
ARTICLE OPEN

Repeated behavioral testing and the use of summary measures
reveal trait anxiety in preclinical rodent models
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The reliability and validity of preclinical anxiety testing is essential for translating animal research into clinical use. However, the
commonly used anxiety tests lack inter-test correlations and face challenges with repeatability. While translational animal research
should be able to capture stable individual anxiety traits - the core feature of anxiety disorders - the conventional approach
employs a single type of test at a single time, which primarily reflects transient states of animals that are heavily influenced by
experimental conditions. Here, we propose a validated, optimized test battery capable of reliably capturing trait anxiety in rats and
mice of both sexes. Instead of developing novel tests, we combined widely used tests (elevated plus-maze, open field and light-
dark test) to provide instantly applicable adjustments for better predictive validity. We repeated these tests three times to capture
behavior across multiple challenges, which we combined to generate summary measures (SuMs). Our approach resolved inter-test
correlation issues and provided better predictions for subsequent outcomes under more anxiogenic conditions or fear
conditioning. SuMs were also shown to be more sensitive markers of stress-induced anxiety following social isolation. Finally, we
tested our method’s efficacy in discovering anxiety-related molecular pathways through RNA sequencing of the medial prefrontal
cortex. SuMs revealed four-times more molecular correlates of trait anxiety than transient states, highlighting novel gene clusters.
Furthermore, 16% of these correlates were also found in the amygdala. In summary, we provide a novel approach to capture trait
anxiety in rodents, offering improved predictions for potential therapeutic targets for personalized medicine. We also provide
recommendations to enhance feasibility without compromising validity or animal ethics, tailored to various scientific goals.
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INTRODUCTION
Most of us have experienced anxiety during our lives. The
tendency to evaluate situations as threatening and respond with
anxiety and avoidance stems from one’s individually characteristic,
stable trait anxiety (TA) [1, 2]. High levels of TA predict a high
frequency of anxious states (SA) in different situations [2–4]. The
tendency to experience a heightened level of anxious states
represents an important factor in the diagnosis of generalized
anxiety disorder (“excessive anxiety and worry […], occurring
more days than not for at least 6 months”) [5]. Given its central
role in anxiety disorders, TA may represent an important
therapeutic target [2, 6, 7].
In pathological conditions of anxiety, pharmacotherapy has a

response rate of less than 60% [8], leaving anxiety disorders one of
the most prevalent and burdening mental illnesses [9]. Prescribed
compounds act through brain mechanisms that have been
targeted for at least 30 years with moderate success, and new
candidates are rare [10]. Unfortunately, animal models, our
primary source of information on the molecular basis of
psychiatric disorders, offer targets that fail in clinical trials in more
than 90% of cases [11, 12]. Such alarming rates of failed medicine
candidates at clinical levels highlights a crisis in our current

preclinical approach to modeling psychiatric disorders, including
anxiety disorders, and underscores the urgent need for funda-
mental improvement to enhance translational validity.
One potential reason for this translational gap is the mismatch

between what is assessed in preclinical and clinical settings: while
clinical anti-anxiety therapies are considered satisfactory if they
control the permanent anxiety symptoms, conventionally
employed animal tests primarily detect transient and fluctuating
anxiety states (SA) [13–15]. Consequently, these tests are more
likely to identify markers and treatment targets associated with
transient symptoms rather than addressing the underlying drivers
of chronic anxious traits. Results from the most commonly used
[12] rodent paradigms, the elevated plus-maze (EPM) [16, 17], the
light-dark (LD) [18, 19] and the open field (OF) [20, 21] tests,
support this concern. Behavioral parameters measured in these
tests show limited correlation with each other [13, 22] and are
hardly reproducible [23–25], suggesting that in their current use
they are unable to capture a common underlying construct like
TA. Alternative approaches investigate TA using selectively bred
highly anxious animal strains [26–28]. Unfortunately, these
approaches are limited to the examination of TA in that specific
strain, moreover, their molecular profile may not directly relate to
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the anxious phenotype. Consequently, despite the clear short-
comings of current methods, and the urgent need for improve-
ment, the field still lacks an adequate tool to measure TA.
To bridge this gap, we offer a novel approach to measure TA by

refining both the sampling and analysis of conventional anxiety

tests. We hypothesize that behavior observed in these tests
primarily reflect SA, which emerges from the interaction between
an individual’s stable TA and the current environmental context
(Fig. 1A – hypothesis). Based on this assumption, improved
sampling of SA can provide a reliable measurement of TA. Our
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approach employs the conventional, standard anxiety tests but
expands the classical sampling method in both time and depth to
capture a broader range of behavioral states (Fig. 1A – sampling
and analysis). Specifically, we (i) measured multiple behavioral
variables, (ii) included repeated testing sessions and (iii) combined
multiple different types of tests in our analysis. Particularly, we
sampled SA in rats and mice using different sequences of the most
widely used anxiety tests, with each test repeated three times for
all animals. We measured a range of variables (referred to as single
measures, SiMs) and assessed the possibility of their summariza-
tion. This led to the creation of summary measures (SuMs) by
averaging SiMs across repeated tests, and composite measures
(COMPs) by averaging SiMs or SuMs across different test types
(Fig. 1A). In medical research, generating SuMs from serial
sampling is a well-established strategy for capturing the under-
lying, stable construct of fluctuating states while reducing
environmental noise and avoiding over-parametrisation [29].
Despite these clear advantages, this approach has yet to be
adopted by the field of behavioral neuroscience.
We validated SuMs as indicators of TA by several novel

approaches. (i) Since TA is assumed to underlie performance
across different anxiety tests, we hypothesized that SuM-based
inter-test correlations would be stronger than the classical SiM-
based ones. (ii) Since TA is stable across time and contexts, we
hypothesized that SuMs better predict future behavioral
responses to acute stress in anxiety- or fear-triggering environ-
ments. (iii) Since high levels of TA is a core symptom of anxiety
disorders, we further hypothesized that SuMs would serve as more
sensitive markers of chronic stress-induced anxiety in an
etiological stress model. Following these validation steps, we
examined the sensitivity of SuMs in discovering molecular markers
and potential therapeutic candidates for anxiety by conducting
RNA sequencing in the medial prefrontal cortex (mPFC), a key
anxiety-related brain region [30, 31].

MATERIALS AND METHODS
Detailed methods and a table outlining the specific procedures applied to
each cohort are provided in the supplementary materials (Supp. Mat.
Table 1).

Animals
Six animal cohorts were used in this study, each acclimated to the housing
conditions for two weeks before testing. Animals were housed in groups of
2–5 (mice and rats in separate rooms) under standard conditions with a
reversed day-night cycle. The cohorts included: two cohorts of adult male
Wistar rats (n= 54, Charles-River) to examine trait anxiety and neural

correlates; one cohort each of adult female Wistar rats (n= 27), adult male
C57BL/6J mice (n= 40, Jackson Laboratory) to assess replicability and sex
differences; adult male Long-Evans rats (n= 28, Charles-River) to study
correlations between acoustic startle, generalized fear (CFP), and trait
anxiety; and adult male Wistar rats (n= 30) to investigate effects of social
isolation on trait anxiety. A table summarising all cohorts and tests can be
found in the supplementary methods (Supp. Mat. Table 1). Sample sizes for
the first rat experiment (n= 54) were calculated using the pwr R package
aiming to measure a minimum r= 0.35 correlation coefficient at
alpha= 0.05 significance level and beta= 0.8 power. Following the first
experiment we decreased sample sizes according to the robustness indices
of behavior-behavior and behavior-gene expression correlations.

Experimental design
Wistar rats underwent a semi-randomized 3-week test battery (EPM, OF, LD
tests, each repeated three times), with six fixed test order combinations to
eliminate order and time-of-day biases (Fig. 1A). This was followed by an
additional week under more aversive conditions (increased light), and, two
days later, a final open field test (OF2) to standardize the last testing
experience for all animals. For the social isolation protocol, rats were reared
from weaning (P21) either in groups of four or isolated until adulthood.
Female rats, socially isolated males, and mice underwent the same
protocol of 3-week baseline testing followed by an aversive testing week.
Long-Evans rats completed the 3-week protocol, followed by an acoustic
startle and fear conditioning tests. For anxiety tests, time spent in the
aversive zone, frequency, and latency of aversive zone entries were
analyzed automatically (Noldus EthoVision XT15), while EPM head-dips, LD
head-entries, and rearing were scored manually (Solomon Coder [32]) by
experimenters blind to experimental groups.

Behavioral measures
Composition of all variables are shown below. To attenuate the possibly
state anxiety-driven fluctuation of behavioral variables across repeated
testing, and thus to improve the detection of stable traits, we introduced
summary measures of behavior. Our improvement to the conventional
preclinical approach involved two key aspects: (1) Based on the results of
the principal component analysis shown in Supp. Fig. 1F–G, and
correlations shown in Fig. 2A, B as well as Supp. Fig. 2A, we calculated
single measures (SiMs) by inverting min-max-scaled time spent in the
aversive zone (for rats) or frequency of entering the aversive zone (for
mice) during the first exposure to each test (EPM, OF, LD performed during
the first week of testing). (2) Using data from the same animals, we also
created summary measures (SuMs) by averaging and summing the scaled
variables across the 2-, or 3 repetitions of each anxiety test type. This
approach aimed to reduce noise from situational variability and enhance
the detection of temporally consistent traits. To assess the effectiveness of
SuMs in capturing the common underlying factors across different anxiety
tests, we compared the strength of individual-level correlations using SiMs
versus SuMs. Additionally, we also created composite scores (COMP) by
averaging the SiMs or SuMs of different tests. Means and standard errors
are reported for behavioral measures.

Fig. 1 Design and outcome of the extended sampling design of trait anxiety in mice and rats. A Hypothesis, sampling, and analysis design.
Hypothesis: Schematic drawing showing how behavior is expressed as a consequence of state and trait anxiety according to our working
hypothesis. Measured anxiety-like behavior is driven by the underlying trait anxiety, but it is influenced by time and context, hence using a
single anxiety test at a single time leads to undersampled experiments reflecting only transient anxiety states of the individual. Sampling
design: we used repeated sampling with different types of tests in a semi-random order to better capture internal and external variability
stemming from the individual’s trait and state factors, environmental context, and their fluctuation in time. Analysis design: Behavioral data
(time or frequency of entering the aversive zone) from each test were used to create classical single measures (SiMs). More stable summary
measures (SuMs) were created by combining multiple variables and testing events to describe trait anxiety. B–D The effect of test repetitions
on time spent in the aversive compartment of the EPM (B), LD (C), and OF (D) anxiety tests in male C57BL/6J mice (left panel), female Wistar
rats (middle panel) and male Wistar rats (right panel). Red lines highlight the testing event in aversive conditions. The light icons underneath
the number of testing occasions represent the type and intensity of light used, where gray means infrared lighting, yellow means white light,
and yellow with black contour means aversive lighting condition (low light intensity for the EPM or OF and bright light for LD). Refer to the
supplementary figures to see the same plots with aversive zone entry frequencies (Supp. Fig. 1A–C). E, F Between- and within-test variances of
all variables measured for male Wistar rats (E), and male C57BL/6J mice (F). Between-test variance means the individual variance of animals
between different test sessions, while within-test variance means the variability of the population’s behavior within a single test session. A
higher within-test variance and a lower between-test variance means that a test captures a wide range of individual variation within a test
session, and that animals’ behavior is stable across test repetitions. Refer to the supplementary figures for repeatability estimates calculated
from between- and within-test variances (Supp. Fig. 1D–E). EPM elevated plus-maze test, OF open field test, LD light-dark test. * over a line:
p < 0.05 significant main effect of the test event during the baseline sampling period. * over the aversive sampling day (red line): significant
pairwise differences from the 1st test event. # over the aversive sampling day: significant pairwise differences from the 3rd test event. All
statistical results are presented in Table 1.
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Throughout this study, all variables were scaled into dimensionless,
combinable values ranging from 0 to 1 (min-max scaling) and inverted
(multiplied by −1) to correspond to anxiety levels according to the

following formula:

scaled variableðiÞ ¼ variableðiÞ �min variableð Þ
max variableð Þ �min variableð Þ

� �
� ð�1Þ
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SiMs, SuMs or COMPs were calculated using the following scaled and
inverted variables:
Calculation of single measures for a test (SiMs):
rats: SiM = time spent in aversive zone
mice: SiM = entry frequency into aversive zone
Calculation of summary measures (SuMs):
rats: SuM of 3 tests of the same test type = average(test1[time+freq],

test2[time+freq], test3[time+freq])
mice: SuM of 3 tests of the same test type = average(test1[freq],

test2[freq], test3[freq])
Calculation of composite scores (COMPs) of different test types:
rats and mice: COMP SiMs of different test types = average(LD[time

+freq], EPM[time+freq], OF[time+freq])
rats and mice: COMP of SuMs of different test types = average(LD

SuM[time+freq], EPM SuM[time+freq], OF SuM[time+freq])
Anxiety scores used in Fig. 3 are SiMs or SuMs containing scaled and

inverted time and frequency data. An additional table (Supp. Mat. Table 2)
with variable components in the Supplementary methods is available.
Statistical analysis was done in R statistical environment [33]. Principal

component analysis [34] of all analyzed behavioral variables from the first
week of testing was performed to investigate the shared variance between
different behavioral variables. For correlations, Spearman correlation
analysis [35] was used. False discovery rate (FDR) correction for multiple
comparison testing was done using the Benjamini-Hochberg method [36].
Repeatability was assessed by calculating the proportion of within-test

variance to total variance [37] using the formula: within test variance/
(within test + between test variance). Within-test variance reflects individual
variation within a single test, while between-test variance captures
individual variation across test repetitions. Variance components and
repeatability estimates (with 95% confidence intervals via 1000 parametric
bootstraps) were computed using ‘rptR’ package [38, 39]. Estimates were
deemed significant if confidence intervals excluded zero. After verifying
normality, variances and adjusted repeatability values were determined for
all behavioral measures.
Random forest analysis (RF) with automated variable selection was

performed using the VSURF package [40] in R. Subjects were assigned to
low or high anxiety groups according to whether their anxiety score fell
below or above the interquartile density minimum (valley). As a result of RF
and the VSURF variable selection pipeline a list of significant predictors was
chosen to maximize variable importance and minimize redundancy.
Variable importance scores of predictors were plotted against their
respective variable complexity.

Blood corticosterone assessment of Wistar rats
Tail vein blood samples were collected in a resting state (5 days before the
first experiment) and in stress-induced (immediately after OF2) conditions.
The quantification of plasma corticosterone was carried out using
radioimmunoassay similarly to previous work by our laboratory [41].

RNASeq analysis
Microdissection of bilateral mPFC tissue was performed 2 weeks after the
last experiment (OF2). Whole transcriptome-analysis via RNASeq was

performed on the homogenized mPFC tissue. Single-read RNAseq was
performed on 27 animals, chosen based on their COMP scores (Fig. 4A), by
the Department of Biochemistry and Molecular Biology at University of
Debrecen, using the NEBNext Ultra II RNA Library Prep Kit (New England
Biolabs) and sequencing on Illumina NextSeq500. Regression analysis to
reveal differentially expressed genes (DEGs) was done using the DESeq2
package [42]. Analysis of gene-behavior regressions was carried out using
SiMs, SuMs or COMPs of tests as continuous covariates in the design. FDR
correction was done using the Independent Hypothesis Weighting method
[36]. Only genes with FDR-adjusted p < 0.05 were considered significant.
Functional clustering of DEGs was done using DAVID [43, 44], and
connections were visualized in Cytoscape [45]. Deseq2 results are shown in
Supplementary Table 1.
qPCR analysis was performed on total RNA from mPFC and amygdala of

the same animals as RNASeq. Gene expression was measured using
custom TaqMan Array Cards (Applied Biosystems, USA) for 45 genes. Inter-
run calibration used Actb and Gapdh as references, and data were
normalized using the 2-ΔΔCT method [46, 47]. Expression values with cycle
thresholds >35 were excluded.
Robustness. We assessed the stability of correlations between behaviors

and gene expression via a robustness index, based on the minimum sub-
cohort size where the standard deviation of p-values reached the 0.05
threshold. This was calculated by reanalyzing Spearman correlations across
20,000 random sub-cohorts; the R function is available upon request.

RESULTS
Overlaps between anxiety-like variables support the use
of SuMs
When variables carry overlapping information, summarizing them
can be both feasible and beneficial for capturing their shared
background. To assess the level of overlap among variables from
the EPM, LD, and OF tests and to measure behavioral changes
across repeated test sessions, we conducted repeatability and
correlation analyses in both rats and mice. Repeatability was
assessed by examining test-retest changes across repeated
sessions under baseline and more aversive conditions (bright
light) (Fig. 1B–D), as well as through within and between-test
variability (Fig. 1E, F), and bootstrap analysis-based repeatability
measures (Supp. Fig. 1D, E). During repeated testing in baseline
conditions, a significant change in time spent in the aversive zone
of the tests was observed over repeated sessions in the EPM
(Fig. 1B) and the OF (Fig. 1D) in both rats and mice, but not in the
LD test (Fig. 1C). Testing under more aversive conditions tended to
decrease time spent in the aversive zone in the EPM and OF, but
not in the LD test. Aversive zone entries showed similar trends,
with a more pronounced avoidance response to the aversive light
conditions, and some effects of repeated testing in the LD (Supp.
Fig. 1A–C). The observed test-type-dependent effects demonstrate
that different anxiety tests vary in their sensitivity to

Fig. 2 Inter-test correlations and behavioral predictions as a function of variable complexity. A Inter-test correlations between increasingly
complex variables of different anxiety tests. The correlation coefficients between OF and EPM (green), EPM and LD (red), and LD and OF (blue)
were plotted at different variable combinations of these tests. The #n of test events and the #n of test variables refers to how many repeated
test events (1 or 3 repeats) were included and the number of different variable types (time, frequency, latency) that were used to create
summary variables, respectively. SiMs are single variables, for example time spent in the open arms of an EPM, while SuMs consist of either
multiple samplings of one variable type and/or multiple variable types measured in one or multiple events/repeats. B, C Network plot of inter-
test correlations between different tests revealed by SiMs (simplest model) and SuMs (reduced) in the rat (B) and mouse (C) experiments. *
p < 0.05 significant correlation D Behavioral predictions of anxiety measures in an aversive environment. Correlation coefficients were
measured between identically composed variables in baseline and aversive contexts. SiMs represent one, and SuMs represent multiple testing
events, while COMPs include SiMs or SuMs of all test types. E Correlations between increasingly complex anxiety measures (SiMs, SuMs, or
COMPs) from the baseline sampling and their aversive counterparts in rats (left) and mice (right). F Behavioral predictions of anxiety measures
in the fear conditioning paradigm. Correlation coefficients were measured between baseline anxiety measures (SiMs, SuMs, COMPs), freezing
in the fear conditioning paradigm, and startle in the acoustic startle paradigm. G Time spent with freezing (%) in the conditioned fear
paradigm in the contextual reminder (conditioned) and safe (different) contexts. Freezing was sampled two times in the safe context, from
which an average freezing value was used for predictions. H Correlation of increasingly complex anxiety measures (SiMs, SuMs, or COMPs)
with freezing behavior in a novel context following fear conditioning (left) and startle response to acoustic stimuli (right). COMP represents
the composite of all anxiety tests and measures. Red dashed lines represent the threshold of significance on the scale of correlation
coefficients. Additional numbers on the plots show the smallest and largest coefficients. Figures A-E show male Wistar rats and male C57BL/6J
mice, while Figures F-H display results from experiments with male Long-Evans rats. All statistical results are presented in Fig. 5A). Statistical
parameters of Fig. 2G) can be found in Table 1.
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Fig. 3 Summary measures as markers of a chronic stress state. A Socially or isolation-reared animals underwent three baseline and one
aversive sampling events of the EPM and LD tests, then summary measures of different complexities were calculated. B-E-H SiMs (scaled and
inverted time and frequency-based anxiety scores) were calculated from each sampling event using the EPM (B) or LD tests (E), or their
composite score (COMP) (H). C-F-I SiMs (1 test event) were calculated from the first, while SuMs were calculated from multiple averaged
sampling events (1-2, 1-2-3, 1-4), using the EPM (C), LD (F), or their composites (I). D-G-J The effect sizes of isolation rearing based on averaged
sampling events (SuMs) compared to the averages of effect sizes of those very same sampling events without summarization. Gray and
colored bars represent the effect sizes of the comparisons from the first (B-E-H) and the second columns (C-F-I), respectively. Experiments in
this figure were done using male Wistar rats. All statistical results are presented in Table 1. * significant difference after FDR correction.
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environmental influences. Notably, the LD test showed minimal
test-retest carry-over or aversive condition effects, while the EPM
and the OF tests demonstrated high sensitivity to both factors.
Analysis of within- and between test variances, and test
repeatability (Fig. 1E, F, Supp. Fig. 1D, E) confirmed that the LD

variables are the most stable across test repetitions (lowest
individual variability between test sessions) in rats and mice, and
the most sensitive to individual differences (highest population
variability within a test session) in rats, therefore the LD had the
highest repeatability values for most variables (frequency and
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time spent in aversive zone, head entries into aversive zone and
rearing). In contrast, the EPM showed the highest variance across
repeated testing in both rats and mice, and showed the lowest
repeatability for most variables (Fig. 1E, F, Supp. Fig. 1D, E).
Variables of the same test type clustered together based on their
between- and within-test variances, with frequency variables
showing the highest, and latency-variables the lowest repeat-
ability in rats, indicating a partial overlap among variables
measured in the LD, EPM or OF. PCA revealed further similarities,
as variables of all three tests tended to load onto the same
dimensions (Supp. Fig. 1F–G). Since inclusion of ethological
parameters, such as head-dipping or rearing showed no clear
PCA separation or superior repeatability compared to time or
frequency measures, we prioritized these simpler, robust readouts
in later analyses. Interestingly, while in rats time and frequency
variables of different tests loaded onto PC1 with similar weight, in
mice only frequency variables were represented consistently in
the most important component. Statistical results for (Fig. 1B−D,
and Supp. Fig 1A−C) are presented in Table 1.
In summary, our results indicate a shared but differently

expressed underlying basis in these anxiety tests and support
the potential for summarizing their variables.

SuMs reveal shared variance across anxiety tests and predict
acute stress-induced behavior
Since TA is considered to be the permanent basis of anxiety-like
responses [48, 49], it should be consistently expressed across
different contexts and over time. To test this, we created SuMs of
varying complexity through averaging time and frequency
variables of repeated test results from the EPM, LD, and OF tests.
We then assessed (i) correlations between SuMs and their
predictive efficacy for behavior in different stress-inducing
contexts, including (ii) performance in the same tests under more
aversive conditions (Fig. 2D, E), (iii) fear responses in the
conditioned fear paradigm (Fig. 2F–H, Table 1) or (iv) acoustic
startle paradigms (Fig. 2H). We also conducted random forest
classification to compare SiMs and SuMs in predicting behavior in
the aversive context and the fear conditioning paradigm.
The simplest variables (SiMs) were the time spent in, frequency

and latency to enter the aversive compartment. The most complex
SuMs consisted of all these variables across three testing sessions.
We generated all variable combinations along this complexity
gradient and assigned each a complexity score, calculated as the
number of variables * number of test sessions (Supp. Fig. 2A).
We found that SuMs of high complexity showed stronger inter-

test correlations than either lower-complexity SuMs or SiMs, in
both rats and mice (Figs. 2A–C, 5A). Inter-test correlations could be
explained by variable complexity as a fixed effect, and variable

and test composition as interacting random effects (Supp. Fig. 2A).
The weakest correlations were observed for the least complex
variables, and SuMs that included latency data, while the strongest
correlations were between SuMs composed of more complex
metrics, and/or the ones that included frequency and time-based
variables (Supp. Fig. 2A). Based on these results and the previous
PCA (Supp. Fig. 1F–G), we used time and frequency but not
latency variables in our reduced SuMs in rats (anxiety scores),
which yielded stronger inter-test correlations and outperformed
SiMs. Similarly, in mice, the strongest inter-test correlations were
between PC1-loaded variables, but in contrast to rats, these were
the frequencies. Based on these, we used frequency variables both
in SiMs and SuMs in mice in all following analyses. This species-
specific approach optimizes cross-study comparisons while
respecting each model’s unique behavioral profiling
characteristics.
Under more aversive conditions, we detected enhanced

anxiety-like behavior in two out of the three tests in rats and in
all tests in mice (time: Fig. 1B–D, frequency: Supp. Fig. 1A–C,
anxiety score: Supp. Fig. 3A). Correlation analysis between test-
specific SiMs and SuMs and their aversive-condition counterparts
revealed that more complex variables better predicted future
behavioral responses in both species (Fig. 2E). Furthermore,
creating composite scores from SiMs and SuMs of all tests (COMP)
outperformed test-specific SiMs and SuMs, respectively, reaching a
0.78 correlation between baseline and aversive responses.
We extended the above analyses to both species and sexes, and

found a similar association between the number of sampling
events and their predictive power (Fig. 5A). We also confirmed the
importance of variable complexity in predicting behavior by
performing random forest classification (RF) of low- and high-
anxiety subjects in aversive condition (Supp. Fig. 3C–E). Subjects
were grouped based on their anxiety scores under aversive testing
for each test type, and RF was conducted using variable
combinations from previous tests. The strongest predictors of
anxiety scores aversive LD, OF, and EPM tests were: SuMs of the
first two LD tests (anxiety score), the first three OF tests (time), and
the first two EPM tests (anxiety score), respectively. Furthermore,
we observed a strong positive correlation between variable
complexity and variable importance as determined by the random
forest model (Supp. Fig. 3F). Note that correlations with significant
SuM predictors were higher than the correlations with most of our
SiMs (1st, 2nd, or 3rd testing) indicating that their predictive
performance is not merely the result of carry-over effect of
repeated testing, but rather reflects the capture of additional
meaningful information (Supp. Fig. 3G, H). Likewise, the predic-
tions of COMPs were higher than the predictions of SuMs, which
indicates that they carry additional information compared to any

Fig. 4 Sensitivity to gene-discovery of differently complex anxiety measures. A left: Representative figure of bilateral mPFC sampling
(orange areas). right: Samples for RNA-seq analysis were chosen based on their COMP levels. B SiM and SuM-associated gene counts following
FDR correction for multiple comparisons. C Euler diagram representing the proportion of overlaps in gene sets of different sampling
approaches. D SiM and SuM-associated genes form functionally distinct clusters. Clusters contain genes with similar annotation profiles based
on multiple databases. SiM and SuM-associated genes are grouped into completely non-overlapping clusters defined by metabolism or
plasticity, respectively. E Hub-plot of functional annotation of significant genes. Due to the heuristic fuzzy clustering method, a gene does not
have to belong to any clusters but can belong to more clusters, while clusters can be determined by multiple functional labels. Cluster 1
includes genes that share many functional labels associated with cardiac function, cellular localization, transport, and potassium signalling.
Clusters 2 and 3 are solely characterized by plasticity and transcription functions, respectively. Cluster 4 is characterized by metabolism, stress
response, and hydrolase activity-associated functional terms and unites almost exclusively SiM-associated genes. Unclustered genes do not
necessarily lack a known function, but do not have the amount of relatedness with enough genes in our pool to form a separate cluster. Gray
arrows indicate gene-function associations, while gray lines indicate the borders of clusters. Red circles indicate cluster-determining labels,
while color and shape indicate sampling type. The size of hubs is proportional to the correlation coefficient (absolute value) between the gene
expression and anxiety. F Robustness values of genes as a function of their log2-fold change. G Correlations of amygdala gene expressions
with mPFC gene expression or anxiety variables. Left piechart: percent of significant correlations between amygdala and mPFC qPCR results.
middle: percent of significant correlations between amygdala gene expression and SiMs, SuMs, COMPs or aversive behavior. right: percent of
amygdala genes that correlate with both anxiety and mPFC expression. Experiments in this figure were done with male Wistar rats. All
statistical results are presented in Table 1 and Supplementary Tables 1–3.
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Fig. 5 Predictive value of the extended sampling design in different paradigms. A Correlation coefficients and corresponding p-values of
the “inter-test correlations” and “behavioral predictions” experiments in rats and mice. The color code of the cells ranging from white to teal
represents the level of correlations or p-values scaled to all parameters and experiments. The last two rows of results (conditioned fear
paradigm and startle) are from experiments with male Long-Evans rats, and the rest is with male or female Wistar rats or male C57BL/6J mice,
sex and species are marked in the table. B, C The advantage of multiple testing in different paradigms. Additional predictive value of further
sampling points in different paradigms. Values are shown as the percentage of the highest prediction that was reached with a particular test
in a particular paradigm. D Additional predictive values are shown as a percentage of the highest prediction that was reached with any of the
tests used in a particular paradigm.
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Table 1. Parameters of test statistics.

Figure
/ result

Hypotheses testing / model comp. var. Test statistics with
df

n effect
size

p Further
information

Figure
1B/C/D

repeated measures ANOVA /
rat male main effect

EPM time(s) F2,107= 34.206 54 0.800 0.000

freq F2,107= 26.517 0.703 0.000 Supp. Fig. 1A

OF time(s) F2,108= 3.643 0.260 0.029

freq F2,108= 2.235 0.204 0.112 Supp. Fig. 1C

LD time(s) F2,106= 0.801 0.123 0.452

freq F2,106= 4.119 0.279 0.019 Supp. Fig. 1B

aversive contrast paired
t-test (male rats)

EPM 1 vs 4 (aversive) time(s) t76= 8.007 0.920 0.000

freq t82= 6.738 0.742 0.000 Supp. Fig. 1A

EPM 3 vs 4 (aversive) time(s) t94= 2.898 0.299 0.005

freq t94= 2.748 0.283 0.007 Supp. Fig. 1A

OF 1 vs 4 (aversive) time(s) t88= 2.894 0.309 0.005

freq t106= 4.643 0.451 0.000 Supp. Fig. 1C

OF 3 vs 4 (aversive) time(s) t102= 4.043 0.400 0.000

freq t104= 4.9 0.479 0.000 Supp. Fig. 1C

LD 1 vs 4 (aversive) time(s) t106=−0.315 0.031 0.753

freq t107=−0.460 0.045 0.646 Supp. Fig. 1B

LD 3 vs 4 (aversive) time(s) t106= 0.356 0.035 0.722

freq t105= 1.078 0.105 0.284 Supp. Fig. 1B

repeated measures ANOVA /
rat female main effect

EPM time(s) F2,52= 3.419 27 0.363 0.040

freq F2,52= 10.343 0.631 0.000 Supp. Fig. 1A

LD time(s) F2,52= 0.038 0.038 0.963

freq F2,52= 16.647 0.800 0.000 Supp. Fig. 1B

aversive contrast paired
t-test (female rats)

EPM 1 vs 4 (aversive) time(s) t51= 7.989 0.853 0.000

freq t49= 0.595 1.121 0.000 Supp. Fig. 1A

EPM 3 vs 4 (aversive) time(s) t52= 4.431 0.616 0.000

freq t51= 3.609 0.506 0.001 Supp. Fig. 1A

LD 1 vs 4 (aversive) time(s) t50= 0.594 0.085 0.555

freq t52= 1.712 0.243 0.093 Supp. Fig. 1B

LD 3 vs 4 (aversive) time(s) t50= 0.675 0.096 0.503

freq t52=−2.073 0.289 0.043 Supp. Fig. 1B

repeated measures ANOVA /
mouse main effect

EPM time(s) F2,78= 64.944 40 1.290 0.000

freq F2,78= 74.446 1.382 0.000 Supp. Fig. 1A

OF time(s) F2,77= 8.386 0.466 0.001

freq F2,77= 23.279 0.779 0.000 Supp. Fig. 1C

LD time(s) F2,78= 1.411 0.190 0.250

freq F2,77= 0.971 0.159 0.383 Supp. Fig. 1B

aversive contrast paired
t-test (mouse)

EPM 1 vs 4 (aversive) time(s) t59= 9.806 1.272 0.000

freq t77= 12.936 1.478 0.000 Supp. Fig. 1A

EPM 3 vs 4 (aversive) time(s) t62= 1.192 0.152 0.238

freq t78= 1.139 0.129 0.258 Supp. Fig. 1A

OF 1 vs 4 (aversive) time(s) t59= 1.774 0.230 0.081

freq t54= 9.281 1.265 0.000 Supp. Fig. 1C

OF 3 vs 4 (aversive) time(s) t74=−0.289 0.034 0.773

freq t71= 5.077 0.604 0.000 Supp. Fig. 1C

LD 1 vs 4 (aversive) time(s) t78= 2.468 0.280 0.016

freq t76= 3.0342 0.349 0.003 Supp. Fig. 1B

LD 3 vs 4 (aversive) time(s) t76= 1.054 0.121 0.295

freq t78= 1.6831 0.191 0.096 Supp. Fig. 1B

Figure
2A

Linear-mixed model’s complexity corr coeff t= 3.597;
Est= 0.019;
SE= 0.005

54 - 0.001 variable
composition:
p= 0.0065

test composition:
p= 0.0088

Residual: 0.0042
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test-type alone (Supp. Fig. 3G, H). Furthermore, inter-test
correlations of SiMs were also independent of testing occasion
in contrast to SuMs with correlations consistently growing by
variable complexity (Supp. Fig. 2B).
Similarly to our previous studies, exposure to an anxiety test

induced a rapid increase in plasma corticosterone levels (Supp.

Fig. 3B, Table 1) but neither baseline nor stress-induced
corticosterone correlated with anxiety variables [50] (data not
shown).
We also aimed to predict the extent of freezing behavior in a

safe context in the conditioned fear paradigm as a measure of
generalized fear, a hallmark symptom of post-traumatic stress

Table 1. continued

Figure
/ result

Hypotheses testing / model comp. var. Test statistics with
df

n effect
size

p Further
information

Figure
2G

ANOVA freezing time(s) F2,25= 7.000 28 0.748 0.001

Tukey post-hoc conditioned context
(ctx) vs safe ctx1

t135= 2.247;
Est= 7.69;
SE= 3.42

0.390 0.067

cond ctx vs safe ctx2 t135= 3.715;
Est= 12.71;
SE= 3.42

0.640 0.001

safe ctx1 vs safe ctx2 t135= 1.468;
Est= 5.02;
SE= 3.42

0.250 0.309

Figure
3B

Wilcoxon rank sum test EPM 1 anxiety score w= 86 30 0.490 0.143 FDR: non-
significantEPM 2 w= 74 0.440 0.056

EPM 3 w= 97 0.050 0.263

EPM 4(aversive) w= 34 0.480 0.023

Figure
3C

Wilcoxon rank sum test EPM 1-2 w= 37 0.640 0.023 FDR: all
significantEPM 1-2-3 w= 36 0.500 0.034

EPM 1-4(aversive) w= 34 0.620 0.020

Figure
3E

Wilcoxon rank sum test LD 1 w= 41 0.990 0.001 FDR: all
significantLD 2 w= 50 0.810 0.004

LD 3 w= 42 0.890 0.001

LD 4 (aversive) w= 43 1.030 0.002

Figure
3F

Wilcoxon rank sum test LD 1-2 w= 38 0.960 0.001 FDR: all
significantLD 1-2-3 w= 43 0.970 0.002

LD 1-4(aversive) w= 33 1.100 0.000

Figure
3H

Wilcoxon rank sum test COMP 1 w= 52 0.900 0.006 FDR: all
significantCOMP 2 w= 52 0.756 0.006

COMP 3 w= 64 0.653 0.023

COMP 4(aversive) w= 39 0.969 0.001

Figure
3I

Wilcoxon rank sum test COMP 1-2 w= 37 0.992 0.001 FDR: all
significantCOMP 1-2-3 w= 36 0.944 0.000

COMP 1-4(aversive) w= 34 1.089 0.000

Supp.
Fig. 3A

Wilcoxon rank sum test EPM baseline vs
aversive

anxiety score w= 1512.5 54 0.374 0.006

OF baseline vs
aversive

w= 1813 0.659 0.000

LD baseline vs
aversive

w= 1229 0.076 0.575

Supp.
Fig. 3B

ANOVA corticosterone concentration F= 44.225 28 1.844 0.000

Tukey post-hoc aversive vs resting 1 t81= 8.407;
Est= 426;
SE= 50.6

1.870 0.000

aversive vs resting 2 t81= 7.854;
Est= 398;
SE= 50.6

1.750 0.000

Resting 1 vs resting
2

t81=−0.554;
Est=−28;
SE= 50.6

0.120 0.845

Table 1 shows (left-to-right) the result section/figure number corresponding to the statistical parameters, the hypotheses testing method/model that were
used, the group comparisons that were made, the variables that were assessed, and the resulting test statistics-values with degrees of freedom, sample sizes,
effect sizes and significance levels. We presented the conventional parameters of the particular statistical approaches such as F values in the case of ANOVAs, t
or w values in the case of t-tests or Wilcoxon tests, as well as estimates (est) and standard errors (SE) in the case of linear mixed models. Numbers following the
test statistics identifier (e.g. F or t) are the within and between group degrees of freedom values, separated by a comma. Effect sizes are Cohen’s f for ANOVA
and Cohens’s d for t-tests. In the case of Wilcoxon test, we calculated effect sizes as the difference between the means of compared groups, divided by the
standard deviation of those two groups. P values of 0.000 represent values below 0.0005. The column entitled Further information shows additional relevant
information that is specific for a particular method, like random variances in mixed models or the results of FDR correction following multiple comparisons.
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disorder [51]. While SiMs of anxiety tests showed poor perfor-
mance in predicting fear responses, we observed a notable
improvement when more complex variables were used, especially
COMPs (Figs. 2H, 5A). In contrast, acoustic startle responses were
not predictable by any variable or sampling method indicating a
specificity of SuMs. Random forest classification of low and high
freezing animals (Supp. Fig. 3I) indicated the LD test as the best
predictor of fear generalization (Supp. Fig. 3K), however the model
showed weak accuracy (Supp. Fig. 3J). These results indicate that
SuMs and their composite measures can increase predictions of
specific future behavioral states in challenging/stressful
environments.

SuMs are more sensitive markers of chronic stress-induced behavior.
Since TA is an important risk factor for the development and
maintenance of anxiety disorders [2], we expected TA markers to
be sensitive to etiological models of such conditions. Therefore,
we used the post-weaning social isolation paradigm, which is an
extensively used animal model of childhood neglect (a prevalent
form of maltreatment associated with enhanced anxiety [52]) to
evaluate the sensitivity of our approach in detecting isolation-
induced anxiety. Since the EPM is the most frequently used
anxiety test [12], and the LD proved to be the most stable across
test repetitions, as well as a strong predictor of future behavior, we
reduced our protocol to using these two tests for three baseline
and one aversive sampling sessions following isolation. In the
EPM, no isolation-related differences were observed on any
sampling day when using SiMs (Fig. 3B). However, SuMs were
elevated following isolation, requiring only two tests to detect
isolation-induced anxiety (Fig. 3C). Since all LD and COMP
variables were significantly increased by isolation (Fig. 3E, F, H,
I), we also compared their effect sizes across these measures. We
found that the effect sizes derived from averaged sampling events
(SuMs) were consistently higher than the averages of effect sizes
from SiMs, suggesting that SuMs are more sensitive to isolation-
induced anxiety than any SiMs (Fig. 3D, G, J). All statistical results
for (Fig. 3) are presented in Table 1 In conclusion, the LD and EPM
differ in their sensitivity to detect isolation-induced changes in
anxiety levels, with SuMs bringing a significant improvement
when using the EPM.

SuMs trace out quantitatively and qualitatively different gene profiles
compared to SiMs. Since SuMs represent robust indicators of
anxiety, we next sought to investigate their molecular correlates.
To this end, we conducted RNA-sequencing on mPFC (exerting
the top-down control of anxiety [30, 31]) tissue of rats in a resting
state. Samples from 27 subjects were chosen based on their
anxiety levels by ranking their COMP scores in ascending order
and selecting every second animal for analysis (Fig. 4A). We found
that SuMs outperformed SiMs in the number of identified gene
targets, with LD-SuMs and EPM-SuMs increasing discoveries 3-fold
and 8-fold, respectively (Fig. 4B). No significant gene expression
differences were associated with OF SiMs or SuMs. Interestingly,
LD-SiM associated genes largely overlap with LD-SuM, while EPM
measures correlate with distinct gene sets (Fig. 4C), suggesting
that LD-SuMs offer a similar, but more refined picture about trait
anxiety compared to LD-SiMs, whereas EPM-SuMs likely capture
distinct processes to EPM-SiMs. Gene-behavior associations were
further investigated through the robustness of correlations, which
indicated that LD-SiMs, LD-SuMs and EPM-SuMs are also the most
stable predictors of behavior, in contrast to the least robust EPM
SiMs (Fig. 4F). Surprisingly, the COMP SuM variable only correlated
with two gene targets (Rpl30, Zfp26), both of which also emerged
as correlates of LD SuMs. For information on differentially
expressed genes associated with all variables mentioned here,
refer to Supplementary Table 1.
Through investigating the functional clusters of genes asso-

ciated with SiMs or SuMs of different tests, we found that SiMs

primarily correlated with metabolic and stress-related genes, while
SuMs established a strongly plasticity-focused gene profile (Fig.
4D). The majority of genes associated with SuMs were also
putatively involved in cellular localization, cellular transport,
potassium signaling, or transcription. Within the plasticity-
associated cluster, genes can be further classified into more
specific functions, including extracellular matrix shaping (Adamts4;
Hapln2), general modulation of neuronal development (Fgf14;
Fat3; Fzd3), transcription (Btk; Tceb2; Ascl2; Mdm4) or translation
(Bc1; Eifj2; Eif2s2; Eif3j; Upf2; Upf3b). Also, a significant percentage
of SuM-associated genes encode direct modulators of neuronal
excitability and neurotransmission, such as Kcnk1, Kcnk9, Kcna2,
Kcns2, and Kcnj4 (Fig. 4E). These findings suggest that our
sampling strategy not only enhances gene discovery quantita-
tively, but also yields a qualitatively distinct functional gene
profile.
To confirm our RNASeq findings with a differently sensitive

method, we performed a qPCR analysis on the 43 most robust and
the 2 least robust protein-coding genes (Supplementary Table 2).
When comparing gene expression levels between the RNASeq
and qPCR data, 17.8% (8) of genes showed significant positive
correlations (Supplementary Table 3). However, 94.6% of the
genes that were not significantly correlated between the two
different methods showed a fold change value lower than 1.2 (Fig.
4F, Supplementary Table 1) which is below the typical cut-off
criteria for the qPCR analysis [53]. In addition, the remaining 2
non-correlating genes with a fold change higher than 1.2 showed
a relatively low expression in the RNASeq and were not detectable
with PCR. These were also the 2 least robust genes in our analysis
(Supplementary Table 2).
Furthermore, we have examined the differential expression of

the aforementioned 45 genes in the amygdala, a key region in the
regulation of anxiety, and found that after FDR correction, 15.6%
(7) of them showed a significant correlation with anxiety-related
variables (SiMs, SuMs, COMPs or behavior in an aversive
environment) (Fig. 4G, middle). Additionally, qPCR analysis
revealed that 17.8% (8 genes) exhibited significant positive
correlations in expression levels between the two areas (Fig. 4G,
left). Notably, 6.7% (3 genes) - Glb1, Pla2g7 and Shbg - of the
investigated amygdala genes showed significant correlations with
both anxiety measures and mPFC gene expression. These findings
suggest that some of the gene targets identified by our method
may play a broader role in modulating trait anxiety.

A consensus score to measure trait anxiety. Based on the above,
SuMs offer enhanced predictive power over SiMs as a function of
their complexity, e.g. the number of sampling points included.
However, each experimental paradigm reaches an inflection point
beyond which additional sampling points no longer yield
significant improvements in predictive value. To offer a standar-
dised and feasible framework for measuring trait anxiety, we
sought to determine a consensus inflection point by comparing
the added predictive value of additional tests across all paradigms
of our study. In Fig. 5, we show the improvement repeated testing
offers in effect sizes related to social isolation, correlations
between similar anxiety tests under varying aversive conditions,
correlations across different anxiety tests, or correlations between
anxiety tests and generalized fear responses alongside molecular
predictions from our RNASeq analysis. We expressed the
predictive value of different sampling depths (1, 2 or 3 tests) as
a percentage of the maximum prediction achieved either within a
particular test (Fig. 5B, C) or across all tests (Fig. 5D). We found that
the most reliably predictable outcomes were the anxiety-related
variables under aversive conditions, i.e. tests under bright light or
following social isolation. A single trial of either the EPM or LD test
accounted for around 80% of the maximum predictive value in
both contexts. However, in the case of anxiety following social
isolation, a single EPM trial failed to detect significant behavioral
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effects. In contrast, the more sensitive EPM-SuMs, and LD-SiM
could explain approximately the same variability as multiple LD
testing. Predicting outcomes across different contexts proved to
be more challenging: significant correlations between anxiety
across different tests or with freezing behavior in the safe context
of the conditioned fear paradigm generally required multiple test
repetitions. Further, identifying molecular correlates of anxiety
was the most challenging task, as the number of gene correlates
increased progressively with each additional test occasion. The
most complex SuM variables captured the highest number of
gene targets in both tests. Finally, a comparison of test
performance, expressed as correlations relative to the highest
prediction achieved across all test variables (Fig. 5D), revealed that
the LD test consistently outperformed the EPM across all
paradigms. Based on these findings, we provide the optimal
testing protocol recommendations in the Discussion.

DISCUSSION
Our study aimed to model trait anxiety in rodents to enhance the
translational potential of preclinical testing. We hypothesized that
the frequently used preclinical anxiety tests only measure state
anxiety. Since the definition of trait anxiety is the tendency of the
subject to respond to situations with elevated state anxiety and
avoidance [1, 2], our approach to revealing trait anxiety was to
repeat classical anxiety tests multiple times and introduce
summary measures of multiple test events and variables.
We present the first experimentally validated behavioral

sampling protocol to measure TA in rodent models. Unlike the
conventional testing methods using single measure (SiM)
behavioral tests, our method uses summary measures (SuMs)
from repeated testing, which improve both behavioral and
molecular predictions of anxiety tests. While SiMs from the EPM,
OF, and LD tests failed to show consistent correlations across tests,
SuMs, consisting of multiple variables from repeated tests,
revealed significant correlations and were able to uncover the
shared driving force of behavior in these tests, TA. We validated
SuMs as measures of TA in both male and female rats and mice,
finding comparable results across sexes; thus, later experiments
focused on males. We showed that SuMs, in proportion with their
complexity, enhance inter-test correlations, strengthen predictions
of behavior in more threatening environments, and more
accurately capture the consequences of chronic stress, when
compared to SiMs.
The idea of repeating anxiety tests, especially the EPM, has been

controversial because of a phenomenon known as one-trial
tolerance. One-trial tolerance refers to two distinct issues; (1) a
progressive reduction in exploration in the EPM over repeated
testing events, and (2) the decreasing sensitivity of the EPM to
detect benzodiazepine effects over repeated testing [54]. Since
the EPM was originally developed for assessing benzodiazepine-
induced anxiolysis [17], consequently, any experimental condition
- such as repeated testing - that diminish the EPM’s ability to
detect benzodiazepine effects has traditionally been viewed as
compromising the test’s validity. This focus on benzodiazepine
responsiveness has, in turn, limited the EPM’s representativity to
only a few aspects of trait anxiety. Indeed, there is a long list of
conditions and drugs that have no effect on behavior when using
the original EPM protocol, but their anxiety-like effects become
apparent in different testing conditions, such as more aversive
environments, in response to prior stressful experiences, or in a
modified EPM [55–57]. We argue that while the carry-over effect is
evident in the EPM, valuable additional information can be
obtained through multiple testing, as outlined in detail below.
Moreover, not all anxiety tests show this carry-over effect, as
behavior in the LD test remains stable across repeated trials.
We argue that SuMs capture TA, the shared basis of anxiety-like

behavior. This aligns with classical models of Eysenck, Belzung,

and the Spielberger state/trait inventory-based clinical practice,
which describe SA as a consequence of TA interacting with
situational stress [1, 13, 49, 58, 59]. While all these models
emphasize that characterizing TA requires repeated sampling
across multiple contexts, our approach is the first that sought to
apply this principle in preclinical settings. We hypothesized that
this translational approach would resolve the inconsistencies
previously observed in preclinical models [13, 22, 24]. In our study,
increasing variable complexity improved both inter-test correla-
tions and predictive power, suggesting that SuMs reliably
converge to TA. To our best knowledge, this is the first preclinical
TA paradigm that refines experimental analysis instead of
experimental subjects [26–28, 60], enabling detailed individual
phenotyping.
We compared SiMs and SuMs of different tests in capturing

whole-genome expression profiles in mPFC samples. SuMs revealed
both quantitatively and qualitatively distinct gene expression
profiles and enhanced gene discoveries up to eightfold compared
to SiMs. This likely reflects SuMs’ capacity to explain a greater
proportion of variance in gene expression within individuals,
allowing the use of high-powered analytical approaches such as
continuous anxiety scores over traditional categorical groupings of
high- and low-anxiety subpopulations. Furthermore, the enhanced
sensitivity of SuMs reduces the number of required subjects, and
improves the discovery rate of new gene targets of anxiety [61]. It is
important to note, that while the COMP variable identified fewer
gene targets than SuMs of EPM or LD did, this result, although
somewhat disappointing, is not unexpected. This outcome likely
reflects the fact that different anxiety tests revealed largely non-
overlapping gene correlates, suggesting that these tests may
represent distinct manifestations of anxiety-like behavior. In contrast,
SuMs appear to capture more trait-like characteristics, which may
explain their broader association with gene expression - though this
integrative capacity has its limits. Genes detected with SuMs
clustered into functionally different groups than SiMs indicating
that besides having superior sensitivity, SuMs explain a previously
unrecognized biological variability. These previously undiscovered
gene products are potential candidates for the reduction of TA and
treatment of anxiety disorders. We also tested the robustness of
these molecular findings, further increasing their translational
potential.
SuM-associated genes formed functionally interconnected net-

works tied to neural plasticity and psychiatric disorders [62].
Notably, these included extracellular matrix regulators like
Adamts4 (implicated in perineuronal net remodeling) [62, 63]
and Hapln2, which stabilizes Ranvier nodes for proper neural
conductivity [62]. SuMs were negatively correlated with Fgf14, a
trophic factor essential for neuronal excitability [64, 65] and
positively correlated with several broad modulators of gene
transcription and translation, like Btk, Upf2, Upf3b [66], Tceb2 [67],
BC1 [68], or Eif2s2, Eifj2, and Eif3j [69, 70]. Finally, we found many
differently regulated potassium channels, which are direct
modulators of membrane currents. This indicates that trait anxiety
correlates with stable alterations in gene expression, excitability,
and neuronal plasticity in resting conditions in the mPFC,
suggesting novel therapeutic targets focused towards neural
circuit adaptability.
We also examined whether transcripts strongly and consistently

associated with individual TA in the mPFC also correlated with TA
in the amygdala. Although these regions are functionally
connected, their molecular profiles differ due to distinct neuronal
subtypes and roles in anxiety regulation [30, 71]. The observed
17.8% overlap in TA-associated genes, though modest, is
biologically meaningful - reflecting conserved pathways that
may underlie cross-regional coordination within anxiety circuits.
This shared subset suggests broader molecular shifts across the
network, while the >80% divergence underscores region-specific
mechanisms. Identifying genes linked to TA in both regions
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provides a basis for targeting common molecular nodes and
developing more effective pharmacological interventions.
To propose a versatile and feasible protocol for measuring TA,

we compared the predictive value of SiMs and SuMs of different
tests across all paradigms. We compared the performance of the
LD and EPM tests in all conditions, representing opposite ends of
the robustness spectrum and this way providing a strong
framework for understanding how different anxiety measures
behave under varying conditions. We found that the predictive
strength for behavior or molecular correlates varies across
paradigms. While a single LD test was enough to predict behavior
in an aversive environment, two were needed for novel contexts,
and all three tests were required to reliably link behavior to
molecular outcomes. Our findings demonstrated that SuMs were
correlated with fear generalization, but not with the acoustic
startle response. In humans, high trait anxiety is predictive of fear
generalization [72], therefore these findings support our hypoth-
esis that SuMs are able to capture a construct closely related to
trait anxiety. Our analysis of behavioral predictions showed that
the LD test consistently outperformed the EPM across all
paradigms. A single LD test provided similar insight comparable
to multiple EPM trials; two LD tests achieved 96% of the maximum
predictive power, while SuMs based on three LD trials yielded the
strongest molecular associations, identifying four times more
anxiety-related genes than any EPM-based variable. Based on
these findings, we recommend conducting three LD tests (using
time and frequency variables) with one day inter-test intervals to
achieve more precise behavioral and molecular predictions.
Furthermore, using multiple tests that capture different aspects
of anxiety, such as the EPM and LD in combination, can yield a
more nuanced understanding of anxiety phenotypes. In summary,
here we provide a novel behavioral sampling and analysis pipeline
to measure TA in preclinical research. We demonstrate that more
complex sampling correlates with deeper phenotypic insight,
which was confirmed under various conditions, including baseline
and aversive testing environments, multiple different test types, in
naïve as well as chronic stress-exposed animals, using different
cohorts, and across species and sexes of subjects. Notably, the
molecular profiling of TA in female rodents is an important next
step to examine the potential sex-specific mPFC differences [73].
Using SuMs in experiments boosts behavioral and molecular
phenotyping and predictions, consequently reducing the mini-
mally sufficient sample sizes while maximizing the discovery rate
of novel treatment candidates. In addition, SuMs reveal a distinct,
plasticity-focused gene profile associated with TA. We encourage
the adoption of this refined phenotyping approach, to help bridge
the translational gap between preclinical and clinical anxiety
research.

DATA AVAILABILITY
Raw count values of RNA sequencing data (https://doi.org/10.5281/
zenodo.14236344) and the corresponding behavioral data (https://doi.org/10.5281/
zenodo.15469973) is publicly available at the Zenodo online data repository as
related datasets. The RNA-seq data is also available in the Gene Expression Omnibus
(GEO) under accession number GSE240493.
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