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Heightened negative affect is a core feature of serious mental illness. Over 90% of American adults own a smartphone, equipped
with an array of sensors which can continuously and unobtrusively measure behaviors (e.g., activity levels, location, and phone
usage patterns) which may predict increases in negative affect in real-time in individuals’ daily lives. Sixty-eight adults with a
primary mood or psychotic disorder completed daily emotion surveys for over a year, on average (mean 465 days; total

surveys = 12,959). At the same time, semi-continuous collection of smartphone accelerometer, GPS location, and screen usage data,
along with accelerometer tracking from a wrist-worn wearable device, was conducted for the duration of the study. A range of
statistical approaches, including a novel personalized ensemble machine learning algorithm, were compared in their ability to
predict states of heightened negative affect. A personalized ensemble machine learning algorithm outperformed other statistical
approaches, achieving an area under the receiver operating characteristic curve (AUC) of 0.72 (for irritability) —0.79 (for loneliness)
in predicting different negative emotions. Smartphone location (GPS) variables were the most predictive features overall. Critically,
there was substantial heterogeneity between individuals in the association between smartphone features and negative emotional
states, which highlights the need for a personalized modeling approach. Findings support the use of smartphones coupled with
machine learning to detect states of heightened negative emotions. The ability to predict these states in real-time could inform the

development and timely delivery of emotionally beneficial smartphone-delivered interventions which could be automatically

triggered via a predictive algorithm.

Translational Psychiatry (2025)15:174; https://doi.org/10.1038/541398-025-03394-4

INTRODUCTION
A defining characteristic of serious mental illness (SMl), encom-
passing mood disorders (bipolar and major depressive disorder)
and psychotic disorders, is disturbance in negative affect,
including increased frequency, intensity, or duration of negative
emotional states such as sadness, anxiety, and anger, which
commonly last hours [1-9]. There is a critical need to develop
scalable tools to identify and alleviate states of heightened
negative affect as they arise in, and interfere with, the daily lives of
these individuals. Towards this goal, over 90% of American adults
own a smartphone [10], which are equipped with an array of built-
in sensors capable of tracking behaviors predictive of shifts in
affect, including activity levels (accelerometer), location (GPS), call
and text data, and patterns of phone usage [11-17]. Smartphones
can continuously and unobtrusively monitor individuals in their
day-to-day lives, providing rich and potentially predictive informa-
tion on emotional states. For example, an individual experiencing
a surge in sadness may become less active, spend more time in
their home and be less likely to initiate and respond to texts and
calls, all of which can be measured from smartphone sensors.
Whether such “passive” (i.e., no user input required) smart-
phone data can reliably predict states of heightened negative
affect among those suffering from SMI is an open question.

Several studies provide promising initial evidence indicating that
passively collected data from smartphone sensors can signal
elevated negative emotions [11-17]. To the extent that states of
heightened negative emotions could be reliably predicted from
smartphone data, brief, low-cost and highly scalable psychosocial
interventions could be immediately triggered on an individual’s
smartphone (e.g., app-delivered mindfulness, behavioral activa-
tion, or cognitive reappraisal exercises) to alleviate these states in
a timely fashion.

The present study builds on prior research examining the
relationship between smartphone-derived variables and emo-
tional states in several ways. First, we will test whether machine
learning approaches (e.g, random forest, support vector
machines, regularized regression) well-suited to complex, high-
dimensional passive sensor data outperform simpler, conventional
statistical approaches (e.g., multilevel modeling). We will also
directly compare different machine learning approaches to
determine if any one algorithm yields superior predictive
performance. Of relevance, one recent smartphone study in youth
with elevated depressive symptoms found that random forest
predicted negative emotional states more accurately than several
other statistical algorithms [15]. In addition, given that some
machine learning approaches rely on very different underlying
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algorithms for modeling the association between predictors and
outcomes (e.g. elastic net is a relatively simple variant of
conventional Ordinary Least Squares [OLS] regression, whereas
random forest is a decision-tree based approach which can detect
higher-order interactions and non-linear associations) they may
have complementary strengths [15, 18, 19]. Thus, we also tested
whether a weighted combination of these machine learning
algorithms outperforms any individual algorithm.

Second, prior studies have typically collected passive sensing
data over relatively short timeframes ranging from a few days to a
few weeks [14, 20-29] (For an exception, see [30]). Such relatively
short timeframes may not provide adequate opportunity to
observe sufficient variance in symptoms and limit statistical power
for within-person (idiographic) analyses. Individuals with SMI
experience fluctuations in symptoms at multiple timescales and of
varying severity; therefore, here we employed an extended study
observation period of one year in each individual to ensure
adequate sampling of mood and affect over a timeframe expected
to result in clinically meaningful changes.

Third, wrist-worn wearable devices (e.g., smartwatches and
actigraphy wristbands) may offer a valuable extension to
smartphone-derived measures for enhancing the prediction of
heightened negative affect. These wrist-worn wearables often
include built-in accelerometers and gyroscopes, enabling the
measurement of physical activity and movement patterns. This
data can be crucial in understanding the correlation between
physical activity levels and emotion fluctuations. Wrist-worn
devices sometimes also offer continuous and unobtrusive
monitoring of emotion-relevant physiological parameters such
as heart rate, skin conductance, and sleep patterns. Importantly,
the data collected with these devices provide an uninterrupted
stream of data collection (including during sleep if the wrist-worn
device is kept on at night), compared to smartphones which may
be left behind/forgotten, fail to transmit signal, or turned off. This
granularity may allow for more accurate and timely predictions of
negative affective states, enabling early intervention or support
when needed. The psychometric properties of these measures
vary by device, manufacturer, and wear time compliance [31-33].
For example, with regards to reliability, one study using the
GENEACctiv wrist worn accelerometer in over 2745 children found
that to achieve acceptable reliability (ICC=0.70), 3-5 nights of
data are needed for sleep estimates and 3-4 days of data are
needed for physical activity and sedentary time estimates [31].
Studies have also evaluated the validity of wrist-worn device
estimates of activity such as step count (relative to manual tallying
of steps or accelerometry in a controlled setting) and sleep (e.g.,
relative to gold-standard polysomnography) [31-33]. Of note,
variability in the reliability and validity of consumer-grade devices
and updates to software can pose challenges for consistent data
collection [34-36]. To address this, we used a research-grade
wearable (GENEActiv) with full access to raw triaxial accelerometer
signals, ensuring transparency and consistency in our derived
signals.

Fourth, and critically, there may be substantial between-
individual differences in the behavioral patterns associated with
negative emotional states. For example, an individual experien-
cing heightened anxiety may become more physically restless, as
reflected by increased overall activity levels (captured by the
smartphone’s accelerometer) and movement from location to
location (GPS) and may spend more time interacting with their
smartphone [37, 38]. In contrast, another individual in the midst of
an anxious state may show a very different pattern: for example,
they may spend more time in their home (GPS) with limited
movement (accelerometer), and show increased interpersonal
avoidance (e.g., as evidenced by sending and responding to fewer
text messages and phone calls). In other words, individuals may
differ both in the direction of the association between particular
smartphone variables and increases in specific negative emotions
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(e.g., increases vs. decreases in activity levels predicting heigh-
tened anxiety) and in which features predict heightened negative
emotions. In summary, such between-person differences highlight
the need for a person-specific (idiographic) modeling strategy,
where the association between passive sensing features and
negative affect is modeled separately for each individual.

At the same time, certain passive sensor-emotion associations
may be shared across individuals. Thus, when predicting the
negative emotional states of one individual it may be helpful to
leverage information from the predictive model of other
individuals. The present study will compare the predictive
performance of fully idiographic models (i.e., only using the
individual’'s own data when building a predictive model for them)
versus a weighted ensemble model that allows for the borrowing
of information from the predictive models of other individuals to
improve predictive performance by leveraging shared predictive
patterns.

METHODS

Participants and procedure

Study participants were 70 adults diagnosed with a primary affective
disorder (e.g., bipolar disorder or major depressive disorder) or psychotic
disorder (i.e., schizophrenia or schizoaffective disorder). Among partici-
pants enrolled between 2015 and 2019, passive smartphone signals and
wrist-worn actigraphy were available for subsets of 68 and 31 participants,
respectively (see Table 1 for demographic and clinical characteristics of the
final sample). Participants were recruited via study advertisement through
the divisions for Depression and Anxiety Disorders and Psychotic Disorders
at McLean Hospital and using the Rally platform through Mass General
Brigham (MGB). The duration of the study per participant was set as one
year, with the option of continuing participation depending on the severity
and fluctuation of a participant’s symptoms as assessed during monthly
clinic visits (M = 465 days, SD = 426 days, range = 3-2044 days; total daily
emotion surveys collected = 12,959). Participants installed the Android and
iOS compatible smartphone application Beiwe [38, 39] onto their own
device to provide semi-continuous, passive collection of screen usage,
accelerometry, and GPS data. Using Beiwe, participants were also invited to
complete ecological surveys (see Measures: Outcomes). Participants were
also given the option to wear a GENEActiv (Activinsights, Inc.) actigraphy
device on their wrist continuously and return or swap out the watch at the
time of their monthly clinical visit. This wrist-worn device measures
movement which is used to derive metrics for a participant’s sleep and
physical activity.

Ethics approval and consent to participate

The study protocol was approved by the Mass General Brigham (MGB)
Institutional Review Board (2015P002189) and informed consent was
obtained from all subjects. All procedures contributing to this work comply
with the ethical standards of the relevant national and institutional
committees on human experimentation and with the Helsinki Declaration.

Measures

Outcomes. When initially enrolled, demographic information (age,
gender, and race) and patient’s diagnoses were recorded. The daily 31-
item survey consisted of questions on emotion, psychotic symptoms, social
behavior, physical activity, sleep, and alcohol and coffee consumption. The
primary outcomes for our study were the daily negative affect items which
included self-report questions on feeling anxious, irritable, upset, and
lonely (ordinal, 1 =not at all, 2=a little, 3 =moderately, 4 = extremely;
e.g., “How anxious have you been feeling today?").

Predictors. Primary predictors include variables extracted from passive
smartphone data. Using smartphone accelerometry and screen usage data,
we performed weekly estimations of sleep epochs to derive features
reflecting (1) phone usage during the sleep epoch, (2) sleep onset, (3) sleep
offset, (4) sleep duration, (5) phone usage during the wake period, (6) the
difference in phone usage between wake and sleep periods, and (7)
missing phone data. All these variables are explained in Supplementary
Table S1. GPS coordinates collected by the smartphones were analyzed by
our open-source Deep Phenotyping of Location (DPLocate) pipeline [40].
This pipeline which was designed and validated in multiple data sets, uses

Translational Psychiatry (2025)15:174



Table 1. Demographics and clinical characteristics of the sample
(n=68).
Sample characteristics N =68 %
Primary Diagnosis (DSM-5)
Major Depressive Disorder 12 17.6
Bipolar Il Disorder 9 13.2
Bipolar | Disorder 28 41.2
Schizoaffective Disorder 12 17.6
Schizophrenia 7 10.3
Secondary Diagnoses (DSM-5)
Generalized Anxiety Disorder 9 13.2
Social Anxiety Disorder 2 294
Panic Disorder 6 8.82
Anxiety Not Otherwise Specified 7 103
Obsessive Compulsive Disorder 7 103
Depression Not Otherwise Specified 1 1.47
Premenstrual Dysphoric Disorder 1 1.47
Posttraumatic Stress Disorder 7 10.3
Alcohol Use Disorder 18 26.5
Cannabis Use Disorder 21 309
Hallucinogen Use Disorder 3 4.41
Opioid Use Disorder 1 1.47
Sedative/Hypnotic/Anxiolytic Use Disorder 2 294
Stimulant Use Disorder 3 441
Borderline Personality Disorder 1 1.47
Attention Deficit Hyper. Disorder 8 11.8
Autism Spectrum Disorder 1 1.47
Biological Sex
Female 40 58.8
Male 28 41.2
Race
Asian 9 13.2
Black or African American 9 13.2
Native American, Pacific Islander 1 1.47
Other 3 441
White 46 67.6
Age (years) M =29.59; SD =8.78
48+ 4 5.88
40-47 5 7.35
30-39 15 22.1
24-29 27 39.7
18-23 17 25.0
Education
Grade 7-12 1 1.47
Graduated HS 4 5.88
Part college 25 36.8
Graduated 2-year college 4 5.88
Graduated 4-year college 22 324
Part graduate school 4 5.88
Completed graduate school 7 103
Not reported 1 1.47

different temporal and spatial filters to clean the GPS data and detect
frequently visited places, called points of Interest (POI), using density-
based clustering techniques, and assign those POls to the related minutes
of the day [40]. The daily location maps are then used to estimate features
for (1) distance from home location, (2) radius of mobility, (3) percentage of
time spent at home location, (4) number of locations visited, and (5) GPS
missing time. The definition of these variables is also explained in
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Supplementary Table S1. Moreover, the daily measures of (1) phone
accelerometer and (2) phone use that are used as daily features in the
analysis are explained in this table.

Using data from a subset of the cohort (n = 31) with available wrist-worn
actigraphy, we derived additional daily features related to sleep and
activity using a previously published open source pipeline (DPSleep [41]).
Primary predictors derived from wrist-worn actigraphy include (1)
accepted days of watch data after quality control, (2) sleep onset, (3)
sleep offset, (4) sleep duration, (5) activity during sleep epoch, (6) activity
during wake period, (7) the difference in activity between wake and sleep
periods, and (8) sleep fragmentation (Supplementary Table S2). Due to
high level of missingness, we were only able to analyze 8 subjects with
sufficient number of observations of either the wrist-worn actigraphy
measures or negative emotions. Thus, the results presented below focus
on smartphone features as predictors. For wrist-worn actigraphy results see
the supplementary document.

Analytic approach

Missing data imputation. Missingness for the above smartphone predictor
variables was imputed using multiple imputation (MICE package in r) [42],
while outcome variables were not imputed to avoid overfitting of
prediction models. The imputation process was performed jointly for all
passive variables, excluding the outcome variables (i.e., negative emotional
states). We produced 5 imputations and performed 5 iterations per
imputation, which are the default choices in MICE [42]. Since the goal of
our analysis is prediction, we used the mean values of the imputed passive
variables across the five imputations when training the predictive
algorithms [43].

Definition of high negative affect (HNA) states. This study is focused on the
prediction of states of heightened negative emotions (specifically, anxious,
irritable, upset, and lonely). For brevity, below we refer to these states as
high negative affect (HNA) states. Consistent with Ren et al. [15], HNA
states were computed based on elevations above the person-specific
average emotion score for a given individual. Specifically, for each
emotion, if the observed emotion score of a given participant at a
particular timepoint exceeds their mean emotion score by at least 1/2
point, we define this as an HNA state of that emotion (see Table 2). This
cutoff value is identical to a previous study [15] and was selected by
balancing the tradeoff between (1) the selected cutoff value to define an
HNA state and (2) the proportion of these states. By selecting a higher
cutoff value, we can be more confident that HNA states are in fact
instances of “high” negative affect. However, overly high cutoff values may
result in proportions of HNA states that are too low to successfully train a
classification algorithm. On the other hand, although low cutoff values
provide us with more HNA states for statistical modeling, it also increases
the chance that at least some of these identified states are questionable
(i.e., too low to be considered true states of “high” negative affect). For
each of the negative affect items, patients were excluded from the
analyses if they had less than 10 total observations and 4 or 10%
(whichever implies more total number of HNA events) of negative emotion
events. For example, a subject with 100 total observations and 4 HNA
events will be removed since the proportion of HNA events is less than
10%. Using this threshold, the number of participants for the analyses
predicting anxious, irritable, upset, and lonely states was 35, 36, 40, and 42,
respectively.

Personalized predictions of HNA states. Passive smartphone features and
wrist-worn actigraphy data were used to predict HNA states from the same
day. We used two approaches to model the relation between these passive
data features and HNA states. First, we used a generalized linear mixed
effects regression (GLMER) with logit link and subject-specific random
intercept to model the heterogeneity between participants. The GLMER
model combines fixed effects and the best linear unbiased predictions of
the random effects [44] to predict the person-specific outcomes (HNA
states). The GLMER is a simpler and commonly used approach that we
implemented for comparison against our machine learning ensemble
approach described below.

Next, we used a recently developed ensemble machine learning
approach [15, 45] that builds a unique predictive model for each individual
while borrowing information from other individuals’ models in an effort to
improve predictive performance. Specifically, this approach develops an
ensemble of idiosyncratic prediction models ff(x),i =1,...,KI=1,..,L
where K is the number of individuals and L represents the number of
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Table 2. Summary statistics of HNA related measures for the final sample.
Emotion Average # of observations

Anxious 261.63 0.30

Irritable 265.00 0.28

Upset 251.82 0.25

Lonely 240.07 0.30

different learning algorithms (e.g., logistic regression). ff(x) is trained on
data from participant i with algorithm /. The “personalized ensemble model”
(PEM) f;(x;w') for participant i is a linear combination of all idiosyncratic
models (IM):

filow') = Z Z wj:,_’,f;, (x)

=1 1=1

and the combination weights w' = (w/, ;/' = 1,... K,/ =1, ..., L) with the
constraints that >, ,w;, =1 and w;, >0 for all i,i' € {1, ... ,K} and | €
{1,...,L} are selected to minimize a cross-validated loss function:

. ni ) .
W' = argmin,, Z Ly Z W}_’,f;/ (xij) + W}},fﬁ‘ﬁ. (xij)

J=1 i'#il

where n; is the number of observations for participant i and ff‘fj(x) is the
IM trained on all data from participant i except for the j-th observation (or a
fold containing the j-th observation) with algorithm /. £ is a loss function
(log-loss for binary outcomes given that we are predicting whether or not
an HNA state is present). In summary, this approach develops a
personalized model for each individual via a data-driven search for the
optimal weighting of IMs for that individual (i.e., “borrowing” information
from the prediction models for other individuals in an effort to improve
predictive performance). See Ren et al. [15] for additional details.

For the PEM statistical approach, we conducted 10-fold cross-validation
(CV) to estimate the combination weights W' and examined three different
learning algorithms (see supplement for time-series CV, which yielded a
similar pattern of findings): GLM with elastic net penalty (ENet), support
vector machine (SVM), and random forest (RF). We used these algorithms
individually (L = 1) in three separate ensemble (PEM-ENet, PEM-SVM and
PEM-RF) models and in combination (L =3) (i.e, 4 separate ensemble
models were tested in total). We refer to the PEMs with L =3 as a
personalized double ensemble model (PDEM). Note that the cross-
validation procedure partitions time points within a subject into different
folds. See supplement for additional details. R code for all analyses is
available online (https://github.com/bcj2024/BLS_ensemble). We assume
that the pattern of missingness in our data is Missing at Random (MAR; See
Supplement for details).

Feature engineering. The original PEM approach in Ren et al. [15] used a
principal component analysis (PCA) to first reduce the raw smartphone
features into several PCs, which yielded better prediction performance
compared to models using the raw features as predictors. In this study, we
used a modified version of the PEM approach, combining the general-
izability of PCA-based models and the specificity of the raw feature-based
models, in an effort to achieve an improved personalized prediction
performance. This was achieved by including two idiosyncratic models
(IMs) for each learning algorithm and participant, where one used the raw
features as the predictors and the other used the PCs of the raw features.
Operationally, with L learning algorithms, 2L IMs were generated, where ff
and f,“’ are the raw-feature- and PCA-based models, respectively, for
participant i using learning algorithm /.

Clustering based on feature importance. We visualized the feature
importance measures of each smartphone variable based on the best
performing PEMs by linearly combining the feature importance of the IMs
with the ensemble weights w. We normalized these measures such that
the sum of their absolute values is one per subject. The signs of the
importance are determined by the conditional relationship implied by the
PEMs between a feature and an outcome. We then performed a K-medoid
clustering on the feature importance matrix to identify subgroups of
patients with similar feature importance signature. Euclidean distance was
used to compute the pairwise dissimilarity between participants. The
number of clusters was selected to maximize the average silhouette width,
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HNA Proportion (%)

Mean HNA elevation above person-specific mean
0.94
1.12
1.36
1.21

with an upper limit of five imposed to enhance the robustness and
reliability of the clustering results, given the small between-subject sample
size in our dataset. The pam function in R package cluster was used for this
analysis.

RESULTS

HNA state summary statistics

On average, over 200 daily emotion ratings were collected per
participant, and HNA states were present at 25-30% of these
timepoints (see Table 2). HNA states were, on average, 0.94 to 1.36
points above an individual’'s mean emotion score. To convert
these scores into a Cohen's d-type effect size [46], we divided
them by the mean within-person standard deviation (SD) of each
emotion. For example, the mean within-person SD of anxiety was
0.69, and HNA states of anxiety were, on average, 0.94 points
higher than an individual's mean anxiety score. Thus, the effect
size is d=1.36 (0.94/0.69). The corresponding values for the 3
other emotions were d=1.45 (irritable), d =1.43 (upset) and
d=1.33 (lonely). In summary, HNA states were, on average,
approximately 1.3 to 1.5 SDs above an individual's own mean
emotion scores, which would be considered large elevations in
negative emotions according to d-type effect size conventions
(0.2 ="small”, 0.5 =“medium” and 0.8 = “large”) [46].

PEM-RF and PDEM outperformed other models in

predicting NA

Based on passively collected sensor data, machine learning
models were able to predict states of heightened NA above
chance (i.e, AUC>0.50). All ensemble machine learning
approaches (PDEM, PEM-RF, PEM-Enet, and PEM-SVM) outper-
formed a simpler, conventional linear mixed effects model
(GLMER) in predicting NA, highlighting the benefit of these
algorithms with regards to improving prediction accuracy (see
Table 3 and Fig. 1). For each of the 4 emotions, the most complex
model (PDEM) outperformed all other models, but only had
slightly higher AUC relative to PEM-RF, which in turn out-
performed the other 3 models (PEM-Enet, PEM-SVM and GLMER).
Recall that PDEM is a weighted ensemble of PEM-RF, PEM-Enet
and PEM-SVM. Thus, the above pattern of findings suggests that
the main contributor to the superior performance of PDEM is PEM-
RF. When comparing the four emotions, PEM methods achieve the
highest level of accuracy for predicting loneliness, followed by
anxiety, feeling upset, and irritability. See Supplement for a time
series cross-validation (as opposed to regular 10-folds cross-
validation) which yielded a very similar pattern of findings.

Location (GPS) variables were most predictive of NA

To determine which variables were driving the predictive
performance of the models, we plotted feature/variable impor-
tance for each participant (columns) and each emotion (panels)
(Fig. 2). Averaging across all participants, the GPS variables had the
highest feature importance across all four emotions. Importantly,
given the personalized modeling approach, two individuals could
have very different rankings of variable importance, as well as
differences in the direction of associations between a given
predictor variable and outcome. For example, when examining
the raw correlations between individual features and emotion
scores, most (80%) participants had an inverse association
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between GPS radius mobility (the radius of the smallest circle that
contains all points of interest visited during the day) and
loneliness. In contrast, half (49%) of participants had a positive
association between activity levels (accelerometer) and anxiety,
whereas the other half had an inverse association.
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The vertical black lines demarcate the clusters of patients
identified based on feature importance. Note that their clusters
exhibited strong within-cluster consistency and cross-cluster
heterogeneity in the directionality of a feature’s effect for the
top 4 or 5 most important features. See Supplement (Feature
Importance section) for additional details.

Table 3. Summary of predictive performance of each model for each .
emotion. Benefit of personalized ensemble models (PEM) over
idiosyncratic models (IMs)
AUC The boxplots in Fig. 3 illustrate the distribution of differences
Emotion  PEM- PEM- PEM-RF  PDEM  GLMER between the PEM and IMs on two metrics of ‘pre.d.lctlve
Enet SVM performance (AUC and Brier score). That is, for each individual,
. we computed the difference in predictive performance for each
Arfx'ous 0.749 0.722 0.764 0.765 0.687 PEM approach versus their corresponding IM. We can see that all
Irritable 0.711 0.683 0.716 0.724 0.648 three algorithms (ENet, SVM, and RF) consistently benefited from
Upset 0.716 0.688 0.717 0.728 0.643 the ensemble approach (PEM) with a median increase in AUCs of
Lonely 0.774 0.739 0.787 0.791 0.690 0.05 and a median decrease in Brier scores of 0.013. All boxplots
A t Obtimal Cut-off are not overlapped with zero, indicating these improvements are
CCL."acy at Lptimal Lut-ofts consistent across at least 75% of the participants.
Anxious 0.680 0.660 0.690 0.701 0.645 Supplementary Fig. S2 provides further support for the benefit
Irritable 0.653 0.632 0.653 0.667 0.613 of a PEM approach. Specifically, each row of the plot displays
Upset 0.646 0.645 0.643 0.678 0.593 (with red shading) the weights applied to each IM for a given
Lonely e P o e P |nd|v'|dt'1als PEM. If it were the case that 'Fhe most accurate
== : predictions of heightened negative emotional states were
Sensitivity at Optimal Cut-offs obtained by exclusively relying on one’s own data then we
Anxious 0.695 0.672 0.729 0.698 0.653 would expect that the PEM algorithm (data-driven search for the
Irritable 0.661 0.633 0.665 0.658 0.596 0pt|ma| Welght|ng Of IMS) would app|y 100% We|ght to one’s
o A
Upset e e pp— - - own IM z.md 0% to .the IMs of other mdwu;iuals (as. reﬂectgd by
red shading only being present along the diagonal line), which is
Lonely 0.702 0.696 0.740 0.728 0.644 not the case. In summary, for most participants, states of
Specificity at Optimal Cut-offs heightened negative emotions are more accurately predicted
s 0.674 0.656 0.675 0.703 0.642 when the statistical approach allows for the borrowing of
. information from other individual’s models (i.e.,, PEM) rather than
ligiable 0.650 0.632 0.649 0.670 0.619 exclusively relying on one’s own data (i.e., IM) to predict one’s
Upset 0.638 0.658 0.635 0.691 0.584 negative emotional state. The Supplementary text provides
Lonely 0.712 0.671 0.699 0.715 0.644 additional details.
Anxious Irritable
1.007 BestAUC: PDEM 7| 1001 gestauc: PDEM 7"
0.75 0.75
= 2
= =
5 0.50 % 0.50
C c
(O] [
%) n
0.25 0.25
0.004,* 0.00 Method
000 025 050 075 1.00 000 025 050 075 1.00 — GLMER
1 - Specificity 1 - Specificity — PEM-ENet
— PEM-SVM
Upset Lonely — PEM-RF
PDEM
1.001 gest AuC: PDEM e 1.00
0.75 0.75
= 2
= =
5 0.50 3 0.50
C c
(] [
n n
0.25 0.25
0.00 0.00
000 025 050 075 1.00 0.00 025 050 075 1.00
1 - Specificity 1 - Specificity
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DISCUSSION

The goal of this study was to test the extent to which data derived
from passively collected smartphone sensors and a wrist-worn
actigraphy band can predict states of heightened negative

SPRINGER NATURE

ines demarcate the clusters based on feature importance.

emotions among individuals with SMI. Results revealed that
machine learning applied to passive data could predict negative
emotional states significantly better than chance. Critically, these
predictions relied solely on passively collected sensor data,
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outperforms IM.

requiring no user input. This is particularly critical given that self-
report measures - especially EMA, which typically involves
multiple assessments per day - may be quite burdensome for
individuals with SMI. Passively collected data may offer a more
unobtrusive and sustainable alternative for monitoring fluctua-
tions in emotional and symptom states in the daily lives of
individual.

To predict negative emotional states from passive smartphone
and wrist-worn actigraphy data, we compared a range of different
machine learning algorithms. Consistent with Ren et al. [15],
random forest — a decision tree-based machine learning algorithm
- outperformed both a simpler statistical approach (linear mixed
effect model) and other machine learning approaches (support
vector machines and elastic net)'. The random forest model with
the highest AUC (0.79) was for the prediction of loneliness, with an
accuracy of 71% (sensitivity =0.74 and specificity = 0.70) at the
optimal cut-off. As a concrete example, assuming a participant
was in the study for 200 days and on 50 of those days they
experienced high levels of loneliness (the remaining 150 days
were instances of low loneliness) then with a sensitivity of 74% our
algorithm would be expected to accurately predict 37 out of 50 of
those days of high loneliness. With a specificity of 70%, the

'Random forest had similar performance to a more complex ensemble
(PDEM) of machine learning approaches (i.e., a prediction algorithm
that searched for the optimal weighting of each of the other
algorithms) (mean AUC across emotions = 0.746 vs. 0.752,
respectively). In other words, there was little additional benefit to
adding other algorithms to random forest alone. This pattern of
findings may be due to the fact that random forest can discover
nonlinear associations and higher order interactions that may exist
among the passive data features in predicting negative emotional
states[19, 47, 48]. In contrast to linear mixed effects models, elastic net
or SVM, these interactions and nonlinear associations do not need to
be specified or tuned ahead of time in the model as the random forest
decision tree algorithm effectively automatically searches for them.
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algorithm would be expected to correctly predict that the
participant had low levels of loneliness on 105 out of the 150 days.
These predictions are significantly better than chance (50%) and,
critically, are based solely on information derived from passively
collected smartphone sensors. As a next step, a subsequent study
could test the emotional benefits of “just-in-time” (JIT)
smartphone-delivered interventions which are automatically
triggered based on our random forest algorithm predicting high
loneliness (and other negative emotional states) from passive
smartphone data. The JIT intervention could be delivered via a
text message or push notification, recommending an app-based
mental health exercise such as brief behavioral activation,
mindfulness, or cognitive reframing exercise. In addition, inter-
ventions could eventually be tailored to specific symptom-related
behavioral patterns detected by passive sensors. For example, if
passive data indicated a significant increase in time spent at home
(detected via smartphone GPS) coupled with substantially
reduced social contact (e.g., phone metadata revealing fewer
calls and texts sent and received), a behavioral activation
intervention could be triggered on the smartphone. As another
example, if smartphone and wearable (e.g., smartwatch or smart
ring) data detected maladaptive changes in sleep patterns—such
as significantly later sleep onset, shorter sleep duration, or
decreased sleep efficiency—a sleep hygiene intervention or CBT
for insomnia intervention could be initiated.

The smartphone features that were most predictive of
heightened negative emotional states were the GPS variables
(see Fig. 2). These findings highlight the importance of location
data - including metrics such as distance from home, percentage
of time spent at home, and the number of locations visited - in
enhancing the accuracy of predictions of negative emotional
states. Notably, given the person-specific modeling approach,
every individual can have a different ranking of which features
were most predictive of their negative emotional states. In
addition, there were also between-person differences in the
direction of the association between a given predictor and
outcome. For example, the relationship between accelerometer-
measured activity levels and anxiety showed considerable
variability from person to person. Some participants became
more active when experiencing heightened anxiety, while others
exhibited decreased activity. In contrast, the inverse relationship
between GPS radius mobility—the smallest circle that encom-
passes all the locations a person visited during the day—and
loneliness was more consistent across individuals. For most
participants, a smaller radius of movement was associated with
increased loneliness, suggesting that individuals who visited fewer
locations or were more stationary during a given day tended to
experience greater feelings of loneliness. The latter finding
highlights the potential for using passive smartphone-derived
mobility patterns as a relatively reliable indicator of loneliness. But
overall, these results underscore the substantial heterogeneity in
how individuals experience emotional states and the importance
of adopting a person-specific approach in predictive modeling.

At the same time, our results also highlighted the benefits of
borrowing information from the predictive models of other
individuals. As shown in Fig. 3, an ensemble approach that
searched for the optimal combination of person-specific models
outperformed a fully idiographic approach (i.e., only using an
individual's own data to predict negative emotional states). This
finding is consistent with previous research in adolescents [15],
suggesting that borrowing information across individuals can
enhance predictive accuracy. In practice, this means that by
leveraging shared patterns across individuals, we can improve the
reliability of predicting negative emotional states, even in cases
where we have limited data from a single individual. These results
suggest that predictive relationships between passive data
features (e.g., GPS mobility patterns, activity levels) share common
characteristics across sets of individuals. In other words, these
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relationships are not completely unique from person to person
and future predictive algorithms will likely benefit from incorpor-
ating this fact of shared patterns into their modeling approach
and, ultimately, into efficient JIT interventions.

Strengths of the study included: (1) daily assessments of
negative emotions for over a year, on average (mean 465 days;
total surveys collected = 12,959), (2) semi-continuous collection of
multiple streams of passive data during the entire study period, (3)
comparing the predictive performance of different machine
learning approaches and a simpler statistical approach (linear
mixed effects model), and (4) the comparison of ensemble vs
idiographic (person-specific) modeling approaches to test
whether incorporating information from other individuals’ models
(i.e, an ensemble) outperforms a model that exclusively relies on
one’s own data (i.e., an idiographic model) to predict heightened
negative emotions.

The study also had several limitations. First, we had once daily
assessments of affect. Multiple affect assessments per day would
have provided a more granular view of fluctuations in emotions
within a day. It should be noted that Ren et al. [15] had 2-3
emotion assessment per day (but over fewer days and in a smaller
sample) and their findings were very similar to ours. Second, other
smartphone features (e.g., call and text meta-data, or patterns of
social media use) may help further improve accuracy in predicting
negative emotions. Third, although our analyses were focused on
within-person predictions and we had many (over 200 on average)
assessment timepoints per participant, a larger sample size would
have been beneficial. Fourth, findings relating to the sample of
participants enrolled in this study may not necessarily generalize to
the broader population of individuals with SMI (e.g., those
responding to advertisements to participate in a study may differ
meaningfully from those who do not see or respond to these ads).
Fifth, the relatively small number of subjects in our study may
reduce the reliability of the clustering analysis based on feature
importance. Sixth, we note that PCA might not be the most
appropriate dimension reduction technique for our dataset. This is
evident from the reduced prediction accuracy of models relying
solely on the PCs compared to those using both PCs and raw
features as predictors. Finally, the watch data had high levels of
missing data which was problematic for modeling (consequently,
these results were reported in the supplement).

These limitations notwithstanding, there is now a growing body
of research indicating that passive sensors from smartphones and
wearables can predict states of heightened negative affect at the
individual level which could inform the development and
deployment of JIT interventions. The ultimate goal of this work
is to deliver low-cost and scalable smartphone-delivered inter-
ventions when individuals are most in need (i.e, when they are
predicted to be in the midst of a negative emotional state).
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