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Circulating tumour DNA analysis predicts relapse and improves
risk stratification in primary refractory multiple myeloma
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Dear Editor,

Multiple myeloma (MM), an incurable plasma cell malignancy,
is the second most common form of blood cancer with a 5-year
overall survival (OS) of 48.5% for newly diagnosed (ND) MM
patients [1]. Prospective real-world evidence shows that 23% of
NDMM patients relapse within 12 months (primary refractory) of
starting bortezomib-based first-line therapy (1L) with a sub-
sequent median OS of only 16.8 months [2-4]. Moreover, 15%
of patients have a sub-optimal response (SOR) (<partial
response but without progression) to 1L [3, 4]. Genomic
analysis of these primary refractory patients could provide
prognostic insight for the design of alternative secondary
treatment approaches with 1L and/or emerging novel anti-MM
drugs to improve patient outcome.

We and others have demonstrated that circulating cell-free
tumour DNA (ctDNA) analysis is rapidly emerging as a robust non-
invasive adjunct to bone marrow (BM) biopsy, in this spatially
heterogenous disease, for comprehensive genomic analysis,
therapeutic monitoring and defining the underlying biology of
resistance in MM (reviewed in ref. [5]). In this study, utilising a
validated and custom-designed ultradeep targeted amplicon
sequencing (TAS) methodology [6], we analysed peripheral blood
plasma-derived ctDNA and paired BM MM cell DNA obtained
from patients enrolled in the Australasian Leukemia and
Lymphoma Group (ALLG—ACTRN12615000934549) MM17 trial
—a Phase |l trial of response adaptive salvage treatment with
carfilzomib, thalidomide and dexamethasone (KTd) for transplant-
eligible NDMM patients (n = 50) failing bortezomib-based 1L ([7],
Supplementary Methods and Supplementary Fig. 1A (SF1A)). A
total of 169 samples (and paired germ-line controls from n =48
patients) were subject to TAS, with specific cohorts of samples
utilised for further analysis at study entry (baseline) and then
sequentially to characterise and compare the dominant clones at
both baseline and at relapse (Supplementary Fig. SF1A, B).

Comparison of the BM and ctDNA baseline mutational
profiles indicated that 70.9% of patients had at least one
shared mutation or 80.6% of patients when BM mutational data
was compared with any plasma timepoint (Supplemental Data
2). KRAS mutations (42%; 13/31) and ATR mutations (29% (9/31)
(Supplementary Fig. SF2A) were the most frequent in BM
baseline samples while ATR (36.2%, 17/47) and, FGFR3 and ATM
mutations (27.7%, 13/47) occurred frequently in baseline ctDNA
(Supplemental Data 2 and Supplementary Fig. SF2B). Chi-square
test of baseline BM and ctDNA mutational profiles between

patients who did (relapse; n = 18 ctDNA and n =10 BM) or did
not relapse (non-relapse; n =29 ctDNA and n =21 BM) on KTd
identified no significant differences in the BM analysis (Supple-
mental Data 3), while baseline mutational ctDNA profiles
revealed both BRAF (P=0.02) and TP53 (P =0.06) mutations
being more frequent in relapse patients. We next performed a
mutational spectrum comparing only ctDNA variants with >1%
variant allele frequency (VAF), a threshold that we have
previously demonstrated to correlate with survival [6, 8] and
observed an increased proportion of baseline RAS/RAF and
ATM/ATR/TP53 (DNA damage repair or DDR mutations) in
patients who subsequently relapsed (Fig. TA). A chi-square test
for relative proportions of patients with specific ctDNA
mutations (>1% VAF) also identified a statistically significant
difference between relapse and non-relapse for RAS/RAF (22.2%
vs 3.4%, P=0.04) and DDR (55.5% vs 20.6%, P =0.01) (Fig. 1B
and Supplemental Data 3). As a result of the differences in RAS/
RAF and DDR pathway mutations, our subsequent analyses
were categorised for patients with (BM+ or ctDNA+) or without
(BM- or ctDNA-) RAS/RAF and DDR pathway mutations.

We performed correlation of progression-free survival (PFS)
and OS based on RAS/RAF and/or DDR ctDNA mutations when
combined with recognised MM diagnostic risk factors including
the International Staging System (ISS) stage (Fig. 1C, D and
Supplementary Figs. SF3 and 4), SKY92 MMProfiler™ risk status
(Fig. 1E, F and Supplementary Fig. SF5), response to 1L therapy
(Supplementary Fig. SF6), response to KTd (Fig. 1G, H), lactate
dehydrogenase levels (Supplementary Fig. SF7) and cytoge-
netics (Supplementary Fig. SF8 and Supplementary Table ST1).

The mutational spectrum of RAS/RAF and DDR mutations in BM
and ctDNA in MM patients categorised by ISS stage demonstrated
an increase in these mutations in advanced stages (Supplemen-
tary Fig. SF3A, B, respectively). Kaplan-Meier survival analysis of
groups of patients based on the presence of mutations, BM+ or
BM- and stage (ISS 1 vs ISS 2+ 3) indicated that BM mutation
status combined with ISS did not demonstrate any significant
differences between the groups in PFS (P=0.07, Fig. 1C) while
ctDNA+ ISS 2 + 3 patients had significantly shorter PFS (P = 0.001,
Fig. 1D). OS for both BM and ctDNA were not significantly different
(P=0.45 for BM, Supplementary Fig. SF4A or P=10.12 for ctDNA,
Supplementary Fig. SF4B).

We next combined ctDNA status with the SKY92 risk profile
identified through BM analysis from n =21 patients (Standard
risk, SR= 11 and High risk, HR = 10, Supplementary Data 1). This
analysis utilised equal numbers of patients for BM and ctDNA
analysis. The combination of BM mutation status with SKY92
risk indicated an association with PFS (P = 0.06, Fig. 1E). Patients
that were SKY92 HR and ctDNA+ had a significantly shorter PFS
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Fig. 1 RAS/RAF and DDR gene mutations are associated with relapse and MM high-risk factors. A A representation of the ctDNA
mutational spectrum (>1% VAF) in non-relapse and relapse patients indicates an increasing proportion of mutations in RAS/RAF (dark blue)
and DDR genes (ATM/ATR/TP53, blue) B Chi-square tests proportion of RAS/RAF (P =0.04) and DDR gene (ATM/ATR/TP53, P =0.01) ctDNA
mutations >1% VAF in patients that did (relapse, n = 18) or did not (non-relapse, n =29) on KTd salvage therapy. C Kaplan-Meier survival
analysis based on the presence of mutations (negative (BM-) or positive (BM+) for ATM/ATR/TP53 or RAS/RAF)) and stage (ISS 1 vs ISS 2 + 3)
indicated no significant differences in PFS (P = 0.07, Log-rank test; Median PFS in months (95% Cl): NR (NA, NA) for ISS 1 and both BM- and BM
+; 3.55 (3.25, NA) for ISS 2 + 3 and BM-; NR (11.14, NA) for ISS 2 + 3 and BM+). D Kaplan-Meier survival analysis based on the presence of
mutations (negative (ctDNA-) or positive (ctDNA+) for ATM/ATR/TP53 or RAS/RAF) and stage (ISS 1 vs ISS 2+ 3) indicated that advanced
patients (ISS 2 + 3) with ctDNA+ had shorter PFS (P=0.001, log-rank test; median PFS in months (95% Cl): NR (NA, NA) for ISS 1 and both
ctDNA- and ctDNA+; NR (14.49, NA) for ISS 2 + 3 and ctDNA-; 23.72 (2.17, 41.53) for ISS 2 + 3 and ctDNA+). E Kaplan-Meier survival analysis
based on BM+ or BM- and SKY92 risk profile (HR or SR) indicated a non-significant trend towards shorter PFS (P = 0.06, log-rank test; median
PFS in months (95% Cl): NR (NA, NA) for SR and BM-; NR (3.55, NA) for HR/SR and BM-/+; 23.92 (0.99, NA) for HR and BM+). F Kaplan-Meier
survival analysis based on ctDNA+ or ctDNA- and SKY92 risk profile (HR or SR) indicated that SKY92 HR and ctDNA positive patients had
shorter PFS (P = 0.003, log-rank test; median PFS in months (95% Cl): NR (NA, NA) for SR and ctDNA-; NR (3.25, NA) for HR/SR and ctDNA-/+;
17.94 (0.99, NA) for HR and ctDNA+). G Kaplan-Meier survival analysis for PFS in patients that are negative for both (BM-) versus positive for
either or both DDR and RAS/RAF mutations in the BM on KTd therapy (BM+). No significant difference in PFS was noted (P = 0.822, log-rank
test; median PFS in months (95% Cl): NR (3.25, NA) for BM—; NR (23.92, NA) for BM+) H Kaplan-Meier survival analysis showed a significantly
shorter PFS (P = 0.005, log-rank test) for patients with mutations in ctDNA+, median PFS in months (95% Cl) = 28.35 (3.55, NA), compared to
ctDNA-, median PFS in months (95% Cl) =NR (NA, NA), on KTd). MM multiple myeloma, 1L first-line therapy, BM bone marrow, ctDNA
circulating tumour DNA, ISS International Staging System, PFS progression-free survival, OS overall survival, SR SKY92 standard risk, HR SKY92
high risk, VAF variant allele frequency, KTd carfilzomib-thalidomide-dexamethasone, BM+ RAS/RAF and DDR-positive, BM— RAS/RAF and DDR
negative, ctDNA+ RAS/RAF and DDR positive, ctDNA- RAS/RAF and DDR negative, Cl confidence interval, NR not reached, NA not available.

Figures were generated using Biorender.com.

(P=0.0026, Fig. 1F). Similar to ISS analysis, the OS for both BM
and ctDNA did not reveal significant differences (BM OS,
P =0.45, Supplementary Fig. SF5A; ctDNA OS, P = 0.24, Supple-
mentary Fig. SF5B). The correlation of ctDNA mutations to 1L
therapy revealed an increasing proportion of RAS/RAF and DDR
in refractory compared to sub-optimal patients (Supplementary
Fig. SF6). The presence of ctDNA mutations did not correlate
with LDH levels or cytogenetics (Supplementary Figs. SF7 and
SF8, respectively).

We finally performed Kaplan-Meier survival comparing BM/
ctDNA status of patients on KTd salvage therapy. BM analysis did
not reveal any significant differences in PFS or OS (P=0.82;
Fig. 1G or Supplementary Fig. SF9A, respectively). However, ctDNA
comparison was associated with a significantly shorter PFS
(median =284 months, P=0.0046, log-rank test, Fig. 1H)
compared to patients with no RAS/RAF and DDR mutations
(median not reached) with a weak association for OS (P = 0.06,
log-rank test, Supplementary Fig. SF9B).

Sequential ctDNA kinetics of relapse patients was performed
to understand the biology of disease progression (Supplemen-
tary Fig. SF1B and Fig. 2). We observed that in 14/16 (87.5%) of
the patients, at least one mutation at relapse/pre-relapse was
already present at the start of therapy. Moreover, the mutation
with the highest VAF at relapse was present at baseline in 9/16
patients (56%, patients 2, 5, 11, 13, 18, 19, 23, 40, 42; Fig. 2B, C,
E, G, H, I, K, O, Q; respectively), whereas in 2 patients, the
dominant mutation at relapse/pre-relapse was present at C3D1
(patients 7 and 32; Fig. 2D, M, respectively). In the remainder, a
unique mutation was seen for the first time at pre-relapse,
patient 12, or relapse, patients 30, 37 and 41 (Fig. 2F, L, N, P;
respectively). In one patient, patient 21, no mutations were
detected at relapse and only 1 mutation was present at baseline
(Fig. 1J). The new mutations that emerged at relapse included
KRAS mutations (p.G12R and p.Q61H) and mutations in CYLD
and GNAS (Fig. 2).

These data confirm the potential of ctDNA as a robust and
risk-free methodology and support the notion that ctDNA can
effectively augment BM mutational analysis for MM, particularly
in the setting of large multicenter clinical trials, where ensuring
the necessary quality of BM sampling is especially challenging.

Blood Cancer Journal (2023)13:25

Our ctDNA analysis demonstrated a correlation between RAS/
RAF and DDR pathway mutations and shortened PFS but a clear
conclusion could not be made with OS due to sample size,
event rate and follow-up.

The RAS/RAF pathway is the most frequently mutated
pathway in MM [9-11] but the criteria for the selection of
patients that would benefit from therapy is unclear. Our data
provides a preliminary rationale for a personalised approach
using RAS/RAF pathway inhibitors based on ctDNA mutation
status. Likewise, an ineffective apoptotic response to DNA
damage appeared to be a significant prognostic factor in this
trial. Notably, the results from this study have reinforced
previous findings, both with BM and ctDNA studies, that DDR
gene mutations are markers of high risk [6, 8, 10, 12, 13],
providing a context for the use of DNA-repair therapeutics in
primary refractory patients. Our sequential analysis of plasma
samples in patients that relapsed has provided substantial
insight into the biology of disease progression in MM. The
presence of high-risk secondary genetic events at relapse is
known to be present at subclonal levels at diagnosis utilising
BM analysis [14] and our study has provided novel evidence
that this is recapitulated with ctDNA analysis. It will be
interesting to ascertain if the mutations at the start of therapy
in this trial were already present at the ND stage for this set of
patients and could be responsible for the sub-optimal/
refractory response to bortezomib-based 1L.

The limitation of our study is the modest patient cohort size,
specifically in the BM cohorts. However, given that early
treatment failure is evident in at least 25% of ND transplant-
eligible patients, it is important to first recognise the need for
comprehensive genomic analysis and this can be achieved only
through incremental studies. A larger panel of MM-specific
genes will also provide an improvement to the analysis cohort.
This study is presented as early confirmatory data on
ctDNA utility and requires validation with expanded BM and
ctDNA sample cohorts from NDMM, primary refractory
and eventually double refractory patients to identify the
prognostic factors/biomarkers that can then be utilised for a
ctDNA-based “risk” test to steer these patients to alternative
therapeutic options.

SPRINGER NATURE



Correspondence

: C3D1/ EOS/ S
el | = Relapse o Relapse o

-+ BRAF p.G432E

SIS
cfDNA

e 2 - ATMpRI6I9G
W W =~ TP53 p.S56G
==~ FGFR3 p.H617L
Targeted amplicon SNVS;[‘?EIGUO(I;S, ;
sequencing insertion an
frameshift

C. D.

(e}
(el
g
>
g
Z
>
Variant Allele Frequency (%)

=

Fatent Patient 7 Patient 11
s
s
’ ATMpYI71£#13 e BRAFp.GI2R ~e= ATR pR1750f5*10
e - ATMpRIGIG -+ DIS3 pMI33E*12
~ RBIpRT3G 2 & 6
< = ACTGI pHSTD £ < ARpSIR - § - MASp
= = EGRI pS67del z., oRIpSerdel S PATARS
g, g - BRAFPLOSV £ 2
H H g
g H H
£ = z
£ o £
2 2 3
E -}
i i E
B B K
Baseline C3D1 Relapse Baseline C3p1 EOS Relapse Baseline - BM  Baseline - ctDNA Relapse

2
=

Patient 18

\/.

F. Patient 12 Patient 13

= ATRpIT74fs*S

- ATRpRITSO0R*10 == ATRpRITSOR*10
= PRDMI pL220%*14 Q

= ATMpLISIA*14 <

- CYLDps3P Y

- CYLDpI766f5*7

7

Variant Allele Frequency (%)

Variant Allele Frequency (%)

Variant Allele Frequency (%)
7 B

Baseline C3D1  EOS - 9 months to relapse M -
Baseline <31 Pre-Relapse Baseline C3p1 Relapse
L Patient 19 J. Patient 21 K.
g8 & )
o= ATR pF612f5*18 Patient 23
== DIS3 pI64SE*3 - TPS3pR2SOL 25
s Cvoprn o
g > 2
z = S e FGFRS pRASE29
S £ = = ATRpRITSOR*10
H g F
5 £ L
En s £
] 5 2w
i :
- £
- H]
Sus
. Baseline C3D1  Pre-Relapse (2 months)

Baseline C3D1 Relapse Baseline C€3D1  EOS - 8 months to relapse

=
Z

Patient 30
- KRASpGI2R Patient 32 Patient 37
== KRASp.GI2R s
15
- ATM p.WIT9SR = KRAS pQ6IH
- RBIpR73* - RBIpPS6ss - ATMpWITOSR
g - === FGFR3 p.A393_L400de! I == PIKICApF8317
z £ = RBIpRT3s*? =
H & = FGFR3 pR67I_V672delinsVF £
i 2 H
g £ g’
£ g
3" H i
H £ i
£, E H
E § S
o
Baseline C€3p1 Relapse Baseline c3n1 Relapse Baseline c3p1 Relapse
O ] P' Q‘ Patient 42
Patient i
. ent 40 Patient 41 20 = DIS3 pMIZ3R*12
x 2

- ATMpWIT9SR
- ATR pK2206fs*3

= NRAS pQOIK - PRDMI pL220s*14
= NRASPpGI3R =+ GNAS p.Q352delinsRPLT
- ATRpK2206:%3 20 i - TPS3pFI09S
n = DIS3 pVSTIG z
== FGFR3 pR6TI_V672delinsVF
\ '
Baseline Relapse

Baseline c3p1 Relapse

Variant Allele Frequency (%)

Variant Allele Frequency (%)

Variant Allele Frequency (1%)

Baseline Relapse

Fig.2 The dominant mutations at relapse are already present at the start of therapy. A Schematic of the analysis performed to assess the
kinetics of ctDNA during treatment and subsequent relapse. B-Q Sequential ctDNA TAS analysis of 16 patients that relapsed with the VAF of
the mutations present at each of the time points shown in the line graph. In 87.5% of the patients, at least one mutation at relapse/pre-relapse
was already present at the start of therapy. cfDNA cell-free DNA, ctDNA circulating tumour DNA, BM bone marrow, C3D1 cycle 3 day 1, EOS
end of study, VAF variant allele frequency, TAS targeted amplicon sequencing. Figures were generated using Biorender.com.
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DATA AVAILABILITY

The targeted amplicon sequencing annotated dataset utilised to perform analysis for
the study are available in Supplementary Data 2 as an excel file. Statistical analysis for
the Chi-Square tests is available in Supplementary Data 3 as an excel file. The raw
sequencing data are part of a larger treatment-based unpublished study and are
available on reasonable request from the corresponding authors.
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