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Genetic liability to major psychiatric disorders contributes to
multi-faceted quality of life outcomes in children and adults
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Psychiatric conditions, known for their hereditary nature, exert significant impacts on various life domains. Leveraging this
heritability, we examine the relations between genetic susceptibility to major psychiatric disorders and the multifaceted aspects of
quality of life in two population-based cohorts, the Adolescent Brain Cognitive Development (ABCD) study (N= 3909 preadolescent
children) and the UK Biobank (N= 269,293 adults). Genetic susceptibility to seven major psychiatric disorders was quantified by
polygenic scores derived from extensive genome-wide association studies (N= 21,000–413,000). Pervasive associations were found
between genetic risk for all seven major psychiatric disorders investigated and age-relevant real-life quality of life indices, with
varied patterns of associations for different life domains. We especially highlight the role of genetic risks for ADHD and major
depressive disorders. Our findings emphasize the continuous nature of psychiatric traits, extending their influence on daily life
experiences and societal functioning beyond symptomatology and diagnostic classifications.
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INTRODUCTION
The impact of psychiatric disorders transcends the confines of
mental wellbeing, exerting influence across a multifaceted
spectrum of life domains, encompassing educational, occupa-
tional, physical, social, and psychological outcomes [1]. This
comprehensive reach is well-documented in extensive epidemio-
logical studies, which consistently associate psychiatric disorders
with a decrement in overall quality of life and specific functional
impairments [2, 3]. Crucially, these burdens extend not only to
individuals who meet the clinical symptom and impairment
thresholds for a psychiatric diagnosis but also to those who exhibit
subclinical symptomatology. This phenomenon aligns with the
liability threshold model in psychiatric genetics [4], which posits
that the genetic risk for psychiatric disorders exists on a
continuum, and individuals may experience varying degrees of
genetic susceptibility, irrespective of clinical diagnosis.
In the pursuit of enhancing citizens’ well-being and satisfaction,

many nations have made quality of life improvement a central
objective of their policy agendas. However, there exists no
universally accepted framework for conceptualizing and measur-
ing quality of life. A commonly endorsed model recognizes quality
of life as a construct encompassing dimensions of standard of
living that conform to societal expectations. This is quantifiable
across domains such as social, health, and economic well-being, in
addition to subjective assessments of personal well-being,
reflecting the degree to which individual life expectations are
met [5]. Quality of life, however, is not a static construct and can
vary significantly across different life stages, particularly between
childhood and adulthood. In children, physical health and safety
are paramount, as are education and social interactions that foster

cognitive and emotional development [6, 7]. These elements are
critical in shaping a child’s foundational sense of well-being and
future prospects. In adulthood, economic stability, career satisfac-
tion, and the quality of personal relationships become more
important indicators of quality of life [8]. In addition to these
stage-specific factors, core elements like health and social
connections remain consistently important throughout the life-
span [1, 6], highlighting both the dynamic and enduring nature of
quality of life.
Large-scale genome-wide association studies (GWASs) have

enabled the identification of common genetic variation contribut-
ing to psychiatric disorders [9]. The polygenic architecture of many
prevalent and debilitating psychiatric disorders has been char-
acterized with large GWAS samples, including attention-deficit/
hyperactivity disorder (ADHD) [10], autism spectrum disorder
(ASD) [11], major depressive disorder (MDD) [12], anxiety disorders
(ANX) [13, 14], schizophrenia (SCZ) [15], bipolar disorder (BIP) [16],
and cannabis use disorder (CUD) [17]. Combining information
across the genome through a weighted sum of the number of the
disorder-associated alleles, polygenic scores (PGSs) [18] can
provide proxies for individuals’ genetic loading for a psychiatric
condition on a continuous scale in the population. Such
quantification of genetic susceptibility to different phenotypes
has proven useful in risk stratification of common complex
diseases [19], and is increasingly powerful as GWAS sample sizes
increase. Prior research [20] demonstrated that genetic predis-
position to schizophrenia contributes to additional variance in
quality of life beyond clinical factors. However, there is still a need
for systematic quantification of PGS effects across psychiatric
conditions on diverse quality of life domains.
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Here, we aimed to assess how genetic susceptibility to seven
major psychiatric disorders indexed by PGSs relates to various
quality of life-relevant indices at different phases of the lifespan,
specifically preadolescent children and middle-aged adults. To this
end, we took advantage of two large population cohorts, the
Adolescent Brain Cognitive Development (ABCD) study and the
UK Biobank, and derived multi-faceted quality of life constructs at
these two life stages, capturing general and specific domains of
human functioning and experiences.

METHODS
Participants
Our study sample consisted of 3909 non-Hispanic white preadolescent
children (47% females, age 9.92 ± 0.62 years) recruited across the United
States of America as part of the ABCD study cohort (request 11315, data
release 4.0) and 269,293 white British, unrelated adults (54% females, age
56.95 ± 7.94 years) from the population-based UK Biobank (application
23668, data release 3.0). Participants and their caregivers in the studies
provided written or verbal consent, as appropriate.

Quality of life outcomes
We hypothesized several models capturing different quality of life domains
in both cohorts, and assessed their fit through confirmatory factor
analyses. Given the great phenotyping depth of both cohorts, more than
one well-fitting model structure with sets of reasonable indicators was
available. Here, for each cohort, we selected one theoretically sound and
statistically best-fit model as the primary model used in the main analyses,
as described in the main text, and present a less well-fitting alternative
model in eFig. 1.
In the ABCD cohort, we fitted the model with nine observed variables

(eTable 1) indicating three latent factors – educational performance and
cognition (Edu), physical health (Hea1), and adverse peer experience
(Peer). Observed variables are, for Edu, school grades in the past year
reported by parents (sag_grade_type) and youths (sag_grades_last_yr),
cognition total composite score (abcd_tbss01:nihtbx_totalcomp_uncor-
rected); for Hea1, ever seen doctors before the past year (excluding regular
check-ups) (abcd_mx01:medhx_1b), ever seen doctor for any (severe)
diseases (derived from abcd_mx01), emergency room visits before the past
year (derived from abcd_mx01), ever been in the hospital overnight or
longer (abcd_mx01:medhx_8a); for Peer, ever been cyberbullied
(abcd_cb01:cybb_phenx_harm), experienced victimization from peers
(derived from abcd_peq01). We used variables from the second-year
follow-up, except for medical history reports and cognition total composite
score, which were only available as baseline measures and expected to
capture the underlying traits that are relatively stable across time.
Individuals who reported ‘do not know’, ‘not applicable’, or ‘refuse to
answer’ to the abovementioned items were excluded from the analyses. A
final list of 3909 participants with phenotypic data available was included
in downstream analyses.
In the UK Biobank cohort, we included three latent factors –

socioeconomic status (SES), health (Hea2), and social wellbeing (Soc) –
which were indicated by eight binary or ordinal variables (eTable 2):
average total household income before tax (UK Biobank index 738) and
educational qualifications (6138) for the first factor; overall health rating
(2178), long-standing illness, disability or infirmity (2188), and whether
diagnosed with any serious medical conditions (derived by aggregating
item 6150, 6152, 2443, 2453, and 2473) for the second factor; the
frequency of being able to confide with someone (2110), whether often
feel loneliness or in isolation (2020), and the tendency to worry too long
after embarrassment (1930) for the third factor. For educational qualifica-
tions, we converted each individual’s highest qualification to an
International Standard Classification of Education (ISCED) category and
removed other qualifications that were not included in such classification
scheme. Individuals who reported ‘do not know’ or ‘prefer not to answer’
to the abovementioned items were excluded from the analyses.

Confirmatory factor analysis
The CFA models were implemented in lavaan package [21] using the
method of weighted least squares mean and variance adjusted (WLSMV),
which used diagonally weighted least squares to estimate model
parameters, but the full weight matrix to compute robust standard errors.
Final models contained the abovementioned three first-level factors and

one second-level general QoL factor. To ease the interpretation, variables
were sign-flipped so that larger values always correspond to higher quality
of life levels. The variances of all latent variables (i.e., ‘factor scores’) in the
models were fixed to unity, and their estimated values were computed
using Empirical Bayes Method (EBM) [21]. The metrics of Comparative Fit
Index (CFI), Root Mean Square Error of Approximation (RMSEA) and 90%
confidence intervals, Standardized Root Mean Square Residual (SRMR),
together with Tucker-Lewis Index (TLI) were employed to assess the model
fit. CFI values above 0.95, RMSEA values below 0.06, SRMR values below
0.08, and TLI values above 0.95 were considered as evidence for good
model fit [22].

GWAS data
In selecting phenotypes for our study, we employed the following criteria:
diversity in ages of onset, variety in symptom profiles, robust availability of
large and recent GWAS datasets of European ancestry, and the ability to
avoid sample overlap with our target cohorts. Guided by these
considerations, we included seven major psychiatric disorders—ADHD,
ASD, MDD, ANX, SCZ, BIP, and CUD—and ensured that all GWAS summary
statistics excluded UK Biobank participants when computing PGSs for the
UK Biobank. Notably, we chose CUD to represent substance use disorders
because of its substantial sample size (N ≈ 358,000) and strong genetic
correlations with other SUDs (e.g., rg= 0.75 with alcohol use disorder,
rg= 0.74 with opioid use disorder, and rg= 0.63 with tobacco use disorder)
[23]. All GWAS summary statistics were based on cohorts of European
ancestry, and were annotated to the Genome Reference Consortium
(GRCh) 37/hg19 build. We reviewed the study protocols for each GWAS
analysis to ensure good quality of summary statistics and sufficient SNP
heritability of traits (h2SNP > 0.05) before including them in the current
study. An overview of the discovery GWASs with publication references is
provided in Table 1. We removed strand-ambiguous SNPs, duplicated
SNPs, multi-allelic SNPs, and SNPs with out-of-bounds values, or with
MAF < 0.01, imputation quality INFO < 0.9, or not matching to HapMap3
reference panel.

Polygenic score calculation and statistical analyses
Detailed descriptions of the QC and imputation steps in both cohorts have
been provided in previous publications [24, 25]. Subsequent sample and
variant filtering was conducted prior to polygenic score analyses based on
the protocol described in eMethods. We adopted PRS-CS [26] as the
primary approach to compute polygenic scores for the four quality of life
factors. PRS-CS used a Bayesian continuous shrinkage method to adjust
SNP effect estimates from the original GWAS summary statistics and infer
posterior SNP weights. We then used the --score command in PLINK 2.0 to
sum over all SNPs weighted by their posterior effect sizes and derive an
additive score per individual. Two other PGS approaches were also tested
to further validate the results (eMethods), and support power analysis as
described in the following section.
Simple linear regression was performed between each polygenic score

(as predictor) and quality of life factor (as outcome). Sex, age in years,
batch, site, and the first ten ancestry informative genotype PCs for the UK
Biobank cohort and batch, site, plate, sex, age in months, and the first ten
ancestry informative genotype PCs for the ABCD cohort were included as
covariates. R2 was calculated for each PGS by subtracting variance
explained by the covariates from variance explained by the full model
including both the PGS and covariates. Multiple regression models with all
7 PGSs were further constructed to assess the overall variance explained by
the different PGSs altogether on top of the covariates. Bonferroni
correction was applied accounting for the number of polygenic scores
and outcome variables tested. To assess the effect of differential sample
sizes of the base GWAS samples, we performed power calculation for the
PGS analyses as described in eMethods.

SNP heritability estimation and genetic correlation analyses
Genome-wide association analyses on the four estimated latent factors
were conducted in the UK Biobank cohort using PLINK 2.0 [27], with an
assumed additive genetic model. Generalized linear regression model was
performed on the imputed data, with sex, age, batch, plate, site, and the
first ten PCs as the covariates. SNP-heritability estimates of each latent
factor and their genetic correlations with the seven psychiatric disorders
were then calculated using linkage disequilibrium score regression (LDSC)
v1.0.1 [28] and LD scores precomputed from the European reference
samples from the 1000 Genomes Project.
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RESULTS
The main data processing and analytic processes were illustrated
in Fig. 1. In a final sample of 3909 preadolescent children and
269,293 adults for which both genotype data and quality of life
factor scores were available, we modeled the covariances of the
quality of life indicators (correlation matrices shown in Fig. 2A and
Fig. 2B) and assessed the fit of the hypothesized model structures
using confirmatory factor analysis (CFA). In the ABCD cohort, the
model consisted of three first-order latent factors, namely
educational performance and cognition (Edu), physical health
(Hea1), and peer experience (Peer), as well as one second-order
general quality of life (QoL) factor. This model had an excellent
model fit (CFI= 0.989, RMSEA= 0.021, SRMR= 0.030, TLI= 0.984)
(Fig. 2C). A similarly structured second-order model was estimated
in the UK Biobank cohort (CFI= 0.971, RMSEA= 0.046, SRMR=
0.043, TLI= 0.952), with socioeconomic status (SES), physical
health (Hea2), and social wellbeing (Soc) factors on the first-order
level and general QoL factor on the second-order level (Fig. 2D).
All model parameters are presented in eTable 3 and eTable 4. In a
subset of the UK Biobank sample, in which self-rated life
satisfaction measures were available, the three first-level quality
of life factors estimated from the model structure were
significantly associated with subjective satisfaction in their
corresponding life domain (i.e., SES with individuals’ financial
situation satisfaction, ρ= 0.25, p < 0.001; physical health with
health satisfaction, ρ= 0.58, p < 0.001; social wellbeing with
general happiness in life, ρ= 0.41, p < 0.001, family relationship,
ρ= 0.32, p < 0.001, and friendship satisfaction, ρ= 0.28, p < 0.001)
(eTable 5).
We examined patterns of associations between PGSs for

psychiatric disorders and four latent quality of life factors
estimated from the fitted model. In the ABCD cohort, the PGS
for ADHD significantly explained 1.67% of Edu (β=−0.133,
SE= 0.016, p= 1.53 × 10−16), 0.84% of Peer (β=−0.094, SE=
0.016, p= 7.81 × 10−9), and 1.85% of general QoL factors
(β=−0.140, SE= 0.016, p= 3.37 × 10−18), respectively. The PGSs
for other disorders were not significantly associated with any of
the latent factors (Fig. 3A, eTable 6). In the UK Biobank cohort,
PGSs based on all seven psychiatric disorders were associated with
the general QoL factor and at least one first-order subdomain (Fig.
3B, eTable 6). Among them, ADHD-PGS showed the largest effect
on the general QoL factor (β=−0.096, SE= 0.002,
p < 2.23 × 10−308, R2= 0.009), Hea2 (β=−0.083, SE= 0.002,
p < 2.23 × 10−308, R2= 0.007), and SES (β=−0.081, SE= 0.002,
p < 2.23 × 10−308, R2= 0.007). The largest effect on the Soc
subdomain was seen with the MDD-PGS (β=−0.060, SE= 0.002,
p= 9.96 × 10−214, R2= 0.004), which was also associated with the
domains of Hea2 (β=−0.059, SE= 0.002, p= 4.48 × 10−211,
R2= 0.003) and SES (β=−0.042, SE= 0.002, p= 3.63 × 10−125,
R2= 0.002). Genetic risk for CUD was most strongly associated
with SES (β=−0.037, SE= 0.002, p= 2.05 × 10−99, R2= 0.001),
compared to the other two subdomains, whereas genetic risk for
ASD was linked most strongly to the Soc subdomain (β=−0.024,
SE= 0.002, p= 2.06 × 10−36, R2= 0.001), and ANX to Hea2
(β=−0.028, SE= 0.002, p= 4.57 × 10−51, R2= 0.001).
To evaluate the influence of statistical power (including

differences in discovery GWAS sample size) on identifying PGS
effects, the lower bound of the power estimates was obtained in
both cohorts based on the sample sizes of both the base and
target cohorts, SNP heritability, and trait prevalence. The power
estimates in the UK Biobank cohort for all disorders and target
phenotypes were above 0.990 across genetic correlation (rg)
thresholds of 0.2, 0.4, 0.6, 0.8, and 1. In the ABCD cohort, all
disorders except ASD and CUD were sufficiently powered for
rg= 0.4 and above. Assuming the same degree of genetic
correlations with quality of life domains across disorders, the
ranking of the seven disorders based on their power estimates
would be as follows: ANX, SCZ, BIP, ADHD, MDD, CUD, and ASD.Ta
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Full results of the power analyses are shown in eTables 7 and
eTable 8. Further, the results were consistent across three
polygenic scoring methods examined (eFigure 2 and eFigure 3).
Using the estimated latent quality of life factors as the target

phenotype in the UK Biobank cohort, we further conducted GWAS
and estimated the SNP heritability (h2SNP) of the latent factors
using LD score regression. The estimated h2SNP of the latent
factors are in line with estimates for the individual indicators (SES:
h2SNP= 0.113 (0.005), Hea2: h2SNP= 0.094 (0.004), Soc: h2SNP=
0.063 (0.003), QoL: h2SNP= 0.115 (0.005)). In the multiple
regression model, seven PGSs together explained R2= 0.011,
0.010, 0.006, 0.014 variances, which is 9.7%, 10.4%, 9.7%, and
12.2% of the SNP heritability of SES, Hea2, Soc, and general QoL,
respectively. Variances explained proportional to SNP heritability
by single PGSs are presented in eTable 9. To explore the genetic
relationships between psychiatric disorders and quality of life
domains, we estimated their pairwise genetic correlations.
Consistent with PGS analysis results, a widespread pattern of
negative associations was observed across quality of life domains
(eTable 10). MDD (largest rg=−0.688 for Soc factor), ANX (largest
rg=−0.682 for Soc factor), and ADHD (largest rg=−0.633 for
general QoL factor) were highly negatively genetically correlated
with all the quality of life factors. CUD was most strongly
correlated with SES (rg=−0.400), and ASD with Soc (rg=−0.298).
The genetic correlations for SCZ and BIP were weaker, with BIP

exclusively associated with the Hea2 subdomain (rg=−0.133); no
significant genetic correlation was seen between ASD and SES.

DISCUSSION
In this study, we set out to systematically evaluate the impact of
psychiatric genetic liabilities on the quality of life in individuals
during two distinct phases of life. We utilized PGSs that
encompassed seven major psychiatric disorders and characterized
their relations with various aspects of quality of life, with a specific
focus on domains of academic performance, socio-economic
factors, physical health, and social wellbeing. Our results unveiled
a pervasive yet varied pattern of associations with quality of life
across different psychiatric disorders, such that ADHD was more
strongly associated with educational performance and cognition
in children and with socioeconomic status in adults; while MDD
was most strongly associated with social well-being in adults only.
Notably, we accentuated the prominent role played by genetic
burden for ADHD during childhood, while also highlighting the
impact of genetic predisposition associated with ADHD, MDD, and
CUD in adulthood.
Our study revealed that the impact of genetic susceptibility, as

measured by PGSs, on quality of life exists across the lifespan,
even in individuals without psychiatric diagnoses within the
general population. This aligns with the observations of
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Fig. 1 Sample curation and data analysis flow chart. The key analytic steps performed in the study were described in a modular fashion,
with the arrows illustrating the input and output data involved in different steps. Dashed arrows and boxes denote filters applied to obtain
the final analytic sample. QC quality control, PCA principal component analysis, PCs principal components, ADHD attention-deficit/
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disorder, CUD cannabis use disorder.

Y. Shi et al.

4

Translational Psychiatry          (2025) 15:232 



attenuated impairments in unaffected family members in twin or
family studies. For instance, lower cognitive functioning has been
observed in unaffected first-degree relatives of patients with
schizophrenia [29], bipolar disorder [30], and ADHD [31],
compared to healthy controls. While there is little research, and
no evidence in identifying reductions in quality of life-related traits
in high-risk family studies [32], our results revealed the over-
arching trend of decreased everyday functioning relating to
genetic risks across disorders, encouraging further efforts exploit-
ing the continuous nature of psychiatric traits.
To our knowledge, this is the first study to quantify the

contribution of genetic risks across major psychiatric disorders
to different aspects of quality of life. The quality of life domains
we found associated with the genetic risk for each disorder were
consistent with previous findings from case-control group
contrasts based on clinical diagnosis [33–36]. For instance, a
meta-analysis of over 6000 youths and their parents found that
children with ADHD were most strongly impacted in aspects of
academic performance and social functioning. Their physical
functioning was only slightly lower, but the discrepancy
compared to typically developing peers became larger as they
grew older [36], consistent with our finding that higher genetic
liability for ADHD is more strongly associated with compromised

health status in adults than in children, whereas the academic
and social domains were impacted both in children and adults.
Notably, the lack of associations for other disorders in the pre-
adolescent children’s cohort is likely not fully explained by
statistical power, highlighting a potential temporal distinction in
the manifestation of genetic risks for different psychiatric
disorders. ADHD genetic risk is more likely to manifest early in
life, significantly influencing brain development processes such
as cortical maturation, particularly in the prefrontal cortex—
which is crucial for executive functions including attention and
motor planning [37]. Genetic risks for disorders such as MDD
and SCZ may be linked to later developmental events,
coinciding with neurobiological changes during adolescence
and early adulthood, and often additionally influenced by
environmental stressors that occur at later stages [38, 39]. The
consistent strong effect of the ADHD-PGS in both childhood and
adulthood challenges the prevailing perception of ADHD as a
relatively mild childhood condition that individuals tend to
outgrow during development and a condition less likely to
require treatment [40, 41]. Our work highlights the importance
of research to understand the etiology, and long-term impact of
ADHD, along with other psychiatric disorders, which can have
far-reaching consequences on various aspects of individuals’
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1. QoL quality of life, Edu educational performance and cognition, Hea1 physical health modeled in ABCD cohort, Peer peer experience, SES
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lives, extending beyond those directly affected by the disorders
themselves.
In assessing quality of life, we employed a comprehensive

approach by integrating self-perceived [5] and objectively
quantified impairment in adaptive functioning measures across
diverse domains, informants, and scales, and extended beyond
the health-related quality of life as often examined in the context
of psychiatric disorders [42]. The derived constructs align with
individuals’ subjective satisfaction in corresponding life domains.
Our findings advocate for an increased emphasis on researching
and incorporating the concept of quality of life into clinical
practices, thus complementing the conventional focus on redu-
cing psychiatric symptoms as the primary measure of intervention
effectiveness.
The utilization of PGSs in this study has allowed for estimation of

genetic risk proxies in cohorts without the requirement for specific
symptom or trait measures, providing insights into the contribution
of different psychiatric disorders to the variables of interest. PGSs
offer a cost-effective and efficient means to approximate genetic risk
burden and capture the cumulative effects of multiple genetic
variants associated with a particular disorder in large general
population datasets [18]. By leveraging PGSs, we were able to assess
the relative contributions of various disorders to the overall quality
of life and its subdomains. The negative relationships we identified
between genetic liability to major psychiatric disorders and quality
of life related outcomes were consistent across different PGS
approaches, despite their small effect sizes. While PGSs offer
advantages such as scalability and broad applicability, the common
variants captured only reflect a fraction of the total heritability of the
disorders and can thus explain a small portion of variance in their
primary phenotypes (i.e., diagnostic status) [43]. Joint efforts to
increase the sample sizes and ethnic diversity of GWASs, as well as
exploiting data for rare and structural genetic variants are essential

to provide a more complete individual genetic risk profiles for
psychiatric disorders.
Caution should be exercised when interpreting our study due to

certain limitations. First, prior research [44] suggested a ‘healthy
volunteer selection bias’ in the UK Biobank cohort, where the
sample was enriched in wealthier and healthier individuals. This
may limit the generalizability of the current results, especially for
disorders such as SCZ and ASD, where the debilitating genetic
effect might be more pronounced in the samples at the higher
end of the liability spectrum. Second, this study only provided
snapshots of childhood (around 10 years old) and a part of
adulthood (40–70 years old). Longitudinal data are needed to
further elucidate how the genetic risks manifest along the
trajectory of human development and aging.
In summary, combining newly available GWAS results with

genotyped and richly phenotyped cohorts of children and adults,
our study highlights the inverse relationship between psychiatric
liability and different domains of quality of life. PGSs provided a
means to evaluate the contributions of genetic liability for
different psychiatric disorders to different aspects of life in the
general population.
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