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Abstract

The habenula is a small epithalamic structure composed of two distinct subregions, the
medial (MHb) and lateral (LHb) habenula. It serves as a critical hub for integrating fronto-
limbic and brainstem signals to regulate motivation, mood, and reward processing.
Therefore, it is unsurprising that dysfunction of the habenula has been implicated in
several mood disorders including major depressive disorder (MDD), a debilitating mood
disorder marked by low mood and feelings of hopelessness. This review synthesizes
recent advances in understanding the habenula’s neurocircuitry, molecular landscape,
and role in MDD pathophysiology, while evaluating its potential as a therapeutic target.
Specifically, emerging evidence highlights subregion-specific pathology. Indeed, in MDD
and in animal models of depression, the MHb has been shown to exhibit marked
downregulation of calcium-dependent activator protein for secretion 2 (CAPS2) and
deficits in nicotinic acetylcholine receptor-mediated signaling. While in the LHb,
dysregulated expression profiles of inward-rectifying potassium channel Kir4.1, the
isoform of calcium/calmodulin-dependent protein kinase Il (CaMKIIB), protein
phosphatase 2A (PP2A), and small nucleolar RNA SNORAG69 have been found in animal
models of depression and MDD postmortem studies. Structural imaging and postmortem
neurohistological studies in MDD patients have further revealed habenular volume
changes, reduced neuronal cell counts, diminished cell area, and abnormal functional
connectivity. As research unravels the habenula’s complexities, its potential in treating
mood disorders grows increasingly salient, offering new avenues for intervention in
mental health.



Introduction

Structural and Functional Organization of the Habenula

The habenula is a small epithalamic structure composed of two nuclei in each hemisphere
(Figure 1A) that plays a crucial role in modulating motivation, emotion, and reward-related
processes(1-4). The left and right habenula nuclei are connected by the habenular
commissure, a white matter tract located on either side of the midline(5). Notably, the
habenula exhibits high myelin content, consisting of multiple white matter tracts and
intrinsic fibers due to its extensive interconnectivity with other brain regions (6-9). The
habenula is subdivided into two subregions the medial (MHb) and lateral (LHb), making
up 9% and 91% of the human habenula, respectively(6). These subregions are
characterized by distinct neuronal populations and differing myelin content, which we
briefly outline below (Figure 1B)(10-13).

The MHb is primarily comprised of cholinergic and substance P-ergic neurons,
characterized by cells that are mainly small, round, and heavily packed together(6,14-16).
As illustrated in Figure 2, the MHb primarily receives cholinergic and gamma-aminobutyric
acid (GABA)-ergic inputs from the medial septum and the diagonal band of Broca, as well
as dopaminergic input from the ventral tegmental area (VTA), and noradrenergic inputs
from the locus coeruleus, and the superior cervical ganglion(17,18). The interpeduncular
nucleus (IPN), a structure positioned along the ventral midline of the midbrain, receives
output from the MHDb(19,20) via the projection of the fasciculus retroflexus(21). The IPN
projects to brainstem regions that regulate neurotransmitter release, including the dorsal
tegmental nucleus(19,22), the VTA(20), and both dorsal and medial raphe nuclei(18,20,23).
The intricate connectivity of the MHb along with its influence on various neurotransmitter
systems through the IPN, makes it a key modulator of brainstem activity. Indeed, the MHb
conveys the information from the upper brain regions by influencing monoaminergic
neurotransmitter release through its projection to the brainstem.

The LHb is predominantly composed of glutamatergic neurons expressing vesicular
glutamate transporters (VGlut) 2 and 3(24-26), distinguishing it as a primarily excitatory
structure. It is further characterized by a large degree of variability in the size and shape
of cells, and loose packing as compared to the MHDb(6,27). Similarly to the MHDbD, it
functions as a central communication hub, conveying emotional information from both the
limbic system and the basal ganglia, further exerting influence on neuromodulatory
systems (Figure 2)(28). The LHb primarily projects to several key brainstem regions
involved in neuromodulation, including the VTA and substantia nigra pars compacta
(SNc) which are associated with dopaminergic signaling, the dorsal and medial raphe
nuclei, which contribute to serotonergic regulation, and the laterodorsal tegmental
nucleus, which plays a role in cholinergic pathways(21,29,30). The LHb not only forms



direct glutamatergic connections with the VTA(31), but also sends glutamatergic
projections to the rostromedial tegmental nucleus (RMTg), whose GABAergic neurons
inhibit dopaminergic neurons in the SNc and VTA(2,32,33). Moreover, output from the LHb
exerts rapid negative regulation on dopaminergic and serotonergic neurons, resulting in
an intermediate and potent inhibitory response in these neuronal populations(3,34-40).

Habenular Implication in MDD

Major depressive disorder (MDD) is the leading cause of global disease burden and
disability(41). Its clinical presentation is marked by persistent low mood, anhedonia,
appetite changes, psychomotor alterations, sleep disturbances, and suicidal thoughts and
behaviors(42). While longstanding theories have attributed MDD to a monoamine
imbalance(43-45), emerging evidence now suggests that these monoaminergic changes
may be downstream effects of dysregulated neural circuits, particularly involving the
habenula, which plays a central role in the reward system and the regulation of mood(46—
48). Indeed, the habenula is known to modulate behavior by integrating aversive and
reward-related signals to regulate key neurotransmitter systems in the brainstem(3)
making its implication in MDD evident. In this review, we will highlight both preclinical and
clinical studies which consistently associate habenular dysfunction with MDD,
underscoring its significance in the disorder’'s complex neurobiology.

Habenular Dysfunction in Depressive-like Behaviour:
Insights from Animal Models

Animal models are indispensable tools for elucidating the biological underpinnings of
disease, including mood disorders such as MDD(49). Various strategies for modeling the
pathology of MDD in rodents have been employed such as stress paradigms with have
high face and predictive validity(49-52). Stress is highly comorbid with MDD and has been
shown to be a key environmental factor(53). Rodent stress paradigms are widely used,
including unpredictable chronic mild stress (UCMS)(54,55), chronic restraint stress
(CRS)(53,56), social defeat (SD)(57), and learned helplessness (LH)(58,59). Animal
models can be used to target and manipulate specific regions, subtypes of cells and
proteins in the brain to determine casual effects of various molecular
manipulations(51,60,61). Emerging research in rodent models of stress-induced
depressive-like symptoms highlights the essential role of the habenula, revealing distinct
molecular alterations in its medial and lateral subregions across various stress paradigms.
In the following subsections, we detail how these findings in animal models illuminate the
habenula’s role in depression and may inform novel therapeutic strategies (Table 1).



The Association of Molecular Alterations in the MHb with
Depressive-like Behavior

Recent work investigating the MHb in CRS rodent models have revealed a significant
reduction in CAPS2 mRNA in substance P-ergic, cholinergic, and glutamatergic neurons
using quantitative PCR (QPCR)(62). CAPS2 is critical for neuronal growth and function,
facilitating the secretion of brain-derived neurotrophic factor(63). In the MHb, CAPS2 is
expressed in both dorsal and ventral regions, colocalizing with glutamatergic and
cholinergic neurons(62,64,65). Selective knock down of CAPS2 in the MHb using an
adeno-associated virus 2/9 (AAV2/9) led to increased immobility in tail suspension test
(TST) and forced swim test (FST), indicating enhanced despair-like behavior(62).

In addition, reduced MHb mRNA expression (QPCR) of key cholinergic signalling genes
(CHAT, VACHT, CHT), and nicotinic receptor subunits (CHRNA3, CHRNBS3, and
CHRNB4) were found in the MHb of CRS models(66). These cholinergic signalling genes,
specifically CHAT, are essential for acetylcholine synthesis and release at the MHb—IPN
synapses(67). Interestingly, a habenula specific knockdown of CHAT via an AAV2/9
vector significantly reduced sucrose preference (SP) indicating that habenular CHAT
plays a necessary role in the modulation of anhedonia-like behaviour(66). These findings,
together with pharmacogenetic studies showing that activation of habenular cholinergic
neurons excites VTA dopamine neurons and suppresses DRN serotonergic activity,
underscore that impaired habenular cholinergic signaling initiates a cascade of
neurochemical changes culminating in depressive-like symptoms.

The Association of Molecular Alterations in the LHb with
Depressive-like Behavior

The LHb exhibits a range of stress-induced molecular changes that vary by stress
paradigms. Firstly, the inwardly rectifying potassium channel subunit 4.1 (Kir4.1), mainly
found in astrocytes for spatial potassium buffering(68), is markedly upregulated at the
MRNA and protein level in the LHb of rodents exposed to LH stress paradigm (69).
Furthermore, this study showed that an astrocyte-specific overexpression of Kir4.1 in the
LHb increased neuronal bursting, and was sufficient to induce depressive-like behaviors
in the FST and SP(69). Conversely, Kir4.1 knockdown in LH rodents oppositely abolished
increased bursting, and alleviated depressive-like symptoms(69).

Furthermore, the protein and mRNA expression of the B form of calcium/calmodulin-
dependent protein kinase type Il (BCaMKIl), a serine/threonine kinase key to long-term
potentiation and neuronal plasticity(70), is also upregulated in the LHb of LH rats(71-73).
Comparable observations were found in mice exposed to UCMS (72). AAV2-mediated



overexpression of BCaMKIl in the LHb enhanced synaptic efficacy and induced
depressive-like behaviors, while a targeted knockdown alleviated these symptoms(72).

Similarly, blocking protein phosphatase 2A (PP2A) activity in the LHb helped restore
normal electrical activity, as evidenced from the electrophysiological recording, and
alleviated the depressive-like symptoms in the LH rodent model(74). Under normal
conditions, GABAs receptor (GABAsR) activation triggers an outward potassium current
via GIRK channels, suppressing neuronal excitability(75). However, stress-induced PP2A
hyperactivity dephosphorylates Ser783 on the GABAs2 subunit, leading to internalization
of GABABRs and GIRK channels, thereby diminishing the inhibitory current and causing
neuronal hyperactivity(74). Pharmacological inhibition of PP2A restored GABAs-GIRK
function and normalized the electrophysiological properties of LHb neurons in vivo,
thereby rescuing depressive-like behaviors such as immobility in the FST, escape
performance in the LH paradigm, and SP(74).

In addition, p11, an S100 EF-hand calcium-binding protein, has been shown to modulate
synaptic and neuronal activity in the LHb via interactions with 5-HT receptors, ion
channels, and chromatin modifiers linked to depression(76,77). Interestingly, p11 was
found to be co-expressed with D2 receptor-containing glutamatergic LHb neurons(76). In
CRS rodent models, p11 protein expression, especially in the medial LHb, increased
alongside elevated c-fos levels (a proxy of increased cellular activity), correlating with
depressive-like behaviors that lasted up to 30 days(76). A LHb-specific p11 knockdown in
stressed mice normalized both neuronal excitability, the frequency of spontaneous
inhibitory postsynaptic currents, and prevented depressive-like phenotypes(76). Mice with
overexpressed pll in dopamine D2 receptor-containing glutamatergic LHb neurons of
D2-Cre mice via an Cre-dependent viruses showed pronounced depressive- and
anhedonia-like behaviors(76). This data suggests that p11 in the LHb modulates inhibitory
synaptic transmission and mood-regulating circuits of depressive-like behaviours(76).

More recent work has also significantly implicated LHb dysfunction in several rodent
stress models. Indeed, a markedly increased proportion of REM sleep-active neurons
was found in rodents exposed to CRS, along with enhanced burst firing activity(78). When
these neurons were selectively activated, it increased REM sleep duration and induced
depressive- and anhedonia-like phenotypes, without affecting overall locomotion(78).
Conversely, targeted inhibition of REM sleep-active LHb neurons shifted their firing from
burst to tonic mode, normalized REM sleep parameters, and alleviated depressive-like
behaviors(78). Additional recent studies of rodents exposed to CRS unveiled a similar
increase in neuronal activity in the medial LHb and the middle lateral hypothalamus
(mLH)(79). When modulated, these subpopulation of neurons were also found to
attenuate the depressive-like phenotypes outlined above(78,79). Additional work
performing fluorescence staining of transcription factor 7-like 2 (TCF7L2) levels in the



LHb showed significantly reduced levels in rodents exposed to CMS(80). TCF7L2 is
known to be a pivotal transcription factor in the Wnt signaling pathway which greatly
influences diverse neuropsychiatric processes(81-83). Notably, a LHb neuron-specific
AAV-mediated knockdown of TCF7L2 actually elicited robust antidepressant-like effects,
while conversely, overexpression of TCF7L2 induced marked depressive-like
behaviors(80). Notably, the administration of an N-methyl-D-aspartate receptor (NMDAR)
agonist reversed the antidepressant effects observed with TCF7L2 knockdown, whereas
treatment with an NMDAR antagonist alleviated the depressive phenotype driven by
TCF7L2 overexpression(80). This introduces the NMDA-pathway as a potential
mechanism through which the habenula may be targeted for antidepressant treatment,
discussed later in the text.

Additional studies in rodents exposed to UCMS found an upregulation of SNORAG9 in
the LHb that correlates with depressive-like behaviours(84). SNORAG9, is a small
nucleolar RNA (snoRNA) guiding pseudouridylation of 5.8S rRNA and 18S rRNA in the
human LHb, modifications essential for ribosomal function and translation fidelity(84,85).
Elevated SNORAG9 increases pseudouridylation at target rRNA sites, potentially
disrupting ribosome-mediated translation of proteins critical for synaptic plasticity,
monoaminergic signaling, and stress adaptation—pathways central to LHb
function(84,86). Unlike antidepressant-responsive pathways, SNORAG69 expression
remains unaffected by serotonergic or noradrenergic drugs in vitro, highlighting its
potential role in a pharmacoresistant mechanism(84). The correlation of SNORAG9 levels
between LHb and peripheral blood in rodents highlight its potential to be used as a
potential biomarker for depression which future studies should aim to recapitulate in
human investigations(84).

Habenular Dysfunction in MDD: Insights from Human
Studies

Molecular Alteration Associated with MDD

In line with findings from rodent models of depressive-like behaviors, gPCR analysis of
the MHb of the postmortem human tissue revealed that CAPS2 mRNA levels in
individuals with MDD were reduced to 73% of the levels observed in non-depressed
controls(62). Similarly, a study comparing postmortem human habenula tissue of those
who died by suicide as compared to psychiatrically healthy controls reported significant
downregulation of CHT and CHRNB3 mRNA levels, while other cholinergic genes (CHAT,
VACHT, CHRNAS, and CHRNB4) exhibited non-significant decreases in expression(66).
In contrast, CRS rodent models show pronounced downregulation of both CAPS2 and
cholinergic signaling transcripts(62,66).



Studies have also aimed to investigate the role of Erb-B2 receptor tyrosine kinase 4
(ErbB4) in postmortem human tissue of individuals with MDD(87). ErbB4 is a critical
integration site for signaling processes and locates in the habenula(88-90). The mRNA
expression (qPCR) of ErbB4 has been found to be downregulated among the target
genes of the differentially expressed microRNAs in the postmortem LHb of those with
MDD(87). More recent investigation using bulk small RNA sequencing in postmortem LHb
tissue of individuals with MDD found that SNORAG9 was also upregulated in postmortem
LHb of individuals with MDD(84). SNORAG9, known to guide pseudouridylation onto 5.8S
and 18S rRNAs, was found to have significantly elevated pseudouridine levels at both
5.8S and 18S ribosomal RNA (rRNA) sites in MDD, only the 18S rRNA modification
correlated with SNORAG9 expression(84). Importantly, SNORAG9 upregulation did not
alter rRNA abundance, as evidenced by the lack of significant differences in these rRNA
sites expression and the absence of correlation between SNORAG9 levels and these
rRNASs, suggesting its role in modifying ribosomal activity rather than rRNA stability(84).

Altogether, these findings underscore the critical role of molecular alterations in the
postmortem habenula in the pathophysiology of MDD and highlight the need for
translational studies that bridge controlled animal paradigms with the complexity of
human depression. Future research should investigate how these changes interact to
influence neural circuits and behavior, prioritizing mechanistic studies to determine how
CAPS2 deficits, impaired cholinergic signaling (e.g., reduced CHT and CHRNB3), and
SNORA69-mediated ribosomal pseudouridylation collectively disrupt habenular circuitry
and drive depressive phenotypes(62,66,84). Furthermore, in order to provide an unbiased
and whole-transcriptome profile of habenular dysfunction in MDD, single-cell RNA
sequencing could be used to resolve cell-type-specific molecular alterations, while spatial
transcriptomic studies would help map localized changes in gene expression and synaptic
signaling across neural circuits in habenular subregions.

Macrostructural Changes of Habenular Structure in MDD

In addition to molecular alterations, MDD pathology has also been linked with anatomical
and functional changes to the habenula (Table 2). Due to the difficulty of distinguishing
the neuroimaging signals from either the MHb or the LHb(91), relative heterogeneity in
human subjects and lack of high throughput studies, investigations into macrostructural
changes in the habenula seem to yield mixed findings(92,93). Indeed, functional magnetic
resonance imaging (fMRI) studies of the whole habenula found a smaller average volume
in those with MDD compared to healthy individuals, though this difference was not
statistically significant(92). Additionally, a negative association between habenula volume
and anhedonia severity was found(92). However, contradictory findings from another
group showed significantly larger habenula volumes in those with MDD compared to
healthy individuals, with a positive correlation between larger volumes and higher



anhedonia severity(93). These results showing larger habenula volumes do align with
Schmidt et al., (2016), who found that in unmedicated individuals with MDD, habenula
volume was positively correlated with disease severity; specifically, individuals with
moderate-to-severe MDD exhibited larger volumes than those with mild MDD. This
suggests an early or acute increase in volume—a relationship that was not observed in
medicated individuals with MDD when compared to non-depressed controls(94). While
the influence of sex on habenula volume in MDD remains unclear, some studies have
found volumetric differences between females and males. An fMRI study of postmortem
human habenula found that females with MDD had a lower total habenula volume than
non-depressed controls, primarily due to a reduction in right habenula volume(95).
Interestingly, such differences in the total habenula volume was not observed in the male
samples or in non-depressed controls (7,91,95,96).

While results from W.-H. Liu et al., (2017) demonstrated an increase in habenula volume
in individuals with MDD, it should be noted that some histological results have
demonstrated a decrease in habenular volume. Indeed, a morphometric study of the
habenula in postmortem tissue of individuals with MDD noted a significant decrease in
both neuronal cell number and area (Table 2)(96). Specifically, the right side of the
habenula in individuals with MDD showed a 34.6% reduction in neuronal cell number and
39.6% in area, while the left side exhibited reductions of 31.0% in cell number and 34.4%
in area, as compared to non-depressed controls(96). Thus, this observed reduction in
habenular volume in individuals with MDD, is potentially attributable to decreased
neuronal number and reduced cell size as quantified by stereological analysis of serial
histological sections. This reduction correlates with the severity of anhedonia, although
interpretations of these findings vary within the scientific community.

Taken together, evidence suggests that structural alterations in the habenula are
associated with MDD, however discrepancies exist in the directionality of the relationship;
likely coming from methodological differences, potential sex-specific effects, and the
influence of neuronal shrinkage that are discussed above. Future research should aim to
refine imaging techniques to clearly differentiate the LHb from the MHDb, integrate
postmortem with in vivo neuroimaging findings, and increase both cohort size and
imaging resolution. Such approaches will be critical in resolving the current contradictions
and deepening our understanding of habenula's role in the pathophysiology of
depression.

Alterations in Functional Connectivity Patterns of the Habenula in
MDD

Recent fMRI work has reveal significant changes in the functional connectivity (FC) of the
habenula in MDD, highlighting its key role as a communication hub in neural circuitry(97-



103) (Figure 3). Specifically, it has been noted that, as MDD symptoms progress, there is
an observed increase in FC between the LHb and the inferior temporal gyrus, contrasted
by a reduction in FC between the LHb and the right middle temporal gyrus(102). One
possibility is that, given the inferior temporal gyrus has been implicated in visual object
recognition(104) and the right middle temporal gyrus is thought to mediate semantic
memory and socio-emotional integration(105), altered FC between these cortical regions
and the LHb might hypothetically enhance sensitivity to negative visual stimuli and impair
the brain’s ability to contextualize emotional experiences, contributing to the anxiety or
depressive phenotypes. Increased FC was also noted between the habenula and the
dorsolateral prefrontal cortex (dIPFC) as well as the superior frontal gyrus in those with
MDD(101,103). The dIPFC regulates executive functions such as decision-making,
attention, and emotion regulation(106). It is plausible that excessive coupling between the
dIPFC and the habenula may overwhelm the dIPFC’s capacity to effectively modulate
negative emotions, potentially contributing to persistent rumination or impaired reward-
seeking behavior. Similarly, it is speculated that heightened connectivity between the
habenula and the superior frontal gyrus(107), a region implicated in self-awareness(108),
could amplify the examination of negative self-perceptions, potentially exacerbating
feelings of guilt or worthlessness in individuals with MDD. Moreover, individuals with
suicidal ideation, a hallmark feature of MDD, exhibit distinct FC profiles that are
characterized by increased connectivity between the left habenula and regions such as
the left parahippocampal gyrus, right amygdala, and right precentral and postcentral

ayri(97).

On the other hand, diminished FC has been observed between the habenula and several
brain regions, including the anterior cingulate cortex (ACC), middle temporal gyrus,
angular gyrus, thalamus, cerebellum, subcortical areas, postcentral gyrus, and left inferior
frontal gyrus(98,100,103). These findings indicate a broad network disruption underlying
the complex affective and cognitive impairments in depression. It is worth speculating that
reduced connectivity with the ACC may foster hopelessness, as it is essential for emotion
and conflict resolution(109). Similarly, it is plausible that diminished thalamic connections
may lead to mental fatigue and heightened stress sensitivity, given its role in sensory
integration and arousal regulation(110). Attenuated cerebellar links might compromise the
fine-tuning of emotional responses, contributing to mood instability(111,112). Furthermore,
it is speculated that disrupted integration with regions such as the angular gyrus and
middle temporal gyrus might impaired delayed memory and contributing the severity of
the MDD(113). Diminished FC between the habenula and the precuneus and inferior
frontal gyrus has also been observed in individuals with MDD and suicidal ideation
compared to individuals with MDD without suicidal ideation and psychiatrically healthy
controls(97,99). This reduced connectivity may reflect disruptions in neural circuits critical
for integrating self-referential processing and behavioral regulation. The precuneus, a hub



of the default mode network (DMN), supports self-awareness, autobiographical memory,
and conscious reflection(114,115); weakened habenula-precuneus connectivity could
potentially impair adaptive self-referential processing, potentially exacerbating rumination
or feelings of hopelessness. The inferior frontal gyrus, involved in inhibitory control,
emotion regulation, and decision-making(116-118), may fail to effectively manage
emotional responses when communication with the habenula is impaired. These regions
modulate emotional responses by regulating dopamine and serotonin release through the
habenula, highlighting the key role of the habenula in regulating neural network dynamics
and modulating neurotransmitter signaling.

Taking together, these findings may hint at the potential of leveraging altered fMRI FC of
the habenula as biomarkers for early MDD diagnosis and even inform targeted therapies.
Future studies should refine habenula connectivity mapping by employing advanced
imaging techniques in larger, more diverse cohorts. Longitudinal research will be crucial
to understand how fluctuations in connectivity correlate with symptom progression and
treatment response. Moreover, integrating multimodal data, including molecular, genetic,
and behavioral assessments, can further elucidate the complex interplay between the
habenula and other brain regions, ultimately advancing therapeutic approaches for
managing MDD.

Potential Therapeutic Avenues for MDD Targeting the
Habenula

Proposed Mechanism of Action of Ketamine in the NRG1-ErbB4
Pathway in the Habenula

As previously noted, ErbB4 is downregulated in the MHb of individuals with MDD,
indicating its potential role in the underlying mechanisms of the disorder(87). This receptor
binds with high affinity to and is activated by neuregulin 1 (NRG1), a neurotrophic factor
that regulates GABAergic transmission(119). Both ErbB4 and NRG1 are localized in
parvalbumin-positive (PV) neurons, which are fast-spiking interneurons in the LHb that
are predominantly non-inhibitory, except within the LHb lateral subregion(120,121).
Disruptions of these proteins in PV neurons have been implicated in the development of
depression(87,122-125).

The NRG1-ErbB4 signaling pathway is essential for neurotransmission and neuronal
network synchronization by enhancing precisely timed GABA release, essential for
emotion processing (Figure 4)(126) and known to be implicated in the antidepressant
effects of ketamine(127). Ketamine is a NMDAR antagonist typically used as an anesthetic
and has been shown to have significant antidepressant effects(128-131). Ketamine



administration in rodents’ hippocampus and prefrontal cortex has been shown to
significantly downregulate NRG1, phosphorylation of ErbB4 (a sign of protein activation)
within the PV neurons, downregulate GABA and upregulate glutamate(127). However,
pre-administration of NRG1 significantly reversed ketamine’s antidepressant effects,
suggesting that it may be a rate limiting step in the antidepressant action of ketamine(127).
Furthermore, pre-activation of ErbB4 by NRG1 diminishes ketamine’s antidepressant
effects and blocks downregulation of phosphorylation(127). Recent work in the habenula
demonstrated that ketamine blocks LHb bursting activity during MDD onset by trapping
NMDA receptors in LHb neurons, as evidenced by the sustained blockade of NMDAR-
mediated currents even after ketamine washout(132,133). Supporting this, research links
NRG1 downregulation in the SD rodent models to the presence of depressive-like
symptoms, albeit focusing on the medial prefrontal cortex neurons(134). Putting together,
we speculate that a similar mechanism may occur in the habenula, where reduced NRG1
expression leads to downregulation of NRG1-ErbB4 signaling in the PV neurons. Under
these conditions, ketamine can more effectively suppress neuronal activity by acting as
an NMDAR antagonist and trapping the receptor in the habenular projection neuron.
However, future studies are needed to clarify this effect.

NMDAR plays an essential role in mediating bursting activities in the LHb neurons and
blockade of NMDAR-mediated currents has been shown to rescue depressive symptoms,
underscoring its therapeutic potential(132,133). Of particular relevance is the GIuN2B
subunit, a component of NMDAR critical for glutamate neurotransmission. This subunit is
directly targeted by the NRG1-ErbB4 signaling pathway and contributes to processes
central to MDD pathophysiology, such as neuroplasticity and emotion regulation(135-
139). Notably, GIuN2B-containing NMDARs are present in the LHb and implicated in
depressive symptoms, but the specific influence of the NRG1-ErbB4 signaling pathway
on these receptors and how this may be linked to the mechanism of ketamine in the LHb
remains poorly understood. Further investigation could integrate insights from studies in
other brain regions. For instance, cortical research demonstrates that GIuN2B
phosphorylation at the Y1070 site correlates with depression severity and that ketamine’s
antidepressant effects depend on GIuN2B-mediated signaling(140,141). Building on this,
experiments could test whether NRG1-ErbB4 activation in the LHb drives GIuN2B
phosphorylation at Y1070, thereby amplifying NMDAR activity and contributing to LHb
hyperexcitability in MDD. Pharmacological or genetic inhibition of ErbB4 in preclinical
models could clarify whether blocking this pathway reduces GIuN2B phosphorylation,
restores synaptic plasticity in the LHb, and alleviates depressive-like behaviors.
Additionally, since ketamine’s cortical effects involve GIUN2B inhibition and synaptic
remodeling(140), studies should explore whether ketamine similarly modulates NRG1-
ErbB4-GIuN2B signaling in the LHb.



Application of Deep Brain Stimulation in Treating MDD Through
LHb Stimulation

Deep brain stimulation (DBS), has recently been used as a treatment option for those
with MDD and involves the strategic placement of electrodes in specific brain regions to
alleviate symptoms of MDD(142). Interestingly, successful DBS implementation
throughout the entire habenula has demonstrated efficacy in ameliorating depressive
symptoms in individuals with treatment-resistant MDD(143-145). Recent work has been
done to understand why this DBS treatment in the habenula yielded such profound results.
Specifically, Zhang et al., (2023) demonstrated that DBS of the LHb alleviates depression-
like behaviors in UCMS rodent models by normalizing neuronal hyperactivity and burst
firing patterns(146). Furthermore, measurements of pathway coherence revealed that
DBS reduces connectivity between the LHb and the VTA, thereby restoring healthy
dopaminergic and serotonergic signaling and shifting neural activity from burst-dominated
to regular firing patterns(146).

It is important to note the influence of variables such as patient age and personalized
DBS parameters tailored for individualized treatments. Despite successful clinical
outcomes, DBS implementation raises critical questions that need further scientific
inquiry. First, despite the successful implementation of DBS in MDD, the intricate
mechanisms within the habenula, particularly focusing on the LHb, remain elusive.
Therefore, a comprehensive understanding of these mechanisms needs further
investigations employing cellular experiments and animal models to uncover the nuanced
processes involved(147). Second, challenges posed by the small size of the habenula
within the brain, compounded by the difficulty in precisely targeting the LHb in
DBS(95,148); underscoring the necessity for continuous optimization efforts. As the
understanding of the habenula’s role in mental health disorders evolves, ongoing efforts
in both experimental and clinical realms will contribute to refining DBS techniques and
optimizing therapeutic outcomes for individuals with MDD.

Habenular Dysfunction in MDD comorbid disorders

Although this is not the focus of the review, it is important to note that mental health
disorders that are highly co-morid with MDD also have habenula dysfunction in their
pathology. For example, extensive evidence indicates a robust comorbidity between MDD
and substance use disorders (SUD)(149-152). Notably, the MHb is highly enriched with
nicotinic acetylcholine receptors (NAChRs), which have been strongly implicated in
SUD(153,154). To investigate the role of the habenula in alcohol use disorder, previous
work began saccharin pairing with an intraperitoneal injection of ethanol to induce
conditioned taste aversion (CTA)(155). In vivo electrophysiological recordings revealed
that LHb neurons of the rats (n = 6) exhibited significantly increased baseline and



stimulus-evoked firing during an operant task for saccharin compared to recordings made
without ethanol exposure(155). This heightened LHb activity is thought to mediate
ethanol-induced aversion via its excitatory projections to inhibitory neurons in the RMTg,
which suppress dopamine release from VTA neurons, a key process underlying reward-
seeking behavior(33,155). In addition, the LHb may influence CTA through the dorsal
raphe pathway, where altered serotonergic signaling contributes to encoding updated
reward values(155). To assess the necessity of LHb activity in the behavioral expression
of ethanol-induced CTA, two groups of rats were compared: sham-operated rats and
those with bilateral LHb lesions. The LHb-lesioned rats exhibited markedly attenuated
behavioral aversion while demonstrating unchanged licking frequencies during saccharin
consumption, indicating that the increased LHb firing is crucial for suppressing reward-
seeking behaviors in ethanol-induced conditioned taste aversion(155). Similarly, in vitro
electrophysiological recordings of LHb neurons in rodent brain slices showed that the
application of cocaine depolarized neurons and significantly increased both spontaneous
firing and evoked glutamatergic postsynaptic currents(156). In parallel, in vivo rodent
extracellular recordings from LHb neurons demonstrated that intravenous cocaine initially
suppressed LHb firing during its rewarding phase, but this inhibition was followed by a
delayed rebound excitation that paralleled the emergence of aversive conditioning. This
delayed activation was further confirmed by increased c-Fos immunoreactivity, reflecting
reduced downstream dopamine signaling(157). Moreover, in experiments conducted on
mice, repeated cocaine administration over two consecutive days led to long-term
hyperactivity in LHb neurons by enhancing glutamatergic transmission, as demonstrated
by increased AMPA receptor-mediated excitatory currents, altered AMPA/NMDA ratios,
and glutamate uncaging(158). In a nicotine addiction study using brain slices from the
rodents, including both control and a6-nAChR knockout, nicotine was applied at
concentrations ranging from low nanomolar to micromolar levels that mimicking those
found in human nicotine smokers to assess its effects on LHb neurons using
electrophysiological recording(159). The results showed a biphasic response, with an
initial transient decrease in neuronal firing due to enhanced GABAergic signaling via a42
receptors followed by a sustained increase in firing mediated by increased glutamate
release through a6-containing receptors(159). This pattern suggests that the LHb plays a
critical role in regulating the motivational properties of nicotine by modulating both its
aversive and rewarding effects, which are fundamental to nicotine addiction.

The MHb, which contains high densities of NAChRs, particularly a3, a5, and B3 subunits,
is strongly implicated in nicotine addiction(153,154). Fowler et al., (2011) demonstrated
that a5-containing nicotinic receptors, particularly those in the MHb, play a crucial role in
controlling nicotine intake. Indeed, mice lacking the a5 subunit exhibited significantly
higher nicotine consumption, especially at elevated doses. When the a5 subunit was
reintroduced specifically into the MHb, nicotine intake was normalized, underscoring the



pivotal role of MHb nAChRs in mediating an inhibitory signal that limits drug
consumption(160). Complementary experiments in rats, using lentiviral knockdown of a5
expression in the MHD, yielded similar increases in nicotine intake and blunted responses
in downstream brain regions such as the IPN(160). Furthermore, blocking nAChRs in the
MHDb with the antagonists mecamylamine induces withdrawal-like symptoms in nicotine-
dependent rodents, emphasizing its involvement in withdrawal regulation(161).

Conclusion

In this review, we provide a comprehensive overview of the habenula’s role in regulating
brainstem neuromodulatory systems, highly implicated dysfunction in MDD, and current
research regarding potential therapeutics for MDD that target the habenula. Our review
builds upon several recent comprehensive reviews(4,162-164), by integrating and
extending their insights into how habenular dysfunction contributes to depression. The
novelty of this review lies in its comprehensive and in-depth exploration of the molecular
mechanisms underlying habenula dysfunction in MDD. Indeed, in our review, we
summarized the most recent work on rodent models, including UCMS, CRS, and LH
paradigms, which have revealed key molecular alterations in the habenula linked to MDD.
These alterations include the downregulation of CAPS and cholinergic gene expression
in the MHDb(62,66), upregulation of pl1, REM sleep-active neurons, stress-responsive
neurons, TCF7L2, Kir4.1l, pCaMKIl, and PP2A, along with SNORAG9, in the LHb
(69,72,74,76,78-80). Similar molecular changes of CAPS2, cholinergic signalling, pl1,
SNORAG69 and ErbB4(62,66,76,84,87) were also observed in the postmortem habenula of
the individual with MDD(62,66,76,84,87). Clinical studies of MDD have also observed
macrostructural alterations of the habenula, including volumetric changes(93,94,165),
decreased neuronal size and number(96), along with disrupted functional connectivity to
other brain regions(97-103). We also describe potential therapeutic interventions like
ketamine and DBS which offer promising antidepressant effects and seem to exhibit these
effects through habenular manipulation(142,147). To advance this field, future research
should prioritize integrative approaches, such as single-cell sequencing and spatial
transcriptomics, to resolve cellular heterogeneity across habenular subregions and
delineate precise molecular pathways driving MDD. Such efforts will accelerate the
identification of novel biomarkers and the development of targeted therapies for MDD
through habenula-specific interventions.
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Table 1: Molecular Expression and Circuit Alteration in the Habenula

Region Molecule(s) States in  Rodent | Citations
Models of
Depressive-like
Symptoms/Individual
with MDD
Medial CAPS2 Downregulated Down-regulation of
Habenula o . habenular calcium-
(MHb) (n=8;  50% CRS dependent secretion
rodent model) activator 2 induces
(n=23; ~52.2% post- despair-like behavior (62)
mortem samples from
patients with MDD)
Cholinergic Downregulated Down-regulation of
signaling o Ead cholinergic signaling in
genes (CHAT, (n=8; 50% CRS rodent the habenula induces
VACHT, CHT, model) anhedonia-like behavior
CHRNAS, (n=23; ~52.2% post- | (66)
CHRNB3, and | mortem samples from
CHRNB4) patients with MDD)
Lateral Kird.1 Upregulated Astroglial Kird.1 in the
Habenula L . lateral habenula drives
(LHb) (n=14; ~64.3% LH | o\ ronal bursts in
rodent model) depression(69)
BCaMKaII Upregulated BCaMKIl  in Lateral
L . Habenula Mediates Core
(n=15; ~46.7% CRS Symptoms of
rodent model) Depression(72)
pll Upregulated Elevation of p11 in lateral
L . habenula mediates
(n=16; ~62.5% LH depression-like
rodent model) behavior(76)
SNORAG69 Upregulated SNORAG9 is up-

regulated in the lateral




Active Neuron

(n=30; ~53.3%
rodent model)

CRS

(n=15; ~53.3% UCMS | habenula of individuals
rodent models) | with MDD(84)
(n=30; 50% post-
mortem samples from
patients with MDD)
ErbB4 Downregulated miR-323a regulates
. . ERBB4 and is involved in
(=37, ~64.9% post- depression(87)
mortem samples from
patients with MDD)
REM Sleep- | Increased Activities A potentiation of REM

sleep-active neurons in
the lateral habenula may
be responsible for the

(n=28; 50%
rodent model)

CUMS

sleep disturbance in
depression(78)
Stress Increased Activities A small population of
Responsive | stress-responsive
Neurons (n=16; 25% restraint neurons in the
stress,  25% fget hypothalamus-habenula
shock, and 25% social circuit mediates
defeat) development of
depression-like behavior
in mice(79)
Neuronal Downregulation Neuronal TCF7L2 in
TCF7L2 Lateral Habenula Is

Involved in Stress-
Induced Depression(80)

CAPS2, Calcium-dependent Activator Protein for Secretion 2; Kir4.1, Inwardly rectifying
potassium channel subunit 4.1; BCaMKII, the B isoform of Ca?*/Calmodulin-dependent
Protein Kinase Il; MDD, Major Depressive Disorder; ErbB4, Erb-B2 receptor tyrosine
kinase 4; TCF7L2, Transcription Factor 7-Like 2.



Table 2: Habenula volume of individuals with MDD compared to healthy individuals

Postmortem Hb
Samples
MDD volume loss compared to | Citation
Healthy Individuals
Left Side of Hb | Right Side of Hb | Evidence for
Neuronal Cell Number | -31.00% -34.60% structural |
Neuronal Cell Area | -39.60% -34.40% ﬁbnorma"ﬂez of the
MHb Volume 24.10% -20.90% CSQSEX e e
disorders but not in
schizophrenia(96)
LHb Volume -20.00% -20.00% (n=27; ~51.9%
postmortem
habenula from the
individuals with
MDD)
fMRI of Unmedicated MDD
Patient
Left Side of Hb | Right Side of Hb | Citations
Disrupted habenula
function in major
depression(92)
(Siemens 3T
Magnetom TIM Trio
Scanner; n=50;
-6.63% 50%  participants
Average Habenula with MDD)
volume
Association

between habenula
dysfunction and

motivational

symptoms in

unmedicated

MDD(93)

(Philips 3T Achieva

scanner; n=38;
Significantly Increased ~55.3% participants

with MDD)




Hb, Habenula; MDD, Major Depressive Disorder; MHb, Medial Habenula; LHb, Lateral
Habenula; fMRI, functional Magnetic Resonance Imaging. For postmortem samples(96),
the Control group had a mean age of 55.9 + 8.9 years, brain weight of 1322 + 157 g, and
postmortem delay of 28.6 + 9.4 hours; the MDD group had a mean age of 48.6 + 12.4
years, brain weight of 1337 + 133 g, and postmortem delay of 31.9 + 24.8 hours. For the
first fMRI study(92), the mean age between the conditions is insignificant (Control: 27.44
+ 8.75 years and MDD: 27.76 * 9.01 years, p=0.90). For the second fMRI study(93), the
mean age between the groups is insignificant (Control: 28.3 + 5.2 years and MDD: 30.7
+ 8.9 years, p=0.82).



Figure 1: Location of the human Habenula (Hb) and the subdivision of the medial and
lateral habenula (MHb and LHb). A: Image of the right hemisphere of the human brain cut
sagittalyl along the midline with a black circle and a blue arrow indicating the location of
the right Hb. B: Woelcke staining of a habenula slice, with blue arrows indicating the
border of the LHb and the MHb based on different myelinated fibers within the subregions.
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Figure 2: Input and output connectivity pathways of the habenula to other regions. The
Medial Habenula (MHb) mainly receives signals from the septum within the limbic system
and relays information downstream to the brainstem through the Interpeduncular Nucleus
(IPN). The Lateral Habenula (LHb) receives input from the limbic system and basal
ganglia, regulating neurotransmission to the brainstem. Through glutamatergic
projections, the LHb activates GABAergic neurons in the RMTg that inhibit dopaminergic
cells in the SNc and VTA, while also sending direct inputs to the VTA and DRN/MRN.
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Functional Connectivity Analysis of the Habenula
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Figure 3: The functional connectivity (FC) analysis of the habenula in the development
of MDD. The blue line indicates the upregulation of the functional connectivity between
the habenula and this region, while the red line indicated the downregulation of the
functional connectivity between the habenula and this region. The yellow box indicates
the participants with MDD and suicidal thoughts. (102) was done on Siemens 3T MRI
system, and included 71 participants (n=71; ~53.5% participant with MDD, ~60.6%
female), with mean of age of 19.24+0.94 years in control and of 21.13+6.17 years in
participants with MDD; (98) was done on Siemens 3T MRI system, and included 84
participants (n=84; ~54.77% participants with MDD, ~72.6% female), with mean of age of
37.1£13.0 years in control and of 38.3112.5 years in participants with MDD; (100) was
done on Philips Achieva 3T MRI scanner, and included 50 participants (n=50; 56%
participants with MDD, 60% female), with mean of age of 39.0 (23.0-46.5) years in control
and of 36.00+10.37 years in participants with MDD; (103) was done on Philips Achieva
3T MRI scanner, and included 100 participants (n=100; 563% patrticipants with MDD, 58%
female), with mean of age of 28.94+10.89 years in control and of 32.04+10.01 years in
participants with MDD; (101) was done on Siemens 3T MRI system, and included 74
participants (n=74; ~66.2% participants with MDD, ~59.5% female), with mean of age of
38.24+10.14 years in control and of 34.80+9.04 years in participants with MDD; (97) was
done on 3T Siemens Trio Magnetom system, and included 198 participants (n=198; ~62.1%
participants with MDD and suicide-related behaviours, ~52.5% female), with mean of age
of 33.1+9.1 years in control and of 29.7+11.8 years in participants with MDD and suicide-



related behaviours; (99) was done on 3T Siemens Trio Magnetom system, and included
78 participants (n=78; ~55.1% participants with MDD and suicidal ideation, ~53.8%
female ), with mean of age of 32.57+8.75 years in control and of 33.12+11.47 years in
participants with MDD and suicidal ideation; and (166) was done in 7-Tesla resting-state
fMRI subset of the WU-Minn HCP, and included 237 participants (n=237; ~25.3%
participants with MDD who received ketamine treatment, ~57.8% female), with mean of
age of 29.4+3.3 years in control and of 34.4+11.5 years in participants with MDD who

received ketamine treatment.
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Figure 4: Schematic illustration of ketamine’s mechanism of action via the NRG1-ErbB4
pathway. A: Administration of ketamine alone (without prior NRG1 treatment) within PV
neurons in hippocampus and prefrontal cortex produces an antidepressant effect. B: Pre-
administration of NRG1 disrupts the antidepressant effect of ketamine within PV neurons
in hippocampus and prefrontal cortex. C: Proposed mechanism of ketamine’s
antidepressant action in the habenula: Reduced NRG1 lowers ErbB4 signaling in PV
neurons, allowing ketamine to more effectively suppress activity through NMDAR
antagonism and trapping. C(I) Flowchart of the proposed mechanism; C(ll) Receptor—
ligand schematic.



