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ABSTRACT 

Postpartum depression (PPD) is a significant global health concern affecting women, yet effective and innovative 

therapeutic targets remain limited. Although genome-wide association studies (GWAS) have identified genetic risk 

loci, their underlying mechanisms and translational potential remain poorly understood. Therefore, we integrated PPD 
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GWAS data with protein quantitative trait loci from two independent datasets to identify risk genes through proteome-

wide association studies (PWAS). Validation was performed using colocalization analysis and Mendelian 

randomization (MR). To assess the safety of genes as drug targets, phenome-wide MR (Phe-MR) was conducted using 

the UK Biobank disease data. Finally, we performed gene methylation analysis in PPD patients, alongside validation 

of expression in key brain regions including anterior cingulate gyrus (AnCg), dorsolateral prefrontal cortex, and 

nucleus accumbens, as well as in peripheral blood (whole blood and leukocytes), across depressive patients and 

chronic mild stress mice. Co-expression enrichment was used to identify biological pathways associated with risk 

genes. PWAS and colocalization analysis identified MKRN1 and CCDC92 as overlapping risk genes, with MKRN1 

validated in MR. Phe-MR showed non-significant association between MKRN1 dysregulation and disease beyond 

depression and mood disorders, suggesting minimal off-target effects. Methylation analysis in PPD patients’ blood 

revealed significant hypomethylation of MKRN1, consistent with expression analysis that confirmed its upregulation 

in AnCg and as a biomarker in blood. Enrichment analysis indicated MKRN1 involvement in immune–inflammatory 

pathways. Our study identified MKRN1 as a therapeutic target for PPD, integrating multi-omics evidence from 

genomics, proteomics, and druggable proteome profiling, and offering a promising path for targeted treatments. 

INTRODUCTION 

Postpartum depression (PPD) is a significant psychiatric disorder, defined by the onset of major depressive symptoms 

during pregnancy or within four weeks of delivery, as per the American Psychiatric Association[1]. The World Health 

Organization extended this timeframe to include the entire first postpartum year[2]. With an estimated prevalence of 

13–19%[3], PPD presents with symptoms such as low mood, sleep disturbances, tearfulness, and confusion[4, 5]. 

Notably, compared to major depressive disorder (MDD), PPD is associated with a higher incidence of appetite 
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disturbance and fatigue[6], which can profoundly impair maternal caregiving ability[7]. This, in turn, adversely affects 

infant development across motor, cognitive, social, and emotional domains[8–10]. Early diagnosis and effective 

treatment are therefore essential[11]. 

Despite its prevalence and impact, therapeutic options for PPD remain limited. Only a few medications have been 

approved by the FDA specifically for PPD, targeting sites like the gamma-aminobutyric acid (GABA)-A receptor, but 

are associated with significant side effects[12, 13]. Traditional antidepressants are commonly used but carry risks for 

both maternal and neonatal health[14, 15]. Concerns about potential adverse effects, particularly on breastfeeding and 

infant development, often lead mothers to avoid pharmacological interventions[16, 17]. These challenges highlight 

the pressing need to develop novel and safe therapeutic strategies. 

Genomic advances, particularly genome-wide association studies (GWAS), have identified risk loci associated with 

PPD[18, 19]. However, the ability of GWAS to provide biological insights is constrained, as these studies do not 

directly link genetic variants to functional pathways[20]. Proteome-wide association studies (PWAS), which integrate 

protein quantitative trait loci (pQTL) data with GWAS findings, offer a powerful complementary approach, enabling 

the identification of proteins associated with disease phenotypes[21]. Brain-derived pQTL data, in particular, has 

proven invaluable in identifying risk genes for neuropsychiatric conditions such as Alzheimer’s disease and 

schizophrenia[22, 23]. Mendelian randomization (MR) further strengthens these findings by leveraging genetic 

variants as instrumental variables to infer causal relationships between protein expression and disease phenotypes[24]. 

While PWAS and MR have been extensively applied in psychiatric research[25–27], their use in PPD remains 

underexplored. 

PPD shares several genetic[28] and symptomatic[4] features with MDD but is distinguished by unique risk factors 
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such as postpartum hormonal fluctuations[29–31] and caregiving stress[2, 32]. Both conditions are associated with 

dysregulation in brain regions critical for emotional and cognitive processing, including the anterior cingulate cortex 

(AnCg), dorsolateral prefrontal cortex (dlPFC), and nucleus accumbens (nAcc)[33, 34]. Peripheral factors, such as 

altered plasma levels of growth factors[35], immune markers[36], and transcriptional changes in leukocytes[37], 

further underscore the importance of integrating brain and peripheral data to identify clinically relevant biomarkers. 

Epigenetic mechanisms, particularly DNA methylation, also play a critical role in PPD by modulating gene expression 

in response to environmental and genetic factors[38]. Methylation changes in CpG islands, often leading to gene 

silencing[39], have been implicated in PPD, as exemplified by findings on HP1BP3[40, 41]. Additionally, animal 

models simulating PPD conditions, such as hormonal withdrawal and chronic stress, provide essential platforms for 

validating human findings[42–44]. 

In this study, we adopted an integrative multi-omics approach to identify and validate risk genes associated with PPD 

(Figure 1). Using PWAS, colocalization analysis, and MR, we identified candidate genes and evaluated their causal 

role in PPD. To assess the safety of these genes as potential therapeutic targets, phenome-wide MR (Phe-MR) was 

applied. Finally, we conducted differential expression analyses across tissues from depressive patients and mouse 

models to confirm the dysregulation of identified risk genes, along with functional enrichment to explore underlying 

mechanisms. This comprehensive approach aims to uncover novel molecular targets for PPD, offering potential 

pathways for therapeutic innovation. 

 

MATERIALS AND METHODS 

The overview of our study design was presented in Fig. 1.  
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PPD GWAS data 

The GWAS data analyzed in this study were derived from a large-scale meta-analysis of PPD (Supplementary Table 

S1), encompassing 18,770 cases and 58,461 controls from 20 diverse cohorts[45]. These cohorts represented 

individuals of European, East Asian, and African ancestries. Genotyping data were processed uniformly across all 

ancestry groups, and potential issues of heterogeneity and population stratification were also addressed using genetic 

correlation analyses, leave-one-out sensitivity analyses, and ancestry-specific reference panel imputation. Full details 

on genotyping, quality control procedures, and statistical methods are available in the original study[45]. 

Human brain pQTL data 

PWAS utilized human brain proteomic data from two large-scale datasets (Supplementary Table S1): the ROSMAP[46] 

and the Banner[47]. Both datasets included dlPFC tissue samples from individuals of European ancestry, comprising 

376 participants in ROSMAP and 152 in Banner. Proteomic sequencing, conducted by Wingo et al.[48], identified cis-

regulated proteins associated with genetic variants, integrating these data with significant single-nucleotide 

polymorphisms (SNPs) derived from GWAS. This approach yielded 1,475 proteins with significant cis-associations 

in the ROSMAP dataset and 1,139 in the Banner dataset[48], which were subsequently used as reference weights in 

the PWAS. 

Proteome-wide association studies 

PWAS were performed using FUSION software, integrating precomputed reference weights from ROSMAP and 

Banner proteomes with GWAS summary statistics to estimate the relationship between protein abundance and 

PPD[49]. Weighted linear models were constructed by summing the products of Z-scores from GWAS data with 
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corresponding protein weights, thereby evaluating the impact of SNPs on protein expression. Default parameters in 

FUSION were applied for these calculations, and the 1000 Genomes Project European reference panel (phase 3) for 

linkage disequilibrium estimation was used to match the predominant European ancestry of the PPD GWAS and pQTL 

datasets. To control for false discoveries, the Benjamini-Hochberg (BH) procedure for false discovery rate (FDR) 

correction was employed, with significant associations identified at an FDR threshold of P < 0.05. This approach 

provided a robust framework for identifying proteins implicated in PPD pathogenesis. 

Colocalization analysis 

To determine whether the identified risk genes and PPD share common causal variants, Bayesian colocalization 

analysis was performed using pQTL data from the ROSMAP and Banner datasets. The analysis was conducted using 

the “coloc” R package[50], which calculated the posterior probability for hypothesis 4 (H4), representing the likelihood 

that GWAS and pQTL associations shared a common causal variant. A threshold of H4 > 0.6 was used to define 

colocalization[48], indicating supporting evidence for a shared genetic signal between PPD and protein expression 

traits. 

Mendelian randomization 

To validate the results from PWAS and colocalization analysis, MR was employed, including independent and robust 

SNPs (R² < 0.1) with genome-wide significance (P < 5×10-5). Initially, summary data-based Mendelian randomization 

(SMR) was conducted[51]. This method estimated the causal effect sizes of protein levels (proxied by cis-pQTLs) on 

PPD using pQTL data from both datasets. Additionally, two-sample Mendelian randomization (TSMR) was performed, 

using pQTL-associated SNPs from ROSMAP as instrumental variables (IVs), pQTL-related proteins as exposures, 

and PPD GWAS data as outcomes. For proteins associated with a single pQTL, the Wald ratio method was applied, 
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while the inverse variance-weighted method was used for proteins linked to multiple pQTLs. The threshold for 

statistical significance was set at P < 0.01 to capture robust associations[52, 53]. 

To detect potential pleiotropy, the heterogeneity in dependent instruments (HEIDI) test was applied during SMR. A 

PHEIDI > 0.01 was considered indicative of no significant horizontal pleiotropy or linkage effects, thereby strengthening 

the validity of the causal inference[54]. 

Phenome-wide Mendelian randomization 

To assess potential unintended off-target effects of the risk genes, Phe-MR was conducted on 783 clinical traits from 

the UK Biobank (UKB). GWAS summary statistics from the UKB cohort (408,961 White British European-ancestry 

participants comprising more than 1,400 binary disease phenotypes[55]) were accessed, and SNPs associated with 

protein abundance were used as IVs, with identified risk genes as exposures and clinical traits as outcomes. Traits 

were categorized using the “PheCodes” system with those retaining more than 500 cases included, and analyses were 

performed using the Scalable and Accurate Implementation of Generalized Mixed Model (SAIGE v0.29) to account 

for imbalanced case-control ratios[55]. Results were corrected for multiple testing using the Bonferroni method, 

ensuring robust statistical reliability. As a sensitivity analysis, association between case sample size and -log10(P-value) 

was evaluated using Spearman correlation across all phenotypes, assessing the influence of case number variation on 

association patterns. The threshold was set at ρ < 0.2 to define weak correlation[56–58]. 

Epigenetic methylation analysis of risk genes in PPD patients 

To investigate the epigenetic influence of identified risk genes on the development of PPD, methylation data from a 

cohort of PPD patients were analyzed. These data were derived from a study by Guintivano et al.[40], involving 12 
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PPD patients (prepartum and postpartum) and 25 healthy controls assessed using the DSM-IV criteria for major 

depressive episodes. Blood samples were collected during this period to facilitate epigenetic profiling. For each CpG 

site, the β-value, representing the proportion of methylation, was calculated as: 

β = (signal intensity of methylation-detecting probe) / (signal intensity of methylation-detecting probe + signal 

intensity of non-methylation-detecting probe+100). 

This approach allowed for the systematic assessment of methylation levels at CpG sites of risk genes, providing 

insights into their potential regulatory roles in PPD pathophysiology. Detailed information on sample collection and 

data processing can be found in the original publication[40]. Considering the diverse effects of methylation, we 

performed differential analysis of methylation levels on both each individual probe targeting CpG sites and the average 

β-value of all probes.  

Validation of risk gene expression in the AnCg, dlPFC, and nAcc  

To further assess the transcriptional dysregulation of risk genes in PPD pathogenesis, we analyzed gene expression 

data from key brain regions (AnCg, dlPFC, and nAcc) implicated in depression. Data were drawn from two 

independent studies involving MDD patients and an unpredictable chronic mild stress (UCMS) mouse model, and 

may provide insights into the mechanisms underlying gene dysregulation in brain. 

Human brain data were sourced from Ramaker et al., which collected postmortem brain tissues from 24 MDD patients 

and 24 controls[59]. Gene transcription level was analyzed in AnCg, dlPFC, and nAcc. For the mouse model, 

expression data for AnCg were provided by Hervé et al.[60], which included samples from eight mice subjected to an 

8-week UCMS procedure, a model for depression, along with eight healthy mice raised under standard conditions. 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

      

 

Data were normalized in both studies to eliminate technical biases. Specific details regarding sample extraction, data 

processing, and normalization were elaborated in the original studies[59, 60].  

Risk gene expression as a biomarker for depression 

To broadly evaluate the reliability of risk genes as peripheral biomarkers for both PPD and MDD, we incorporated 

peripheral blood gene expression data from three additional studies, comprised samples from MDD patients along 

with ovariectomized (OVX) and chronic mild stress (CMS) mouse models, encompassing gene expression profiles 

from whole blood and leukocytes. 

Human whole blood data were obtained from Leday et al.[61], containing expression data of 128 MDD patients and 

64 controls from two independent case-control studies: the GlaxoSmithKline–High-Throughput Disease-specific 

Target Identification Program and the Janssen–Brain Resource Company study. Identical quality control, 

normalization, and annotation algorithms were applied to both studies. Human leukocyte data was sourced from 

Miyata et al.[62], which included 20 MDD patients and 12 age- and sex-matched controls from the Department of 

Psychiatry and Neuroscience at Gunma University Hospital. For the mouse model, data from whole blood was 

obtained from another study by Miyata et al.[63], where OVX and CMS was employed to establish a depression model. 

Gene expression profiling followed a similar protocol as described earlier for processing human samples. Detailed 

information on sample preparation and microarray analysis is available in the original studies[61–63]. 

For differential methylation and expression analysis, the Hommel method was applied for multiple testing correction 

across human and mouse tissues. 

Functional enrichment of risk gene–associated co-expression network 
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To investigate the molecular mechanisms underlying the role of risk genes in PPD, we obtained co-expression gene 

networks consistent with the pathogenic direction of risk genes from the SigCom LINCS database[64, 65]. Gene 

Ontology (GO) functional enrichment analysis on these networks was performed using the “clusterProfiler” R package 

(v4.14.6)[66], with default parameters. Statistical significance was adjusted using the BH method, retaining terms 

with an adjusted P-value < 0.05. 

 

Results 

PWAS identified MKRN1 and CCDC92 as key overlapping risk genes for PPD 

In the two-stage PWAS, we integrated proteome reference weights from both the ROSMAP and Banner datasets. In 

ROSMAP, we identified four candidate genes: MKRN1, CCDC92, CRK, HARS2, that were significantly associated 

with PPD, using a threshold of P-FDR < 0.05 (Fig. 2 and Supplementary Table S2). Likewise, there were four 

candidate genes identified in Banner: MKRN1, CCDC92, HARS, DHX36. Notably, two risk genes—MKRN1 (P-

FDRROSMAP = 4.66E-02, P-FDRBanner = 3.59E-02) and CCDC92 (P-FDRROSMAP = 3.65E-02, P-FDRBanner = 4.28E-02)—

were found to overlap between both datasets (Supplementary Table S3 and S4), suggesting their crucial role in the 

pathogenesis of PPD. The positive Z-scores for MKRN1 in both datasets indicated a strong association between its 

upregulation and PPD, while negative Z-scores for CCDC92 suggested its downregulation was significantly linked to 

the disease. 

Colocalization analysis confirmed shared causal variants for PPD risk genes 

To estimate the probability that shared causal variants drive both GWAS and pQTL signals in PPD, we conducted the 
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Bayesian colocalization analysis in ROSMAP and Banner datasets. Using a threshold of H4 > 0.6, we identified two 

overlapping genes across both datasets (Supplementary Table S5 and S6), including MKRN1 (H4-ROSMAP = 8.45E-

01, H4-Banner = 6.46E-01) and CCDC92 (H4-ROSMAP = 8.38E-01, H4-Banner = 7.57E-01). Their evidence observed 

in both PWAS and colocalization analysis underscored their pivotal roles in PPD pathogenesis. 

MR highlighted MKRN1 as a high-confidence risk gene for PPD 

We performed SMR, selecting the top significant genes from both the ROSMAP and Banner datasets based on a 

threshold of PSMR < 0.01 (Supplementary Table S7, S8 and S9). Of these, MKRN1 demonstrated consistent evidence 

across both databases (PSMR-ROSMAP = 8.59E-04, PSMR-Banner = 2.62E-03) with no significant horizontal pleiotropy 

observed (PHEIDI-ROSMAP = 3.64E-01, PHEIDI-Banner = 2.75E-01), while CCDC92 was excluded for failing to meet the 

threshold. In subsequent TSMR, causal relationships between the protein levels of genes and PPD were calculated 

using the Wald ratio or inverse variance-weighted method. Among the significant genes (P < 0.01) (Supplementary 

Table S10), verification was achieved for MKRN1 (P-TSMR = 7.30E - 05, OR: 3.45, 95% CI: 1.87 – 6.36) (Fig. 3), 

underscoring its essential contributions to the development of PPD.  

Phe-MR of MKRN1 on 783 disease traits 

We integrated the results from PWAS, colocalization analysis, and MR and observed consistent evidence for MKRN1 

across all analyses, further supporting its role as a risk gene for PPD (Fig. 4a). 

To characterize the potential off-target effects of MKRN1, we conducted Phe-MR on 783 disease traits (categorized 

into 16 categories) from the UK Biobank. Based on Bonferroni-corrected P-values (P = 0.05/783 = 6.39 × 10−5), we 

detected that MKRN1 upregulation was a significant risk factor for depression (P = 1.10 × 10−5; OR: 3.98, 95% CI: 
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2.15–7.37) and mood disorders (P = 1.98 × 10−5; OR: 3.72, 95% CI: 2.03–6.80) but not significantly associated with 

other diseases (Fig. 4b and Supplementary Table S11). Spearman correlation showed a weak association (ρ = 0.18), 

suggesting a minor influence of case number variation on test results and supporting the reliability of the observed 

association signals. These findings aligned with results from other analyses in our study, further confirming MKRN1 

as a promising candidate therapeutic target for PPD and offers a foundational clue for future drug development efforts. 

Differential expression analysis validated the upregulation of MKRN1  

To further investigate the role of MKRN1 in PPD, we conducted an integrative analysis combining gene methylation 

and expression data across specific tissue types, including key brain regions and peripheral blood samples 

(Supplementary Table S12 and S13). Statistical significance was determined using a two-sample t-test (adjusted P < 

0.05), with a focus on cross-dataset consistency in the direction of effects. 

In PPD patient samples, the CpG island of MKRN1 revealed significantly reduced comprehensive methylation levels 

compared to healthy controls (mean β-value reduction: P = 7.97 × 10−3, t = -3.71) (Fig. 5a). Among all probes, 5 of 

16 CpG sites showed significant methylation loss, collectively indicating a pattern of predominant hypomethylation 

likely contributing to regulated MKRN1 transcriptional activity. Expanding on this, we interrogated expression 

datasets from key brain regions to ascertain our finding. Notably, in the AnCg—a region intricately linked to mood 

regulation—MKRN1 was significantly overexpressed in MDD patients (P = 4.36 × 10−2, t = 2.54) (Fig. 5b) and UCMS 

mouse model (P = 4.35 × 10−2, t = 2.43) (Fig. 5c), implicating its involvement in depressive pathophysiology. 

Peripheral validation mirrored these observations: MKRN1 expression was elevated in whole blood (P = 4.77 × 10−2, 

t = 2.17) (Fig. 5d) and leukocytes (P = 2.91 × 10−2, t = 2.82) (Fig. 5e) of MDD patients, as well as in whole blood of 

OVX and CMS mouse model (P = 4.77 × 10−2, t = 1.84) (Fig. 5f), which provided further validation of MKRN1 as a 
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reliable risk gene and adds weight to its candidacy as a biomarker. 

These findings across tissues and species highlight the MKRN1’s potential as both a diagnostic marker and therapeutic 

target in PPD pathogenesis, where epigenetic changes drove its transcriptional upregulation and subsequent protein 

abundance. 

MKRN1 was implicated in immune-inflammatory processes 

GO enrichment analysis of the MKRN1-co-upregulated gene network revealed significant involvement in immune-

related biological pathways, including leukocyte and neutrophil migration and chemotaxis, immune granule and 

secretory vesicle components, and immune receptor activity (Fig. 5g) (Supplementary Table S15), suggesting a 

potential role of MKRN1 and its interacting pathways in mediating immune–inflammatory responses. 

 

Discussion 

In our study, we began by integrating findings from PWAS and colocalization analysis, identifying two PPD risk genes, 

MKRN1 and CCDC92. Notably, MKRN1 was further corroborated through MR, pointing to the significant 

involvement of its upregulation in PPD pathology. To evaluate the feasibility of MKRN1 as a druggable protein, we 

conducted Phe-MR to investigate potential safety concerns. Recognizing the intricate etiology of PPD and its 

epigenetic underpinnings, we performed methylation analysis on blood samples from PPD patients. To substantiate 

this, validation was expanded to differential expression analysis in key brain regions to investigate the etiology of 

depression, and in peripheral blood samples to evaluate the potential of risk genes as biomarkers. These analyses were 

conducted in MDD patients and depressive mouse models, aiming to validate MKRN1 dysregulation at the expression 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

      

 

level and support its application as a therapeutic target. Epigenetic analysis unveiled hypomethylation of MKRN1 CpG 

islands, a modification that may drive transcriptional activation. Subsequent differential expression analysis revealed 

significant MKRN1 upregulation in the AnCg, whole blood, and leukocytes, which converged with methylation results 

and provided compelling evidence for its involvement in the pathogenesis of PPD. Briefly, these findings established 

MKRN1 as a pivotal gene in PPD, underscoring its promise as a biomarker and a therapeutic target. 

MKRN1, or Makorin Ring Finger Protein 1, is a highly transcribed, intron-containing gene that forms the evolutionary 

basis of a mammalian gene family encoding unique zinc finger proteins[67]. It has been found to be highly expressed 

across various tissues, including different regions of the brain[67], suggesting its essential role in neural development. 

To date, copy number variations of MKRN1 have been found to be significantly associated with neurodevelopmental 

disorders such as autism spectrum disorder and schizophrenia[68]. Additionally, MKRN1 has also been implicated in 

other structural neurological abnormalities[69, 70], further underscoring its potential importance in neurological 

diseases. However, few studies have reported the connection between MKRN1 and PPD. 

Kim et al. demonstrated that MKRN1 acts as an E3 ubiquitin ligase, promoting TERT degradation and telomere 

shortening in human cells[71], a process linked to cellular senescence[72] and diseases such as schizophrenia[73], 

cognitive impairment[74], diabetes[75], and cirrhosis[76]. Notably, telomere shortening has been observed in blood 

samples from Latina women with PPD[77]. Many studies have also shown the association between telomere 

shortening in leukocytes and depressive symptoms[78, 79]. These findings support our hypothesis, based on 

differential expression analysis (Fig. 5a, d, e, f), that MKRN1 is significantly upregulated in depressed patients and 

might induce telomere shortening. 

Similarly, MKRN1 mediates the ubiquitination and degradation of proteins such as p53, AMPK[80]. The close 
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connection between p53, AMPK and MDD has been confirmed in previous studies[81–83]. Interestingly, we found 

that the inhibitory effects of MKRN1 on p53, AMPK, and TERT, as well as the consequences such as cellular 

senescence caused thereby, can all lead to an increase in oxidative stress[84–87]. Meanwhile, this degradation inhibits 

p53’s activation of AMPK and its protective effect on telomeres, further amplifying oxidative stress[82, 88]. These 

findings collectively suggest that the upregulation of MKRN1 may be pivotal in oxidative stress at the cellular level. 

Oxidative stress is a key mechanism in neurodegenerative[89] and psychiatric diseases (especially depression[90–

94]). Notably, increased oxidative stress in the AnCg has been strongly associated with depressive symptoms[95, 96], 

suggesting that MKRN1 may contribute to the onset of depressive symptoms by mediating oxidative stress in the AnCg, 

aligning with the upregulation of MKRN1 observed in our differential expression analysis (Fig. 5b, c). Interestingly, 

we found the GABA level in the AnCg of depressed patients was significantly decreased[97, 98]. When oxidative 

stress level increases, the GABA level also tends to decline[99]. This indicates that MKRN1-mediated oxidative stress 

may contribute to depression by disrupting the GABA system, consistent with the mechanisms of the two existing 

FDA-approved anti-PPD drugs, as they both act as positive allosteric modulators of the GABA-A receptor[12]. 

Oxidative stress in depression frequently coexists with neuroinflammation, and the two processes can mutually 

reinforce each other[100, 101]. Likewise, AMPK has been shown to alleviate depressive-like behaviors through anti-

inflammatory mechanisms[102], telomere length in depressed patients is negatively correlated with inflammatory 

burden[103], and p53 can attenuates inflammation by suppressing NF-κB, whose activation promotes inflammatory 

cascades that may drive depressive pathogenesis[104]. These lines of evidence are consistent with our enrichment 

results, where genes co-upregulated with MKRN1 are significantly enriched for immune- and inflammation-related 

pathways (Fig. 5g). 
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Collectively, AnCg was identified as a key pathogenic region in PPD where MKRN1 may induce depression by 

regulating oxidative stress and neuroinflammation via the p53/AMPK/TERT pathway, suggesting MKRN1 as a 

promising biomarker for PPD identification, consistent with previous research linking telomere length, oxidative stress, 

neuroinflammation, and depression[105–107]. This provides new insights into the underlying mechanisms and 

potential therapeutic targets.  

DNA methylation constitutes a key layer of epigenetic regulation and has been extensively studied in 

neurodegenerative and psychiatric disorders[108, 109]. As one of the most critical regulating areas, promoter CpG 

methylation is often, but not invariably, associated with transcriptional repression[110, 111]. In peripheral blood 

samples from PPD patients, we observed significant average hypomethylation across the MKRN1 promoter CpG 

island, with 5 out of 16 probes showing significantly reduced methylation. This finding suggests a potential epigenetic 

mechanism underlying MKRN1’s dysregulation, consistent with the elevated protein and mRNA levels observed in 

our PWAS and differential expression analyses. Nevertheless, the complex relationship between methylation and gene 

expression, along with limitations arising from inconsistencies between epigenetic and transcriptomic cohorts, 

necessitates caution in interpretation, which emphasizes the need for large-scale, multi-layered profiling in future 

studies. Given the advantage of QTL data in directly testing genetic associations, we also propose that well-powered 

methylation quantitative trait locus (meQTL) analyses in PPD cohorts would facilitate the validation and elaboration 

of the findings presented in future study. 

In the drug development process, serious adverse reactions during treatment often lead to project failures[112]. The 

current medications targeting potential causal proteins identified in the present study were summarized in 

Supplementary Table S14. As an extension of MR, Phe-MR assesses the associations between genetic variations and 
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a range of disease phenotypes. This approach allows for an effective evaluation of the potential side effects of drug 

targets, thereby providing a preliminary prediction of side effects in clinical targeted therapy. Our Phe-MR revealed 

that MKRN1 exhibited significant associations with depression and mood disorders, without notable effects on other 

diseases, reducing the likelihood of severe off-target effects and laying the groundwork for translational drug research. 

However, despite the weak correlation between variations in case numbers and the association results, the potential 

impact of sample imbalance on statistical power remains hard to be excluded, and further rigorous evaluation is 

required to confirm the associations with other diseases and the safety of MKRN1 as a drug target. 

Beyond MKRN1, our multi-omics framework highlighted other genes warranting investigation. CCDC92, an 

interferon-stimulated protein involved in innate immunity[113], has been previously linked to depression and 

schizophrenia[114, 115]. HARS and HARS2 belong to the family of histidyl-tRNA synthetases, which are responsible 

for synthesizing histidyl-tRNA, a process crucial for the synthesis of proteins containing histidine[116]. HARS has 

been implicated in peripheral neuropathy and cognitive impairment[117, 118], while HARS2 primarily exerts its 

function within mitochondria[119] and is associated with bipolar disorder and schizophrenia[120]. 

Our study has several strengths. First, we combined PWAS, MR, and colocalization analysis, incorporating pQTL data 

from multiple sources to identify high-confidence results and effectively control for potential biases. Second, the Phe-

MR results ruled out adverse effects of MKRN1 on other critical systems or organs, enhancing its value as a drug 

target. Finally, differential expression analysis using external datasets confirmed the directionality and significance of 

MKRN1’s effects, increasing the reliability of our conclusions. 

Our study has limitations. First, while the included GWAS data cover populations from Europe, East Asia, and Africa, 

biases may arise due to incomplete representation across age groups and ethnic backgrounds, requiring larger studies. 
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Second, brain pQTL resources from ROSMAP and Banner remain modest in scale, constraining statistical power for 

protein discovery. Third, the extrapolation of pQTL effects from mixed-sex, aging cohorts to postpartum women 

assumes shared genetic regulation across biological states, an assumption that requires validation in pregnancy-

specific molecular datasets. 

Methodologically, PWAS, SMR, and TWAS analyses leverage mathematically related frameworks using overlapping 

genomic resources, which may partially explain their convergent findings. Meanwhile, each method has distinct 

features and provides complementary perspectives in terms of interpretation and hypothesis testing, thus we believe 

these approaches together offer different layers of evidence that strengthen the validation of the observed gene–

phenotype relationships and provide indirect sensitivity support for single-variant associations tested in SMR. For 

HEIDI tests, some proteins had fewer than 10 available SNPs after LD-based clumping, reflecting inherent constraints 

in current pQTL datasets that may reduce statistical power. Additionally, while blood-based methylation data provide 

accessible systemic profiling, tissue-specific regulatory differences between blood and brain limit direct pathological 

interpretations. Future work will be needed to validate these findings and to further explore the relationship of shared 

biomarkers between blood and brain. Finally, our validation using MDD samples and chronic stress models, while 

reasonable approximations given PPD-specific data scarcity, cannot fully capture the unique neurobiology of the 

peripartum period. 

In summary, we have identified MKRN1 as a risk gene for PPD, supported by comprehensive multi-omics evidence 

spanning genomics, proteomics, and druggable proteome profiling. The strong correlation between MKRN1 and 

depression  underscores its viability as a novel peripheral biomarker and therapeutic target with preliminary support 

for lowering unintended effect risks in clinical use, highlighting MKRN1’s role in shaping both the molecular 
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understanding and clinical management of the disorder. 
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FIGURE LEGENDS 

Fig. 1 Flowchart of the integrated analysis to identify risk genes and potential therapeutic targets for PPD. The 

study employed a three-step integrative approach to systematically identify risk genes associated with PPD and 

evaluate their potential as therapeutic targets. Risk Gene Identification: GWAS data for PPD were integrated with two 

independent human brain pQTL datasets, including the Religious Orders Study and Rush Memory and Aging Project 

(ROSMAP) and the Banner Sun Health Research Institute (Banner) datasets, to perform a two-stage PWAS. 

Significant genes were further validated using colocalization analysis and MR, ensuring convergent evidence for their 

association with PPD. Safety Evaluation: Phenome-wide association studies using Phe-MR were conducted to assess 

the safety of identified genes as drug targets by excluding associations with potential adverse phenotypic outcomes. 

Validation and Characterization of Gene Dysregulation: Differential methylation analysis was conducted on blood 

samples from PPD patients to investigate the epigenetic effects of risk genes. RNA expression analysis was performed 

on key brain regions (AnCg, dlPFC, and nAcc) and blood samples (whole blood and leukocytes) from MDD patients 

and mouse models, confirming the abnormal expression of risk genes in brain and their potential as peripheral 

biomarkers. This step validated the dysregulation of the identified genes in the context of depression. Functional 

enrichment of co-expression network further highlighted underlying biological effects of risk genes. 

Fig. 2 Miami plot for the PWAS results. (a) Significant risk genes identified in ROSMAP. (b) Significant risk genes 

identified in Banner. Each point represents a single test of association between a gene and PPD ordered by genomic 

position on the x axis and the association strength on the y axis. “Positive” and “negative” displayed above and below 

the central axis indicate the direction of association. The red horizontal line reflects the significant threshold of the P-
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FDR < 0.05. 

Fig. 3 TSMR results indicating causal effects between PPD and risk genes. (a) All the selected genes demonstrate 

consistent evidence across SMR and TSMR. Columns: Exposure, Method (causal effects estimating methods), NSNPs 

(number of SNPs included), Log₂OR(95% CI) (values > 0 indicate increased PPD risk and < 0 indicate decreased risk). 

(b) Integrated summary of evidence for each gene. The concentric rings, from outermost to innermost, display: the 

significance of the TSMR analysis (P-value), the posterior probability of colocalization (H4) in the ROSMAP dataset, 

and the H4 in the Banner dataset. Among these genes, only MKRN1 pass the colocalization analysis in both the 

ROSMAP and Banner datasets. 

OR, Odds Ratio; CI, Confidence Interval. 

Fig. 4 Multi-stage identification of MKRN1 as a risk gene for PPD and evaluation of its pleiotropic effects. 

(a) Sankey diagram illustrating the multi-stage analytical pipeline for prioritizing PPD risk genes. MKRN1 was the 

only gene supported by all five lines of evidence. (b) Venn diagram showing common targets across PWAS, 

colocalization analysis, SMR, and TSMR, with MKRN1 identified as the only gene supported by all methods. (c) 

Manhattan plot for Phe-MR of MKRN1 across 783 disease traits. Horizontal coordinates represent different disease 

categories, with each dot representing a disease trait. The dashed line corresponds to P-value adjusted by the 

Bonferroni method (P = 0.05/783 = 6.39 × 10−5). 

Fig. 5 Differential expression of MKRN1 in various tissues of depressive patients and mice, and functional 

enrichment of its co-expression network. (a) The methylation degree of the CpG island of MKRN1 is significantly 

decreased in blood samples of PPD patients. (b) MKRN1 is significantly upregulated in the AnCg of MDD patients. 
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(c) MKRN1 is significantly upregulated in the AnCg of UCMS mouse model. (d) MKRN1 is significantly upregulated 

in whole blood of MDD patients. (e) MKRN1 is significantly upregulated in leukocytes of MDD patients. (f) MKRN1 

is significantly upregulated in the whole blood of OVX and CMS mouse model. In panel a, the β-value shows the 

average methylation level across all probes that correspond to a CpG island in the MKRN1. In panels b–f, MKRN1 

expression levels were normalized. (g) Gene Ontology (GO) terms enriched for MKRN1 co-expression network. BP: 

Biological Processes; CC: Cellular Components; MF: Molecular Functions. 
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