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An interpretable machine learning model predicts the
interactive and cumulative risks of different environmental
chemical exposures on depression
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Humans are exposed to a multitude of environmental chemical mixtures (ECMs) in daily life that may influence depression risk.
While prior studies have shown individual ECM exposures to depression, the cumulative and interactive effects of multiple co-
exposures remain poorly characterized. This study aimed to develop an interpretable machine learning (ML) model to predict
depression risk from ECMs and reveal their interactions mediated through endogenous metabolites and proteins. Using NHANES
2011–2016 data, we analyzed serum and urinary ECMs from 1333 adults, with depression assessed via PHQ-9 scores. Nine ML
models were evaluated, with a random forest model showing the best performance (AUC: 0.967, and F1 score: 0.91) in predicting
depression risk from ECM exposures. Shapley Additive Explanations (SHAP) identified serum cadmium and cesium, and urinary
2-hydroxyfluorene as the most influential predictors among 52 ECMs. An individualized depression risk assessment model was
developed based on SHAP values for key ECMs. Mediation network analysis implicated oxidative stress and inflammation as crucial
pathways relating ECMs to depression. This study presents an interpretable ML approach for elucidating cumulative environmental
risks for depression, advancing our understanding of complex chemical-health interactions and potentially informing targeted
interventions and prevention strategies for depression related to environmental exposures.
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INTRODUCTION
According to the 2021 Global Burden of Disease study, mental
disorders ranked among the top 10 leading causes of global health
burden [1, 2]. As a highly prevalent mental disorder, depression
constitutes a primary cause of global disability and suicide [3, 4]. Core
symptoms of depression include mood changes such as sadness,
cognitive impairments and somatic complaints, all of which
substantially interfere with daily life, study, and work [5]. Under-
standing the factors contributing to depression is crucial for informing
effective policy development and improving service delivery [6]. The
pathogenesis of depression is multifaceted, influenced by genetic,
environmental factors and behavioral factors [4, 7]. Although genetic
factors account for approximately 30–40% of the risk, identifying
modifiable environmental contributors remains pivotal for preventive
strategies [8–11].
Environmental chemical exposures (ECMs) encompass various

chemicals and compounds we encounter daily. The impact of
these substances on health can range from benign to severely
detrimental, even in minute quantities may also cause serious
harm [11, 12]. Human exposure to ECMs occurs via multiple
pathways, including dermal absorption, oral intake, and inhalation
of contaminated air [13]. ECMs exhibit environmental persistence
and bioaccumulative potential, facilitating their deposition in

human tissues and contributing to chronic health outcomes,
including cardiopulmonary impairments and neuropsychiatric
disorders [8, 14, 15]. Potential biological mechanisms linking
ECMs to depression include neurotoxicity, endocrine disruption,
and increased oxidative stress pathways [16, 17]. Recent studies
have shown that ECMs are associated with depression. For
example, lead exposure has been associated with increased risks
of depressive symptoms [18]. Cadmium exposure correlates with a
higher prevalence of depressive symptoms and anxiety [19, 20].
Mercury, known for its neurotoxic effects, has been implicated in
the development of mood disorders and depression [21–23].
Additionally, per- and polyfluoroalkyl substances (PFAS) have also
been associated with depression [24, 25]. However, existing
epidemiological research predominantly investigates single che-
mical exposures, inadequately capturing the cumulative and
interactive effects inherent in real-world environmental scenarios
[26]. Studies exploring prenatal exposure to nonpersistent
chemicals suggest complex interactions between chemical
mixtures and maternal mental health outcomes, including
postpartum depression [27, 28]. The high dimensionality, complex
co-exposure patterns, and potential nonlinearity in chemical
exposure data pose significant analytical challenges to traditional
epidemiological methodologies.
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Machine learning (ML), driven by advancements in computational
capabilities and growing availability of exposomic datasets, is
increasingly recognized as a powerful analytical approach to address
these methodological limitations [29]. ML techniques effectively
handle the complexities inherent to high-dimensional, nonlinear, and
intercorrelated exposure data, demonstrating robust predictive power
across diverse toxicological endpoints [30]. For example, support
vector machines have successfully classified neurotoxic potentials
among structurally diverse solvents, probabilistic classifiers have
accurately inferred neurotoxicity from broad chemical classes, and
gradient boosting frameworks have efficiently screened previously
uncharacterized environmental chemicals for neurotoxic risks [31–33].
Despite these advances, ML applications in environmental health
have largely focused on neurotoxicology and have rarely been
applied to complex psychiatric outcomes such as depression [34].
Furthermore, most current models consider chemicals individually,
neglecting interactive or cumulative effects common in environ-
mental mixtures [35]. Additionally, interpretable ML methods, like
Shapley Additive Explanations (SHAP), improve model transparency,
making results more accessible and actionable for clinical and public
health applications [36]. These gaps highlight an urgent need for the
development of interpretable, mixture-aware ML frameworks tailored
to population-level environmental health data. Such advanced
models will enhance the reliability of depression risk assessments,
facilitate early detection of environmental determinants, and support
evidence-based preventive strategies, thereby significantly advancing
public mental health outcomes.
In this study, we used data from NHANES 2011–2016 to develop

an interpretable machine learning framework predicting depres-
sion risk from ECMs. We effectively identified critical ECMs related
to depression. Multiple ML algorithms, including neural networks
and traditional models, were evaluated for predictive accuracy
and interpretability. Using SHAP, the models clarified individual
and interactive ECM contributions. Our findings provide action-
able insights into public health interventions targeting environ-
mental risk factors for depression.

MATERIALS AND METHODS
A brief study design is depicted in Fig. 1. The detailed methods are
described below.

Participants of the study
The National Health and Nutrition Examination Survey (NHANES) was approved
by the National Center for Health Statistics Institutional Review Board, and all
participants provided written informed consent. This research adheres to the
Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines [37, 38]. Our study initially considered a combined sample
of approximately 15,000 participants from three consecutive NHANES cycles
(2011–2016), with each cycle collecting data for about 5000 individuals
annually. The inclusion criteria required participants to be aged ≥18 and to
have complete Patient Health Questionnaire-9 (PHQ-9) status information for
depression diagnosis confirmation [39]; Exclusion criteria included participants
missing ECM data for more than two consecutive years or with substantial
missing data across ECM measurements, reducing the effective sample size.
Additionally, for variables with values below the limits of detection (LOD),
participants were included if data were available after appropriate NHANES
corrections. Ultimately, 1333 participants meeting these criteria were included
in the final analysis (Fig. 1, Figure S1, Supplementary Table 1).

Measurement of ECMs and outcomes
In this study, we focused on five categories of environmental chemicals:
polycyclic aromatic hydrocarbons (PAHs), metals, per- and polyfluoroalkyl
substances (PFAS), phthalate esters (PAEs), and phenols, as potential
determinants of depression. Although NHANES assesses over 300
environmental chemicals, not all were consistently measured across all
cycles. To minimize missing data and improve the robustness of our
analysis, we selected chemicals from the 2011–2016 cycles with more
complete exposure data in these categories. This limitation excluded other
potentially relevant chemicals, such as pesticides, due to insufficient data

coverage. Some of the analyzed compounds had values below the limits of
detection (LOD) according to the U.S. CDC reports on human environ-
mental chemical exposures (https://www.cdc.gov/exposurereport/pdf/
FourthReport_UpdatedTables_Volume1_Jan2019-508.pdf) [40]. Urinary
creatinine levels were used for dilution correction, and ECM concentrations
were naturally logarithm-transformed to achieve normality [41].
Depression was assessed using the Patient Health Questionnaire-9 (PHQ-

9), a standardized and validated tool included in the NHANES dataset for
mental health assessment. The PHQ-9 consists of nine items that measure
the frequency of depressive symptoms over the past two weeks, with each
item scored from 0 (not at all) to 3 (nearly every day). Total scores range
from 0–27, with higher scores indicating more severe depressive
symptoms. For this study, we followed established PHQ-9 thresholds,
defining a score of 10 or above as indicative of moderate to severe
depressive symptoms, which is widely used as a cutoff for depression
diagnosis in epidemiological studies [39]. This approach allowed us to
classify participants as depressed or non-depressed based on clinically
relevant criteria, enhancing the outcome’s reliability and relevance for
evaluating associations with environmental chemical exposures.

Abnormal values and missing data
Abnormal values were adjusted using the Winsor2 command in the R software,
which sets a threshold between the first and ninety-ninth percentiles to
readjust other outliers. There were no missing outcome variables. Covariates
with less than 20% missing data were imputed using the k-nearest neighbors
(KNN) method, while those with more than 20% missing values were excluded.

Feature selection with recursive feature elimination
To optimize feature selection for our machine learning models, we used
Recursive Feature Elimination (RFE) with a 10-fold cross-validation control
function to identify important features for depression risk prediction. Initially,
84 features (52 chemical exposure variables and 32 demographic and clinical
covariates) were included in the machine learning models. First, we
implemented RFE with the Random Forest (RF) algorithm as the primary
model, evaluating feature subset sizes of 5, 10, and 15 using general control
functions (caretFuncs). Subsequently, we applied an alternative RFE process
using RF-specific controls (rfFuncs) to test feature subset sizes of 6, 8, and 10.
The difference between these two approaches is that the RF-specific controls
(rfFuncs) are tailored to optimize feature selection specifically for the RF
model, potentially enhancing the interpretability and stability of selected
features [42]. Model performance was evaluated with Root Mean Square
Error (RMSE), R-squared, and Mean Absolute Error (MAE). RMSE was
prioritized in model selection to identify feature sets that minimized
prediction error. To ensure robustness, RFE was integrated within a bootstrap
framework by iterating the feature selection process over multiple bootstrap
samples, which helped validate the consistency of selected features and
offered insights into the stability of ECM-depression associations across
resampled datasets. This integration was achieved by repeatedly applying
the RFE steps over resampled datasets, allowing us to confirm the
reproducibility of selected features in predicting depression risk [43].

Machine learning for the prediction of depression
Due to the complexity of the underlying mechanisms, it is crucial to explore
diverse algorithmic approaches to address the challenge of accurately
predicting neurotoxicity. Therefore, we applied nine supervised machine
learning algorithms to model depression risk based on chemical exposure
profiles. These included neural network (NN), multilayer perceptron (MLP),
gradient boosting machine (GBM), AdaBoost, extreme gradient boosting
(XGBoost), random forest (RF), decision tree (DT), support vector machine
(SVM), and logistic regression (LR). The neural architectures (NN, MLP) are
capable of learning complex nonlinear representations [44]. Ensemble
methods (GBM, AdaBoost, XGBoost, RF) combine multiple weak learners to
enhance generalization and reduce overfitting [45]. DT offers transparent rule-
based partitioning, SVM constructs maximum-margin classifiers in high-
dimensional spaces, and LR provides a probabilistic linear baseline [46]. This
diverse algorithmic selection facilitates robust comparative evaluation across
distinct model families. To predict depression risk based on ECM data, we
employed a 10-fold cross-validation (CV) approach instead of a single 80–20%
train-test split to provide more precise estimates of model performance and
reduce variance in the evaluation metrics. The dataset was divided into ten
folds, with each fold used as a testing set once while the other nine folds
served as the training set, ensuring that all samples contributed to both
training and testing. To prevent data leakage and ensure an unbiased model
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evaluation, the Recursive Feature Elimination (RFE) process was applied
exclusively within the training data for each fold, meaning that feature
selection was performed anew within each training subset before testing on
the corresponding validation fold. This approach avoided including any
information from the test set in feature selection, ensuring that the results
were not biased by data leakage [47].

Statistical analysis
We utilized R software (version 4.1.3, available at www.r-project.org) for
data processing and model evaluation in statistical analyses. Continuous
variables were presented as medians and standard deviations, while
categorical variables were reported as numbers and percentages.
Univariate logistic regression analysis examined the associations between

Fig. 1 The main workflow and key findings. A The cross-sectional data of NHANES 2011–2016 adults. The data covers demographics,
questionnaires, laboratory results, and physical exams, covering 1333 participants. Participants were divided into two groups based on PHQ-9
scores: those with scores ≥10 were classified as depressed (N= 126), and those with scores <10 as non-depressed (N= 1207); (B) Data Pre-
processing, Generation and Model Analysis. Data was pre-processed and split into training (80%) and validation (20%) sets, with Recursive
Feature Elimination (RFE) used to identify significant features from the ECM dataset. Various machine learning models, such as Random Forest
(RF), Support Vector Machine (SVM), k-Nearest Neighbors (KNN), AdaBoost, and Multi-Layer Perceptron (MLP), etc., were trained and validated.
C Explaining Machine Learning Models: Interpreting SHAP Analyses. SHAP values were applied to interpret the models. The analysis clarified
the importance of each feature and its impact on predictions. Additionally, mediation and partial correlation network analyses examined
pathways linking ECMs to depression.
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each ECM and depression risk. Each ECM variable was analyzed
independently to assess its impact on depression, which was selected
based on established relevance in depression studies. To comprehensively
and accurately evaluate the performance of the model, we also use a
variety of indicators for evaluation, including area under the curve (AUC)
with 95% confidence intervals (95% CI), accuracy score, average precision
score (APS), precision, sensitivity/recall, specificity, negative predictive
value (NPV), false positive rate (FPR), false negative rate (FNR), false
discovery rate (FDR), F1 score, and Brier score.

RESULTS
Characteristics of subjects
Among 1333 eligible adults with complete PHQ-9 data, the mean
(SD) age was 46.88 (0.92) years, and 695 (50.1%) were female
(Table 1). Using NHANES sampling weights, this sample is
representative of approximately 19.2 million noninstitutionalized

U.S. residents, allowing for population-level inferences. Those with
depression were generally older (mean age 47.95 vs. 46.78 years),
had a higher BMI (30.80 vs. 28.36), and had lower education levels
(36.94vs. 28.71%). Additionally, they had higher rates of being
widowed, divorced, or separated (28.14vs. 17.04%) among those
with depression.

Univariate logistic regression
Univariate logistic regression analysis revealed several significant
associations between ECMs and depression. Higher cadmium
levels were associated with a more than twofold increase in
depression likelihood (OR= 2.41, 95% CI: 1.80-3.23, P < 0.0001).
Elevated lead levels also increased depression odds (OR= 1.21,
95% CI: 1.04-1.42, P= 0.02). Conversely, higher mercury levels
were associated with lower odds of depression (OR= 0.79, 95% CI:
0.68–0.92, P= 0.004). Benzophenone-3, Triclosan, Ethylparaben,

Table 1. Characteristics of the participants enrolled in this study (US NHANES 2011–2016).

Variable Total (n= 1333) Depression P value

No\ (n= 1207) Yes (n= 126)

Sex 0.06

Female 695 (50.10) 648 (51.09) 47 (38.50)

Male 638 (49.90) 559 (48.91) 79 (61.50)

Age 46.88 (0.92) 46.78 (0.96) 47.95 (1.71) 0.53

BMI 28.56 (0.33) 28.36 (0.33) 30.80 (0.77) 0.01

Race 0.03

Mexican American 508 (68.85) 463 (69.57) 45 (60.42)

Non-Hispanic Black 121 (6.76) 108 (6.65) 13 (8.11)

Non-Hispanic White 333 (10.37) 303 (10.29) 30 (11.36)

Other Hispanic 145 (6.79) 121 (6.15) 24 (14.27)

Other 226 (7.23) 212 (7.34) 14 (5.85)

Marital 0.11

Married/cohabiting 312 (22.11) 282 (21.95) 30 (23.99)

Never married 747 (59.97) 697 (61.01) 50 (47.87)

Widowed/divorced/separated 274 (17.91) 228 (17.04) 46 (28.14)

Education 0.003

High 129 (5.51) 106 (4.78) 23 (14.04)

Low 434 (29.35) 385 (28.71) 49 (36.94)

Middle 770 (65.14) 716 (66.51) 54 (49.03)

Alcohol status 0.02

Former 205 (10.19) 187 (10.26) 18 (9.39)

Heavy 227 (14.80) 197 (13.91) 30 (25.28)

Mild 444 (35.51) 412 (36.83) 32 (20.02)

Moderate 197 (17.47) 178 (17.35) 19 (18.94)

Never 260 (22.03) 233 (21.66) 27 (26.36)

Smoking < 0.0001

Former 769 (56.67) 716 (58.74) 53 (32.41)

Never 316 (24.45) 293 (24.96) 23 (18.53)

Now 248 (18.87) 198 (16.30) 50 (49.06)

PIR 0.002

≤ 1 327 (17.31) 274 (16.10) 53 (31.51)

≥ 4 663 (47.78) 598 (47.06) 65 (56.13)

1–4 343 (34.91) 335 (36.83) 8 (12.36)

Continuous variables are presented as mean (SD), and categorical variables are presented as number (percentage). P values were determined using the
Wilcoxon two-sample test for continuous variables and the chi-square test for categorical variables.
PIR Poverty to income ratio.
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and 1-hydroxypyrene also showed significant associations (all
P < 0.05) (Supplementary Table 2).

Recursive feature elimination (RFE)
We applied Recursive Feature Elimination (RFE) to identify the
most relevant features for predicting depression. During this
process, each variable was evaluated based on its contribution to
the model’s predictive performance, measured by Root Mean
Square Error (RMSE) and R-squared values. Variables that achieved
an RMSE of 0.2874 or lower and an R-squared of 0.01506 or higher
were considered for inclusion. After assessing combinations of
variables, we selected a final subset of six key features - Total
Arsenic, Arsenous Acid, Blood Cadmium, Cesium, 2,5-dichlorophe-
nol, and 1-Hydroxynaphthalene - to balance model performance
with interpretability (Table 2).

Testing and comparison of ML models’ performance
We evaluated the trained models to identify depression based
solely on environmental chemical exposure (ECM) data. The RF
model achieved the highest accuracy (0.9800), sensitivity
(0.9800), specificity (0.9980), positive predictive value (PPV=

0.9850), and negative predictive value (NPV= 0.9800), demon-
strating its robustness in predicting depression within this ECM-
focused framework. The KNN and SVM models also performed
well, with KNN achieving an accuracy of 0.9151 and SVM an
accuracy of 0.9110. The NN model showed moderate perfor-
mance, while Adaboost and XGBoost had lower accuracies and
prediction values, underscoring the potential of the RF, KNN,
and SVM models as strong predictors when analyzing ECM data
(Fig. 2A).
Notably, these results were obtained without including demo-

graphic or clinical variables, such as age, marital status, sex, or
health conditions, isolating the effect of ECMs on depression risk
prediction. To avoid potential bias, model evaluation incorporated
cross-validation, ensuring that feature selection and testing were
isolated within each fold, thereby preventing data leakage and
supporting the reliability of these high accuracy and AUC values.
The RF model also achieved the highest area under the curve
(AUC= 0.967, 95% CI: 0.939-1.000), followed by KNN (AUC= 0.945,
95% CI: 0.838–0.983) and SVM (AUC= 0.943, 95% CI: 0.841–0.974),
while the NN model displayed moderate performance with an
AUC of 0.666 (95% CI: 0.619–0.699) (Fig. 2B).

Table 2. Performance metrics for feature selection using recursive feature elimination (RFE) in predicting depression.

Variables RMSE R squared MAE RMSE SD R-squared SD MAE SD

6 0.2874 0.01506 0.1645 0.0054 0.004331 0.002355

8 0.2858 0.01748 0.1648 0.005382 0.00495 0.002105

10 0.2861 0.01827 0.166 0.005385 0.004347 0.002106

84 0.2831 0.03409 0.1663 0.005243 0.003852 0.002184

Outer resampling method: Bootstrapped (25 reps). This table presents the performance metrics for different subsets of variables selected using recursive
feature elimination (RFE). The RFE process was employed to identify the most significant features for predicting depression using the random forest (RF)
model. The metrics include Root Mean Squared Error (RMSE), R squared, Mean Absolute Error (MAE), and their standard deviations (SD). The goal of RFE in this
context is to enhance the predictive accuracy and interpretability of the RF model by identifying the most relevant features among the ECMs for predicting
depression. The key features identified were Total Arsenic, Arsenous Acid, Cadmium, Cesium, 2,5-Dichlorophenol, and 1-Hydroxynaphthalene.

Fig. 2 Performance comparison of ten machine learning models for predicting depression using environmental chemical exposures
(ECMs). A Comprehensive model comparison from nine metrics. B ROC comparison among ten models. ECMs used in the model included
total arsenic, arsenous acid, blood cadmium, blood cesium, 2,5-dichlorophenol, and 1-hydroxynaphthalene. The RF model demonstrated the
highest predictive accuracy with an AUC of 0.967 and an F1 score of 0.91. SHAP values were used to interpret the models, highlighting the
most significant ECMs contributing to depression risk prediction. Abbreviations: ROC receiver operating curve, SVM support vector machine,
NN neural networks, MLP multilayer perceptron, LR logistics regression, NB naive bayes, RF random forest, KNN k-nearest neighbor, GBM
gradient boosting machine, DP detection precision, SE sensitivity, SP specificity, PPV positive predictive value, NPV negative predictive value,
AP apparent prevalence, DR detection rate.
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Feature importance and interpretation of personalized
predictions
Using SHAP values, we analyzed the impact of specific features on
the RF model’s predictions for depression. The most significant
features were cadmium (0.016), cesium (0.012), and
2-hydroxyfluorene (0.012). Lead, 2,5-dichlorophenol, and serum
total folate also had positive contributions but to a lesser extent,
while arsenous acid and 1-hydroxynaphthalene negatively influ-
enced the predictions (Fig. 3A). Additionally, we used restricted
cubic splines (RCS) to the SHAP significant features without
adjusting for any variables. The RCS results highlighted the
nonlinear relationships between these key features and depres-
sion risk. For instance, urine cadmium had an increasing effect on
depression risk as its levels rose. Similarly, higher cesium levels
were associated with an increased risk of depression. The impact
of 2-hydroxyfluorene on depression showed a more complex
pattern, with risk increasing at moderate exposure levels and
stabilizing at higher levels. Serum total folate exhibited a positive
correlation with depression risk, while blood mercury, arsenous
acid, and mono (carboxypentyl) phthalate also had significant
relationships with depression risk (Figure S2). The decision plot
shows the contribution of each feature to the model’s final
prediction for each participant, with each line representing
individual participant data. All lines converge at the model’s base
value of 0.959, indicating the predicted outcome before account-
ing for individual feature contributions (Fig. 3B, Figure S3).

Mediation of association and network of ECMs to depression
by internal proteins
A mediation analysis was used to explore the potential mechan-
isms between depression and the top 15 features of the RF model.
This analysis aimed to identify biochemical mediators that might
explain associations between ECMs and depression risk. Specifi-
cally, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c),
alanine aminotransferase (ALT), aspartate aminotransferase (AST),
total bilirubin (TBIL), alkaline phosphatase (ALP), total protein (TP),

albumin (ALB), globulin (GLB), creatinine (CRE), uric acid (UA),
blood urea nitrogen (BUN), triglycerides (TG), total cholesterol (TC),
high-density lipoprotein (HDL), low-density lipoprotein (LDL), and
lactate dehydrogenase (LDH) were evaluated as potential
mediators in these ECM-depression relationships (Fig. 4A, Supple-
mentary Table 3). To further underscore the relationships between
ECMs and these mediators, we conducted a regularized partial
correlation network analysis on the mediation scores. This network
analysis used a regularization method to manage the high
dimensionality and intercorrelation of variables, identifying
statistically significant correlations and clustering ECMs within
the same category. For example, heavy metals such as lead (Pb),
cadmium (Cd), and mercury (Hg) clustered together, demonstrat-
ing strong positive correlations. These metals also exhibited
strong positive correlations with FPG and negative correlations
with blood insulin levels, suggesting potential metabolic pathways
underlying the ECM-depression association (Fig. 4B).

DISCUSSION
This study examined the associations between ECMs and
depression in US adults from the NHANES (2011–2016). By
deploying machine learning (ML) models, including Random
Forest (RF), Support Vector Machine (SVM), and others, we
identified significant ECMs associated with depression and
explored underlying mechanisms. The RF model demonstrated
superior predictive performance for depression. SHAP analysis
identified cadmium, cesium, and 2-hydroxyfluorene as critical
predictors, while mediation analysis indicated that systemic
inflammation and oxidative stress pathways play essential roles
in the ECM-depression relationship.
The univariate logistic regression analysis revealed associations

between specific ECMs and depression. Elevated cadmium levels
(OR= 2.41, 95% CI: 1.80–3.23) were strongly correlated with an
increased risk of depression, corroborating previous studies that
cadmium’s neurotoxic effects and its role in inducing oxidative
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Fig. 4 Mediation of the associations between environmental chemical exposures (ECMs) and depression by endogenous proteins. A The
mediation effects of environmental chemical exposures (ECMs) on depression via various endogenous proteins. The x-axis represents different
ECMs, while the y-axis represents the mediation effect, which is quantified as a percentage. Only significant mediation effects with a threshold
of P < 0.05 are included. B Mediation network between ECMs and endogenous proteins. The nodes represent ECMs and internal proteins,
while the edges (connecting lines) indicate significant mediation pathways. FPG fasting plasma glucose, HbA1c hemoglobin A1c, Alt alanine
aminotransferase, AST aspartate aminotransferase, TBIL total bilirubin, ALP alkaline phosphatase, TP total protein, ALB albumin, GLB globulin,
CRE creatinine, UA uric acid, BUN blood urea nitrogen, TG triglycerides, TC total cholesterol, HDL high-density lipoprotein, LDL low-density
lipoprotein, LDH lactate dehydrogenase.
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stress and disrupting neurotransmitter functions [48, 49]. Similarly,
higher lead levels (OR= 1.21, 95% CI: 1.04–1.42) were associated
with an increased risk of depression. This result is consistent with
earlier research on lead’s detrimental cognitive and psychological
impacts [22, 50]. Conversely, higher mercury levels (OR= 0.79,
95% CI: 0.68–0.92) were associated with a decreased risk of
depression. This finding diverges from some previous research
emphasizing mercury’s neurotoxic potential [51–53]. The discre-
pancy may result from variations in study populations, mercury
exposure levels, and forms of mercury, such as methylmercury
versus inorganic mercury, which have distinct neurotoxic effects
[54].
SHAP analysis showed cadmium, cesium, and

2-hydroxyfluorene as the most important features in the RF
model’s depression predictions. These findings are consistent with
the heavy metals to depressive disorders [49, 55]. Cadmium is
known to induce oxidative stress and alter neurotransmitter
dynamics, thereby contributing to depressive pathology [8].
Although less studied, cesium and 2-hydroxyfluorene may
similarly impact neural pathways and mental health outcomes.
The RCS analysis provided nuanced insights into the nonlinear
relationships between these key ECMs and depression risk. The
dose-response relationship for cadmium indicated an escalating
risk of depression with increasing exposure, reflecting its
cumulative toxicological impact [56]. Similarly, cesium exposure
displayed a progressive risk pattern, while the relationship
between 2-hydroxyfluorene and depression exhibited complexity,
with risk increasing at moderate levels and stabilizing at higher
exposures, necessitating further investigation [57].
Mediation analysis identified systemic inflammation and

oxidative stress pathways as significant mediators in the ECM-
depression nexus. Key inflammatory biomarkers, such as
C-reactive protein (CRP) and interleukin-6 (IL-6), were highlighted,
underscoring the pivotal role of inflammatory processes in the
pathogenesis of depression [58]. These findings are in line with
studies emphasizing the impact of environmental toxins on
systemic inflammation and mental health outcomes [59]. The
regularized partial correlation network analysis revealed strong
intra-category associations among ECMs, particularly between
lead, cadmium, and mercury. These elements clustered together
and exhibited positive correlations with fasting plasma glucose
(FPG) and negative correlations with blood insulin levels,
suggesting a synergistic effect on metabolic and psychological
health [11]. Previous research supports these findings, indicating
that heavy metals can disrupt metabolic processes, which in turn
can influence mental health [8, 15]. These findings carry important
public health implications. Clarifying ECMs as modifiable risk
factors for depression highlights potential targets for preventive
interventions. Regulatory measures to limit environmental expo-
sure to identified chemicals—particularly cadmium, lead, and
cesium—could effectively mitigate depression incidence. Imple-
mentation of community-level screening programs designed to
identify individuals at heightened exposure risk, coupled with
targeted health education initiatives, could further reduce the
population burden of depression linked to these environmental
factors [60, 61].
Despite these valuable insights, several limitations warrant

consideration. First, the ECMs analyzed here represent only a
subset of environmental exposures, highlighting the importance
of future studies incorporating broader chemical spectra. Second,
the cross-sectional nature of NHANES data precludes definitive
conclusions regarding causality between ECMs and depression.
Third, the assessment of depression was based on symptom
scores rather than clinical diagnosis, which may affect the
accuracy of our findings. Additionally, some environmental
chemicals were excluded due to detection limits, indicating a
need for more sensitive detection methods. Finally, potential
confounders, such as genetic predispositions and social factors,

may not have been fully accounted for, which could influence the
results.
To address these limitations and advance understanding of

ECM-depression relationships, future research should prioritize
prospective cohort designs capable of establishing causal
inferences. Methodological advancements in interpretable
machine learning, particularly leveraging Shapley Additive Expla-
nations (SHAP), will be critical for enhancing model transparency
and clinical translation. Future studies should also expand their
scope to include diverse demographic cohorts and varied
environmental contexts, thereby strengthening the external
validity and translational relevance of findings, ultimately inform-
ing precise and targeted preventive strategies in population
mental health.

CONCLUSIONS
This study harnessed machine learning to uncover significant
associations between multiple environmental chemical exposures
and depression, with the random forest model outperforming
others. Interpretable machine learning using SHAP further
identified cadmium, cesium, and 2-hydroxyfluorene as the top
risk factors for depression. Mediation analysis illuminated systemic
inflammation and oxidative stress as pivotal pathways linking
ECMs to depression. Our work underscores the potential of
machine learning to inform environmental health policy and
intervention. The findings call for public health strategies to
mitigate exposure to these chemicals and highlight the need for
further research into their mechanistic roles in depression.
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