’ significance
of p < 5 × 10−8) from this study were used and the previously identified
independent lead variants were selected as the exposure instruments in
our study. All the variants, except two, were located in different
chromosomes, and those two were independent from each other.
NT1 and NT2 as outcome data: First, full summary statistics from

FinnGen (259 cases and 374,605 controls), a large cohort that includes
genotypic and phenotypic data of 520,210 Finns [31], for narcolepsy from
release 12 (R12) (ICD-10 code G47.4 from outpatient and inpatient data,
ICD-9 code 3471A and ICD-8 code 34700 from inpatient-only data and Kela
reimbursement. Kela is the social insurance institution of Finland, which
reimburses some of the costs for prescription medicines used for the
treatment of an illness, code 214 corresponding to narcolepsy type 1 and
2. Secondly, we used the summary statistics from a previous GWAS specific
for NT1 [1].

Schizophrenia cohorts
Schizophrenia as outcome data: For schizophrenia, we used the publicly
available summary statistics for three distinct cohorts with a cumulative
count of 74,776 individuals diagnosed with schizophrenia and 101,023
healthy controls, derived from the study conducted by Trubetskoy et al.
[32]: (i) European cohort consisting of 53,386 cases and 77,258 controls. (ii)
Core cohort with a total number of 67,390 schizophrenia/schizoaffective
disorder cases and 94,015 controls, encompassing the European cohort
and an east Asian cohort (14,004 cases and 16,757 controls). (iii) Primary
cohort comprising the European ancestry cohort and the east Asian cohort,
in addition to African-American (6152 cases 3918 controls) and Latino
individuals (1234 cases and 3090 controls). The version 6 of the GWAS
summary statistics for these cohorts were procured from publicly
accessible datasets published by the Psychiatric Genomics Consortium
(PGC) (https://doi.org/10.6084/m9.figshare.19426775.v6). The files that
were used are: “PGC3_SCZ_wave3.european.autosome.public.v3.vcf.tsv.gz”,
“PGC3_SCZ_wave3.core.autosome.public.v3.vcf.tsv.gz” and “PGC3_SCZ_wave3.
primary.autosome.public.v3.vcf.tsv.gz”.
Schizophrenia as exposure data: For the exposure data, we used the

individual lead variants (SNPs) from the Psychiatric Genomics Consortium
[32]. They identified the independent signals through implementing
stepwise analyses, and Bayesian fine-mapping using FINEMAP which was
based on LD clumping procedure to select the independent causal
variants.

Mendelian randomization (MR)
The MR analyses were performed using the TwoSampleMR R package [33]
version 0.6.6 and R version 4.4.1. In brief, MR aims to use genetic variants
independently associated with an exposure as instrumental variables to
assess the causal impact of the exposure on the outcome. It does this by
assessing the effect of the exposure instruments on the outcome and
performing a weighted linear regression of the effects of variants on the

outcome against their effect on the exposure, with multiple weighting
approaches. The regression slope then represents the magnitude of the
one-directional causal estimate of the exposure to the outcome. To
provide an accurate causal estimate, the genetic variants selected as
exposure instruments need to satisfy the following three core MR
assumptions [34] by being:

1. Predictive of the exposure, usually satisfied by selecting those variants
that meet a stringent statistical threshold (P - value < 5 × 10−8) for
association with the exposure;

2. Independent of confounding factors of the exposure-outcome
association;

3. Not pleiotropic (i.e. is conditionally independent of the outcome
given the exposure and the confounding factors).

To assess causality, we used multiple MR approaches which vary in
statistical power and flexibility of the MR assumption violation. Primarily,
we adopted Inverse Variance Weighted (IVW) as our main MR method,
which combines all the Instrumental Variables (IV)-specific ratio estimates
(weighting each instrument by the inverse of the square of the
instrument’s effect size standard error) [34] and is the most statistically
powerful, but requires that all genetic instruments satisfy the above
assumptions. We also used the Weighted Median (WM) approach which
relaxes the requirement that all instruments satisfy the above assumptions
but at least 50% of the genetic variants are assumed to be valid [35],
sacrificing statistical power for greater instrument flexibility. Additionally,
we applied the MR-Egger approach which uses Egger regression to
estimate the causal effect while also testing (and accounting) for causal
estimate bias due to pleiotropy [36]. It allows violation of the pleiotropy
assumption (assumption 3 above) but adds the requirement that the direct
pleiotropic effects of the genetic variants on the outcome are distributed
independently of the genetic associations with the exposure, referred to as
the Instrument Strength Independent of Direct Effect (InSIDE) assumption.
The last two models we applied are both mode-based estimations (MBE)
which are simple (unweighted)- and weighted-MBE. MBE approaches use
the modal (most frequent) effect estimate from all the instruments and
allow the majority of instruments to be invalid (violate one or more of the
above assumptions). In comparison to weighted median-based estimators
and IVW, MBE methods are less powerful in identifying the causality
between the exposure and the outcome but exceed the statistical power
of MR Egger [37, 38]. We considered our MR causal estimates to be
statistically significant if they had an IVW P - value < 0.05.

Sensitivity analysis
The rigor of MR relies on the indirect effect of instruments on the outcome,
only via the exposure. Otherwise, the causality might be biased due to
pathways other than those involving the exposure, which is referred to as
“horizontal pleiotropy” [39]. The presence of pleiotropy was tested in our
study using the MR Egger intercept. Afterwards, we performed a leave-one-
out analysis, which repeats the MR but excludes each SNP one at a time, to
test if a single SNP drives the MR association results. We then performed the
analysis again using schizophrenia lead variants from Trubetskoy et al. as the
exposure instruments against NT1 and narcolepsy including both NT1 and
NT2 as the outcome to test the robustness of our findings.
Due to the disproportionately high effect size of the HLA locus in NT1

[40], the effect sizes were computed with and without lead variants from
the HLA locus. Furthermore, sensitivity analyses for ethnic-specific
associations were carried out using all ethnicities provided by the
Psychiatric Genetics Consortium for schizophrenia [32].

Power calculation of mendelian randomization
In the next step, we assessed the power of mendelian randomization to
identify the causality between an exposure and an outcome. For this
purpose, we used mRnd (https://shiny.cnsgenomics.com/mRnd/), an online
tool which calculates the statistical power, taking into account the amount
of phenotypic variance explained by the genetic variants [41]. This tool
uses as the input the sample size, proportion of cases, odds ratio, and the
amount of phenotypic variance of the exposure explained by the
instrumental variables [41].

Leave-one-out analysis
Finally, we used leave-one-out analysis to test if any individual SNP is
responsible for driving the causality. This analysis repeats the MR,
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excluding each variant one at a time and then computes the causal effect
without that one variant.

RESULTS
Dual cases of narcolepsy and schizophrenia in the Finnish
population
We retrieved the number of individuals with narcolepsy and
schizophrenia among Finnish individuals in the FinRegistry
database. FinRegistry is a joint research project of the Finnish
Institute for Health and Welfare (THL) and the Data Science
Genetic Epidemiology research group at the Institute for
Molecular Medicine Finland (FIMM), University of Helsinki, which
provides statistical and machine learning models to study disease
occurrences, using the health conditions, medications, vaccina-
tions and laboratory results from over 7.2 million Finns, https://
www.finregistry.fi/ [42]. There were 1664 individuals with narco-
lepsy of which 880 and 784 were females and males, respectively.
There was a total of 55,372 schizophrenia patients, including
26,366 females and 29,006 males. The population-level prevalence
of narcolepsy was similar between males and females (0.03%). The
prevalence of narcolepsy is 0.03% in FinRegistry and 0.05% in
FinnGen R12 whereas the prevalence of schizophrenia is 1.04%
and 1.51% in FinRegistry and FinnGen R12. The prevalence of both
diseases is higher in FinnGen than in FinRegistry.
We also examined the overlapping cases of narcolepsy and

schizophrenia in FinRegistry, and 34 cases were documented. The
observed prevalence of schizophrenia in narcolepsy (2%) was
more than two times higher than the expected relative schizo-
phrenia cases in the general population (0.87%) [14]. This
observation was significant when tested with Fisher’s exact test
(P - value < 1 × 10−5) [43].

Mendelian Randomization analysis of NT1 with schizophrenia
To understand the possible causal relationship between NT1 as a
risk factor for schizophrenia we then performed Two-sample MR
predicting schizophrenia with NT1 and vice versa.
We used variants from previously published GWAS specific for

NT1 [1] which reported 13 independent variants outside the HLA
region. We tested the causality from NT1 to schizophrenia with
non-HLA variants and with all variants including, rs2002779, one
lead variant from the HLA region, in linkage disequilibrium (LD)
with HLA-DQB1*06:02. We observed a causal relationship from
NT1 to schizophrenia in the HLA-independent analysis (P -
value= 0.0006, Beta= 0.058, SE= 0.017 and OR [95% CI]= 1.06
[1.024–1.096]) in European ancestry, with concordant effects
across different MR methods (Fig. 1A and Table 1). Furthermore,
when we include rs2002779, we observed an even stronger causal
relationship from NT1 to schizophrenia (P - value= 4.48 × 10−7,
Beta= 0.052, SE= 0.01 and OR [95% CI]= 1.054 [1.032–1.076]) for
European ancestry (Fig. 1B and Table 1).
Subsequently, we replicated the examination within both the

core cohort (Supplementary Fig. 1 and Supplementary Table 1),
encompassing individuals of European and East Asian ancestry,
and the primary cohort (Supplementary Fig. 2 and Supplementary
Table 2), comprising individuals of European, East Asian, African-
American, and Latino ancestry. These cohorts exhibited similar
results (P - value < 0.05 for both cohorts).

Mendelian Randomization analysis of schizophrenia to NT1
We assessed if there is a reverse causal relationship from
schizophrenia to NT1, to examine if schizophrenia increased the
risk for NT1. We used variants from Trubetskoy et al. [32] as the
exposure instruments for schizophrenia, NT1 summary statistics
from an earlier published NT1 GWAS [1] as outcome data. We
found a bidirectional causality from schizophrenia to the
narcolepsy meta-analysis. We observed a positive effect estimate
with FinnGen data, which also includes NT2 cases, although the

relationship was not significant, possibly due to smaller number of
affected individuals (N= 259 narcolepsy cases in FinnGen versus
6073 individuals in NT1 meta-analysis) and consequently power in
this cohort (Fig. 2, Table 2).

Sensitivity analyses
As earlier studies suggest that there are immune components
both in NT1 and schizophrenia, we wanted to test if confounding
factors, or other mediating factors are present causing pleiotropy.
Therefore, we used the MR Egger intercept to assess significant
horizontal pleiotropy across all the instruments. We observed no
evidence of overall horizontal pleiotropy, through studying the MR
Egger intercept, in the analysis where NT1 was tested as a risk
factor for schizophrenia or where schizophrenia was tested as a
risk factor for NT1 (Table 3). The results for core and primary
cohorts are shown in supplementary Table 3.

Power calculation of mendelian randomization
To calculate the statistical power of our study, we used mRnd
online tool. Our study showed a robust power to detect the
causality from narcolepsy to schizophrenia, and even more power
when including a lead variant from the HLA region. The results
were consistent in European (Table 4), core, and primary
schizophrenia cohorts (Supplementary Table 4). Our study showed
a high power in detecting causality from schizophrenia to
narcolepsy in the narcolepsy meta-analysis, but a lower power
in FinnGen cohort (Table 4). These results may be due to the
smaller narcolepsy sample size in the latter.

Leave-one-out analysis
Finally, we performed leave-one-out analysis to test if any
individual SNP is responsible for driving the MR results. This
analysis repeats the MR, excluding each variant one at a time
and then computing the causal effect without that one variant
(Fig. 3, Supplementary Tables 5 and 6). The findings were
consistent, and no single variant was responsible for the causal
relationship between NT1 and schizophrenia. The results for the
core cohort are shown in Supplementary Fig. 3 and Supplemen-
tary Tables 7 and 8, and the results for the primary cohort are
shown in Supplementary Fig. 4 and Supplementary Tables
9 and 10. The results for schizophrenia to NT1
meta-analysis and FinnGen R12 narcolepsy cohort are shown
in the Supplementary Tables 11 and 12, respectively.

DISCUSSION
In the present study, we implemented MR to test whether there is
a causal relationship between NT1 and schizophrenia. Epidemio-
logical analysis of the total population of Finland in 7.2 million
individuals showed a higher prevalence of schizophrenia among
the NT1 patients than within the population free of NT1
supporting the role of NT1 and schizophrenia co-occurring in a
subset of patients with NT1. In addition, MR analysis using data for
NT1, and earlier curated data from the psychiatric genetics
consortium showed a causal relationship from NT1 to schizo-
phrenia, and a bidirectional causality from schizophrenia to
narcolepsy meta-analysis cohort. Overall, these results support
the relationship between NT1 and schizophrenia and suggest that
NT1 may increase the risk of developing schizophrenia, and
vice versa.
In the FinRegistry cohort that represents the Finnish population,

the prevalence of NT1 is 0.03% which is in agreement with earlier
reported values in Finland and globally. However, the observed
prevalence of schizophrenia in the population of Finland is 1% but
among those with NT1 it was over 2% and thus approximately two
times higher than the expected relative schizophrenia cases in the
general population (0.87%) [14]. To put these values into the
context of existing literature, we want to highlight that several
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Table 1. MR testing the causality from NT1 to schizophrenia using non-HLA NT1 lead variants and including one lead variant in LD with HLA-
DQB1*06:02 in European ancestry cohort.

Method Exposure No. of SNPs Beta SE P-Val OR [95% CI]

MR Egger HLA-independent 13 0.023 0.042 0.59 1.024 [0.941–1.113]

+1 HLA variant 14 0.042 0.015 0.029 1.043 [1.011–1.076]

Weighted median HLA-independent 13 0.059 0.022 0.007 1.061 [0.016–1.107]

+1 HLA variant 14 0.048 0.012 6.87E-05 1.049 [1.023–1.076]

Inverse variance weighted HLA-independent 13 0.058 0.017 6.0E-4 1.06 [1.024–1.096]

+1 HLA variant 14 0.052 0.01 4.48E-07 1.054 [1.032–1.076]

Simple mode HLA-independent 13 0.097 0.044 0.048 1.101 [1.01–1.201]

+1 HLA variant 14 0.09 0.032 0.015 1.094 [1.028–1.164]

Weighted mode HLA-independent 13 0.053 0.026 0.062 1.05 [1.002–1.11]

+1 HLA variant 14 0.049 0.011 8.007E-04 1.05 [1.025–1.076]

Fig. 1 MR shows causality from NT1 to schizophrenia in European ancestry. A shows the results using non-HLA lead variants and B shows
the results after including one lead variant in LD with HLA-DQB1*06:02. The x and y axes show the effect sizes (log odds ratio) of each SNP for
both phenotypes. The horizontal and the vertical lines demonstrate the standard errors of the effect sizes.
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Fig. 2 MR analysis to test causality between schizophrenia and NT1. A and B show the schizophrenia Trubetskoy et al. cohort [32] and
FinnGen release 12, and Narcolepsy meta-analysis [1], respectively. The x and y axes show the effect sizes (log odds ratio) of each SNP for both
diseases. The horizontal and the vertical lines show the standard errors of the effect sizes.

Table 2. MR results testing the causality between schizophrenia and NT1 in FinnGen R12 and NT1 meta-analysis.

Method Outcome No. of SNPs Beta SE P-Val OR [95% CI]

MR Egger FinnGen R12 narcolepsy cohort 578 0.436 0.286 0.128 1.546 [0.882–2.710]

NT1 meta-analysis 558 0.0437 0.096 0.648 1.044 [0.865–1.261]

Weighted median FinnGen R12 narcolepsy cohort 578 0.093 0.120 0.437 1.098 [0.867–1.390]

NT1 meta-analysis 558 0.080 0.036 0.025 1.083 [1.009–1.162]

Inverse variance weighted FinnGen R12 narcolepsy cohort 578 0.124 0.081 0.125 1.133 [0.965–1.329]

NT1 meta-analysis 558 0.060 0.025 0.015 1.062 [1.011–1.116]

Simple mode FinnGen R12 narcolepsycohort 578 −0.423 0.482 0.380 0.654 [0.254–1.685]

NT1 meta-analysis 558 0.196 0.151 0.196 1.216 [0.903–1.639]

Weighted mode FinnGen R12 narcolepsy cohort 578 −0.124 0.452 0.783 0.883 [0.363–2.144]

NT1 meta-analysis 558 0.223 0.143 0.119 1.251 [0.944–1.657]
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studies have earlier described overlapping cases of NT1 and
schizophrenia in clinical samples: Plazzi et al. reported that the
cases who have both schizophrenia and NT1 develop more severe
symptoms, may require hospitalization, and have poorer response
to psychosis treatment relative to schizophrenia itself, and the
majority of them were HLA DQB1∗03:01/06:02 positive, in
comparison to each condition separately [23]. Similarly. Huang
et al. reported a higher prevalence of depressive symptoms and
hospitalization in patients with both narcolepsy-cataplexy and
schizophrenia compared to schizophrenia-only patients [26]. The
reported cases of schizophrenia-like symptoms in narcoleptic
patients [10, 23, 25] are in concordance with the overlapping cases
of NT1 and schizophrenia observed in the Finnish population and
overall expand our understanding of the relationship between
narcolepsy and schizophrenia.
Our MR investigation suggested that NT1 increases the risk for

schizophrenia. on the other hand, we also found a modest
bidirectional causality from schizophrenia to narcolepsy in one
of the tested cohorts. Our study showed a robust power in
detecting the causal relationship between narcolepsy and
schizophrenia. In addition, our analysis indicated the absence
of significant pleiotropy, suggesting that the genetic variations
influencing the outcome are not driven by strong pleiotropic
factors. Overall, the findings provide some insight into the co-
occurrence of NT1 and schizophrenia cases reported in prior
research [23].
Previous studies have highlighted the shared mechanisms of

the immune system and autoimmunity between narcolepsy and
schizophrenia, many of them pointing to the role of HLA region
variants or variants related to the essential genes for immunity
[29, 44]. GWAS analysis in Hallmayer et al. on narcolepsy patients
identified variants in the T cell receptor Alpha (TCRA) locus [29].
Furthermore, HLA-DQB1*06:02 is the most significantly associated
gene with NT1 and is often genotyped to aid clinical decision-
making [20]. HLA molecules interact with TCR subtypes and are
the most important regulators for adaptive immune responses
[45]. In the context of narcolepsy, HLA/TCR interaction likely

contributes to the destruction of hypocretin neurons [29, 46].
Similarly, the strongest genetic risk factor for schizophrenia is
located in the HLA region but with a separate association
encoding for complement 4 (C4) that is not part of the narcolepsy
risk haplotype [47]. These findings suggest an immune signal,
although perhaps separate, in both diseases. Our finding
contributes to the understanding of causality from NT1 to
schizophrenia but does not solve the molecular mechanisms that
connect the two diseases.
Our results show a causal association from schizophrenia to

NT1, only in the narcolepsy meta-analysis cohort, and not in the
FinnGen cohort. This finding may indicate real biology but more
likely is affected by power and smaller N of narcolepsy patients
in FinnGen alone. Furthermore, there are clear sleep distur-
bances in individuals with schizophrenia [48]. Based on data
from the UK Biobank, people with schizophrenia had longer
sleep duration, took more naps and had poorer sleep efficiency
[49]. Furthermore, Hombali et al. conducted an assessment of
narcolepsy incidence in various psychiatric disorders, including
schizophrenia, mood disorders, and anxiety disorders, revealing
a 12.5% occurrence rate [50]. Together with our current data,
these findings highlight overall comorbidity between narcolepsy
and schizophrenia.

LIMITATIONS
Our study should be interpreted in the light of following
limitations. Current genome-wide data allows assessment for only
NT1 or jointly for NT1 and NT2. Therefore, we cannot perform
specific analysis for NT2. Furthermore, assessment of subtypes of
schizophrenia or schizoaffective disorders, as they might be
informative for future studies as clinical and biological mechan-
isms in schizophrenia subtypes may be different from each other.
Our NT1 cohorts have relatively small sample sizes which do not
confer high power to test pleiotropic effects. In addition, the
prevalence of narcolepsy and schizophrenia is higher in FinnGen
R12 in comparison to FinRegistry and effect estimates in MR in
FinnGen may not represent direct population values from the total
population.

CONCLUSION
In conclusion, our research highlights the bidirectional causality
between NT1 and schizophrenia and the most prominent SNPs
with the highest effect on this causality. Our findings show that
the schizophrenia diagnosis in narcoleptic patients is a phenom-
enon that does not occur only by chance but also having NT1 can
be considered as a risk factor for developing schizophrenia. Our
findings may help to elucidate the possible mechanisms in dual
cases of narcolepsy-schizophrenia, which could be beneficial for
early and precise diagnosis of either disorder or the development
of treatment approaches.

Table 3. MR Egger intercept test results (null hypothesis is egger_intercept=0) demonstrating no evidence of overall horizontal pleiotropy.

Outcome Exposure egger_intercept SE P-Val

NT1 to Schizophrenia: European cohort

Schizophrenia NT1 0.007 0.008 0.397

NT1 to Schizophrenia: European cohort (HLA region variant included)

Schizophrenia NT1 0.004 0.005 0.397

Schizophrenia to narcolepsy: FinnGen R12 narcolepsy cohort

NT1 Schizophrenia −0.017 0.015 0.257

Schizophrenia to NT1: NT1 meta-analysis

NT1 Schizophrenia 0.0009 0.005 0.854

Table 4. Statistical power calculation of the mendelian randomization
showing the robustness of our study to detect the causality between
narcolepsy and schizophrenia.

Exposure Outcome Power

NT1 lead variants Schizophrenia_EU 0.99

NT1 lead variants + 1
HLA variant

Schizophrenia_EU 1

Schizophrenia lead
variants

NT1 meta-analysis 0.95

Schizophrenia lead
variants

FinnGen R12 narcolepsy
cohort

0.35
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