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Historically, CLL prognostication relied on disease burden, reflected in clinical stage. Later, chromosome abnormalities and
genomics suggested several CLL subtypes which were aligned with response to therapy. Gene expression profiling data identified
pathways associated with CLL progression. We hypothesized that transcriptome and proteome may identify functional omics
associated with CLL nosology. As a test cohort, we utilized publicly available treatment-naïve CLL transcriptomics data (n= 130)
and did consensus clustering that identified BTK-expression-based clusters. The BTK-High and BTK-Low clusters were validated in
public and our in-house databases (n= >550 CLL patients). To associate with functional relevance, we took samples from 151
previously treated patient with CLL and analyzed them using RNA sequencing and reverse-phase protein array. Transcript levels
were strongly correlated with BTK protein levels. BTK-High subtype showed increased CCL3/CCL4 levels and disease burden such as
high WBC. BTK-Low subtype showed down-regulated mRNA/proteins of DNA-repair pathway and increased DNA-damage-
response, which may have contributed to enrichment of inflammatory pathway. BTK-Low subtype was rich in proapoptotic gene
and protein expression and relied less on BCR pathway. High-BTK subgroup was enriched in replication/repair pathway and
transcription machinery. In conclusion, profiling of 5 datasets of ~700 patients revealed unique BTK-associated expression clusters
in CLL.
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INTRODUCTION
Historically, CLL prognostic classification started with disease burden
reflected in Rai and Binet staging [1]. Genetically, the disease could
be segregated based on chromosomal anomalies such as del(17p),
del(11q), trisomy 12, and del(13q) [2]. These chromosomal altera-
tions have been standard in disease prognostication as they are
highly correlated with disease course and therapy outcomes.
Targeted next generation sequencing (NGS) and genomic
mutations in TP53, ATM, NOTCH1, SF3B1, XPO1, BIRC3 further
extend these prognostic features to define risk-categories [3].
IGHV mutation status is another important marker which can help
in disease predictions, with finite-duration treatment such as
chemoimmunotherapy and BCL2-inhibitor-based treatments [4].
While many of these genetic and genomic anomalies were
defined as attributes of poor prognosis, with targeted therapeutics
these differences are dissipated or decreasing for many such
markers [1].
Prior studies in leukemias [5–7] and lymphomas [8] suggested

utility of transcriptomics in identifying disease subgroups. For CLL,
only subtypes based on prognostic factors, cytogenetics, and

genomics [1–3] are available. Gene expression profiling data
identified pathways associated with CLL progression [9]. We
hypothesized that gene or protein expression analyses may
provide functional omics to identify additional CLL subtypes.
Current work focuses to this end.
To enrich number of patients and samples, we initially utilized

publicly available transcriptomics data from 130 CLL patients to
develop and test our hypothesis [9]. Then to test and validate, we
used two additional sets and profiled RNA from MD Anderson
cohorts. Further, we used reverse-phase protein array data to
relate the functionality. In total, data from 682 patients were
evaluated in the current meta-analysis of CLL. Our initial
unsupervised hierarchical clustering analysis of most variable
transcripts in the microarray data from 130 CLL patients indicated
strong association with BTK expression. To further explore and
evaluate this association, consensus hierarchical clustering [10]
was performed on the normalized expression data using 5000
genes with the highest median absolute deviation (MAD). The
consensus clusters were (k= 2) significantly associated with BTK
transcript expression levels that we describe as BTK-Low and BTK-
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High subtypes. Using the same algorithm, normalized expression
data from other datasets were analyzed.
To identify transcripts associated with BTK-Low and BTK-High

subtypes, we performed differential expression analysis between
the clusters. Downstream expression analysis on five cohorts
indicated that there were distinct gene expression patterns
among the two subtypes. BTK-High subtype showed increased
CCL3/CCL4 levels and disease burden. BTK-Low cohort showed
down-regulated mRNA and proteins of DNA-repair pathway and
increased DNA-damage-response which may have contributed to
abundance of inflammatory pathway transcript and proteins. BTK-
Low subtype relied less on BCR pathway and more on other
signaling axes. High-BTK subgroup was enriched in mRNAs of
replication pathway and transcription machinery. In conclusion,
consensus clustering of gene expression data suggested two
subtypes which were closely associated with BTK expression level.

PATIENTS AND METHODS
Description of CLL patient data sets
Gene expression datasets from five cohorts were used for the meta-
analysis (Supplementary Table 1) of patients with CLL. Initial clustering and
assessment of association with BTK mRNA expression was performed using
Affymetrix Microarray data set that has 130 patients [9] designated as Set1.
In addition, we tested this hypothesis in two other publicly available
expression cohorts [11, 12], named as Set2 and Set3. These expression
datasets were profiled by Affymetrix Microarray and RNA sequencing,
respectively. These three cohorts had RNA samples from treatment-naïve
and previously treated patients, that included a total of 531 CLL patients.
We further validated these results in two additional cohorts (Set4 and Set5)
at MD Anderson after profiling RNA using Next-generation sequencing
from a total of 151 patients who were previously treated or untreated.

Patients and sample collection
In case of samples in Set4 and Set5 (in house collection and analyses),
peripheral blood samples were obtained from patients with CLL. Collection
and use of patient samples were obtained by informed consent and
approved by the University of Texas MD Anderson Cancer Center
Institutional Review Board. The clinical patient characteristics and previous
treatments are summarized in Supplementary Table 2.

Peripheral blood collection and sample preparation
Blood from patients was collected into Vacutainer glass green top (sodium
heparin) tubes for the isolation of plasma and white blood cells (Becton
Dickinson). The tubes were centrifuged to separate the plasma, and the
remaining blood was processed immediately by Ficoll-Hypaque density
gradient separation, as described previously [13]. The peripheral blood
mononuclear cells (PBMCs) were isolated and washed twice with
phosphate-buffered saline, and the cell numbers were determined using
a Z2 Coulter Particle Count and Size Analyzer (Beckman Coulter). Cell
pellets were stored in liquid nitrogen vapor phase or in –80 °C freezer.
Previous studies from our group have quantitated >90% CLL cells in such
population [14]. Cells were used for RNAseq and RPPA (471 antibodies)
(Supplementary Table 3).

Measurement of chemokine levels
Levels of chemokines such as CCL2, CCL3 (Mip-1α) and CCL4 (Mip-1β) in
plasma were quantitated using Quantikine enzyme-linked immunosorbent
assay immunoassays (R&D Systems). Absorbance was measured at a
wavelength of 450 nm, using a microplate reader (Powerwave XS BioTek
Instruments). The results are presented as the means of duplicate analyses
in picograms per milliliter.

Next generation mRNA sequencing
RNA was isolated from cell pellets using Qiagen RNeasy Mini Kit (Qiagen,
Hilden, Germany, 74104) according to the manufacturer’s instructions.
During the procedure, traces of DNA contamination were eliminated using
DNases. The total RNA extracted were quantitated and qualified using
ThermoFisher Nanodrop 1000 and Agilent Technologies Bioanalyzer 2100
RNA 6000 nano assay kit (PN 5067-1511). The qualified total RNA with
RIN > 9.0 were processed for sequencing library construction using Illumina

Truseq stranded mRNA library preparation kits (Illumina, PN RS-122-2101
and RS-122-2102), following guidance of Illumina Truseq stranded mRNA
protocol. In Brief, 100 ng of total RNA were used for poly(A) containing
mRNA enrichment using oligo(dT) coated magnetic beads. The purified
mRNA was fragmented into small pieces using divalent cations under
elevated temperature. The RNA fragments were then reverse transcribed
into first strand cDNA using reverse transcriptase and random hexamers
primers for RT priming, followed by second strand cDNA synthesis using
DNA polymerase I and RNase H. These double strand cDNA fragments
were end-repaired and then Adenylated 3ʹ Ends with the addition of a
single ‘A’ base to prevent self-ligation during subsequent ligation to the
illumina index-specific adapters that has a single “T” at 3ʹ end which
provides complementary overhang for ligating the adapter to the
fragment. The raw library products are purified and enriched by PCR to
create the final cDNA sequencing library. The final sequencing library
contains both coding RNA, as well as multiple forms of poly-adenylated
non-coding RNA in flank with P5 and P7 adaptors with R1, R2 and i7 index
primer binding regions. The individual final library with index was
quantified by Agilent Bioanalyzer and normalized before they were pooled
into a multiplex sequencing library.
Sequencing was performed on Illumina Nextseq 500 sequencer using

TruSeq High Output Kit V2 150 cycles, (FC-404-2001) in PE75 sequence run.
To ensure the sufficient data coverage for high, medium, and low copy
number transcripts transcribed, fifteen indexed mRNA libraries were
pooled and sequenced per flow cell run with output data 60-70 million PE
reads per sample. Sequencing data QC matrix was measured by
Q30 > 90%. The raw data bcl files were de-multiplexed and converted
into fastq file by using Illumina bcl2fastq2 conversion V 2.19 software.

RNA sequence analysis
The raw reads from tumors were aligned to the Human genome (GRCh38),
with Star transcriptome alignment tool [15]. HTseq software was utilized to
summarize the gene expression counts from alignment data [16].
Normalization of counts and differential expression analysis was performed
on the read counts with the R package DESeq2 [17].

Analysis of microarray data
The Affymetrix data was background corrected, normalized and summar-
ized by Robust Multichip Average (RMA) algorithm. A unique representa-
tive probe set was selected for each gene based on the overall score
estimated by Jetset for the Affymetrix HGU133plus2 arrays [18]. Differential
expression analysis was performed using t-tests on the normalized
expression data.

Gene expression analysis
Hierarchical clustering (Pearson distance and ward linkage) and principal
component analyses were used for unsupervised expression investigation.
Further, consensus hierarchical clustering [10] was performed by Pearson
distance and ward linkage using genes with the highest median absolute
deviation (n= 5000). The hierarchical clustering was repeated 10,000
times, taking a subset (80%) of samples and genes for every iteration to
generate robust consensus groups. Significant differentially expressed
genes were defined by false discovery rate of 0.05 and log fold change
threshold of 1. Pre-ranked Gene Set Enrichment Analysis (GSEA) based on
differential expression and Gene Set Variation Analysis (GSVA) was
performed using the Hallmark and KEGG pathway databases to assess
the function of subtypes [19, 20].

Reverse phase protein array (RPPA)
Cell pellets were lysed in mammalian protein extraction reagent with
protease and phosphatase inhibitor cocktails for 30 min on ice. Then, the
cell lysate was centrifuged and the supernatant was collected. Protein
concentration was determined by BCA assay (Thermo Fisher Scientific) and
was adjusted to 1 to 1.5 μg/μL. Cell lysate was mixed with 4× SDS sample
buffer and the samples were boiled for 5 min. RPPA data were generated
at MD Anderson Cancer Center Functional Proteomics RPPA Core Facility.
Briefly, denatured cellular proteins were diluted in five twofold serial

dilutions in dilution lysis buffer. Serial diluted lysates were arrayed on
nitrocellulose‐coated slides (Grace Bio Lab) by Aushon 2470 Arrayer
(Aushon BioSystems). Each slide was probed with a validated primary
antibody plus a biotin‐conjugated secondary antibody. A listing of the
antibodies used for RPPA is in Supplementary Table 3. Only antibodies with
a Pearson correlation coefficient between RPPA and western blotting of
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greater than 0.7 were used. The signal obtained was amplified using a
Dako Cytomation–Catalyzed system (Dako) and visualized by DAB
colorimetric reaction. The slides were scanned, analyzed, and quantified
using a customized software to generate spot intensity. Relative
protein levels were quantified using the SuperCurve method implemented
in R [21]. The relative levels were normalized for protein loading and
median centered for downstream data analysis. Differential protein
analysis was performed using t-tests. Significant differentially expressed
proteins were defined by false discover rate of 0.05 and log fold change
threshold of 1.

BTK protein immunoblots and protein quantitation
CLL cells were lysed at 4 °C in radioimmunoprecipitation assay buffer
supplemented with 1 mini complete Protease Inhibitor (Roche) tablet
per 10 mL of buffer, and protein content was measured using a DC
protein assay kit (Bio-Rad) according to the manufacturer’s protocol.
Total protein (30 μg) was boiled with Laemmli sample buffer and loaded
onto SDS-polyacrylamide gel and transferred to PVDF membranes (GE
Osmonics Labstore, Minnetonka, MN). The membranes were blocked at
room temperature for 1 h in Odyssey blocking buffer (LI-COR Inc), then
incubated with primary BTK (catalog # 85475, Cell Signaling) and vinculin
(catalog # 13901, Cell Signaling) antibodies. After washing with
phosphate buffered saline with 0.05% Tween-20, membranes were
incubated with infrared-labeled secondary antibodies (LI-COR Inc) for
1 h. Before visualization, membranes were washed 3 times with PBST
then visualized with the use of an LI-COR Odyssey Infrared Imager. BTK
protein bands density normalized to the vinculin bands density in each
extract.

Statistical analysis
Wilcoxon rank sum test was used to determine statistical significance
between the subtypes among molecular markers and pathways. Enrich-
ment analysis using KEGG and Hallmark pathway databases was
performed on common significant genes across all subsets using hyper-
geometric tests. P values obtained from multiple testing, where applicable,
were adjusted by estimating the False Discovery Rate [22]. Treatment-free
survival analysis was performed between the cohorts of patients in the two
subtypes using the Kaplan-Meier estimate.

Ethics approval and consent to participate
All methods were performed in accordance with the relevant guidelines
and regulations. Live vertebrates were not used in this project. Patients
with CLL disease participated in this project. Collection and use of patient
samples were obtained by informed consent from each participant and
protocol to collect patient sample was approved by the University of Texas
MD Anderson Cancer Center Institutional Review Board.

RESULTS
CLL gene expression cohorts
Gene expression datasets from five cohorts were used for the
analysis of patients with CLL (Supplementary Table 1). The initial
dataset (Set1, n= 130; GSE39671) had all previously untreated
patient samples that were profiled using Affymetrix microarrays
[9]. Second and third public data sets were samples from a mix of
treatment-naïve and previously treated patients. The second set

Fig. 1 Consensus clusters of gene expression data from Set 1. Hierarchical clustering of normalized gene expression data revealed two
distinct groups associated with BTK expression (A). The hierarchical clustering was repeated 10,000 times, taking a subset (80%) of samples
and genes for every iteration to generate robust consensus groups. Consensus clustering was performed on the normalized expression data
using 5000 genes with the highest median absolution deviation (B). The consensus clusters (k= 2) are significantly associated with BTK mRNA
expression (C, BTK subtypes). There is significant difference in these BTK subtype’s probability of remaining untreated (progression-free) within
this CLL cohort (D).
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(Set2) was profiled by Affymetrix microarrays while third was
assayed using RNA sequencing (Set3). Fourth data set included
126 patients (Set4); half of them were previously untreated while
other half were previously treated patients whose disease had
relapsed or was refractory to treatment. We used RNAseq to
profile these samples. Last set with smaller number of patients
(Set5, n= 25) had all relapsed/refractory disease and analyses
were done using RNAseq as well as RPPA assays.

Consensus clusters are associated with BTK mRNA expression
Unsupervised hierarchical clustering analysis of most variable
transcripts in the microarray data from Set1 (130 CLL patients),
showed association with BTK expression (Fig. 1A). Consensus
clustering was performed on the normalized expression data
using 5000 genes with the highest median absolution deviation
(Fig. 1B). The consensus clusters (k= 2) were significantly
(p= 1.39e–12) associated with BTK mRNA expression; 47 patients
were in BTK-High and 83 were in BTK-Low groups (Fig. 1C). In
contrast, these clusters did not associate with other clinical
features such as age, gender, IGHV mutation status, and ZAP-70
expression level (not shown). Functionally, these two BTK-groups
showed significant difference in probability of remaining
untreated (progression-free) within the CLL cohort (Fig. 1D). BTK-
Low subtype required treatment in less than 6.5 years after
diagnosis, while BTK-High cohort needed treatment in less than 2
years. To further validate this clustering pattern, other datasets
(Set2–Set5) were analyzed using the same algorithm.
We compared BTK transcript level between consensus clusters

in each cohort. As shown in Fig. 2A–D, in each of the cohorts these
two clusters indicated significant difference in BTK mRNA
expression. So, we deemed these clusters as BTK subtypes based
on the BTK mRNA expression level. Proportion of patients in BTK-
High or BTK-Low subtypes were different in each cohort. While
CD38 positivity is marginally associated with BTK-Low subtype in
Set4 (p= 0.031, n= 129), there is no association in the smaller
internal (Set5) cohort (Supplementary Fig. 1A, B). There is a
significant difference between BTK subtypes among chromosomal
aberrations profiled by FISH (p= 7.927e–06). 13qdel is enriched in
BTK-High group, while trisomy 12 is limited to BTK-Low group to
the most part in Set4. Similar to Set1, BTK-High and BTK-Low
groups did not associate with other features such as age, gender,
IGHV mutation status, and ZAP-70 expression level (not shown).
Other prognostic factors of CLL such as TP53 aberrations,
chromosomal abnormalities [del(17p) and del(11q)], and type of
prior treatment were also not associated with the BTK subtypes
(Supplementary Table 4). For Set2, probability of remaining
untreated (progression-free) data were available (Supplementary
Fig. 2). BTK-Low subtype required treatment in <4 years after
diagnosis, while BTK-High cohort needed treatment in <2 years.
The trend in time to treatment is similar as in Set1 (Fig. 1D),
however Set2 data were not significantly different. In summary,
gene expression data from previously treated or untreated CLL
patients strongly segregated by the underlying BTK mRNA
expression as two subtypes (BTK-Low, BTK-High).

Differential gene expression between BTK-High and BTK-Low
subtypes
To identify transcripts associated with BTK-Low and BTK-High
subtypes, we performed differential expression analyses in all five
cohorts (Supplementary Fig. 3). There were significant numbers of
differentially expressed genes in each of the cohorts, suggesting a
clear distinction between the BTK based subtypes (Fig. 3A–E).
However, the number of upregulated genes in BTK-High and BTK-
Low vary among the cohorts as the underlying expression
platforms used to profile data (RNAseq/Microarray) and tumor
specimen type (TN/RR) were different. Common differentially
expressed among all the cohorts were defined with lower
significance threshold (FDR-0.1, log FC–0.25) considering the

variability among expression cohorts (Supplementary Tables 5, 6).
These genes were illustrated using Venn diagrams; a total of 75
and 128 genes that were upregulated in BTK-High and BTK-Low
subtypes respectively (Fig. 3F). We analyzed if these 75 and 128
genes were associated with signature pathways in BTK-High and
BTK-Low subtypes. While 75 genes did not associate with the
molecular pathways, 128 genes upregulated in BTK-Low cohort
were associated with TNF alpha signaling via NFkB, several
inflammation related pathways; and apoptosis pathway (Supple-
mentary Tables 7, 8) which were further identified in GSEA as
described below.

Inflammatory response and proapoptotic pathways are
enriched in BTK-Low subtype
As there are many genes that were significantly differentially
expressed between BTK-Low and BTK-High cohorts (common and
mutually exclusive), we decided to identify pathways associated
with these genes. Among the Hallmark gene set-enrichment
analyses, inflammatory response related pathways were signifi-
cantly upregulated in the BTK-Low group. Specifically, inflamma-
tory response pathway (Fig. 4A) and TNF-alpha signaling via NF-kB
(Fig. 4B) were enriched in BTK-low subtypes in all the cohorts. The
related pathways in KEGG were also enriched in all sets and were
mostly significant between BTK-Low and BTK-High subtypes
(Supplementary Fig. 4A–J). Rheumatoid arthritis gene set was
higher in BTK-Low subtype and statistically significant in 4 of 5
datasets by ssGSEA score (Supplementary Fig. 5A–E). Similarly,
RIG-1 or DDX 58 which is a sensor of RNA viral infection was also
high in BTK-Low subtype in all five cohorts (Supplementary
Fig. 6A–E).
Among the genes that are associated with apoptotic response,

we separated pro- and anti-apoptotic genes (Supplementary
Table 9). In all the 5 data sets, there was upregulated expression of
proapoptotic gene set in BTK-Low subtype (Fig. 4C). To further
evaluate pathways associated with BTK-Low expressing CLL
patients, we summarized all the KEGG gene sets by z-score which
are significantly higher in BTK-Low group. Among the top
pathways enriched in BTK-Low subset in all 5 cohorts, prolactin,
PI3K, JAK-STAT, NOD-like RTK, cAMP signaling and MAPK signaling
pathways were included, further substantiating results of Hallmark
Pathway analyses (Fig. 4D, Supplementary Fig. 7A–O).

BTK-High group was enriched in BCR pathway and had high
DNA replication and DNA repair gene enrichment
We then explored enrichment of pathways in BTK-High cluster.
This cluster was enriched in BCR pathway, however, that was more
apparent in treatment naïve CLL (not shown). UGT2B17 gene has
been previously shown to be associated with BTK [23]. In our
studies in all 5 sets, there was increased expression of UGT2B17,
which was significantly different in Set 1–3 (data not shown).
Both DNA replication (Fig. 5A) and DNA-repair pathways

(Fig. 5B) were enriched in BTK-High subtype suggesting increased
replication and repair in this group. To identify specific pathways,
we summarized all the KEGG gene sets by z-score in BTK-High
subtype (Fig. 5C). Nucleotide excision repair, non-homologous
end-joining, mismatch repair, and homologous recombination
were all enriched in all cohorts. Further, amino acid and protein
metabolism and DNA replication pathways showed upregulation
in all 5 sets in BTK-High group (Fig. 5C).

Proteomics data associate with BTK-Low and BTK-High CLL
In concert with mRNA data, BTK immunoblot (Supplementary Fig.
8), and quantitation (Fig. 6A) showed statistically significant
association between BTK-Low and BTK-High clusters in the 5th
dataset where we analyzed both transcriptomics and proteomics.
There was a direct, linear, and significant relationship between
BTK protein and mRNA levels representing strong correlation
(Fig. 6B).
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Chemokines (CCL3 and CCL4) are considered biomarkers for CLL
disease [24], proliferation of CLL cells, and reduced by BTK-
inhibitor therapy [13, 25]. There was heterogeneity regarding total
protein levels in plasma of these chemokines (Supplementary
Fig. 9A–C) and both chemokines showed a trend of linear
association with BTK protein level (Supplementary Fig. 9D, E).
Importantly CCL3 (Fig. 6C) showed borderline significant differ-
ence while CCL4 (Fig. 6D) was significantly higher in BTK-High
cluster. In concert with these data, total WBC counts in peripheral
blood of these patients was correlated with the BTK protein, (Fig.
6E) BTK mRNA (Supplementary Fig. 10) and associated signifi-
cantly in two clusters of BTK and was several-fold higher in BTK-
High CLL subtype (Fig. 6F). Collectively, these data were in
concordance with the transcriptomics data suggesting aggressive
tumor growth and replication when BTK transcript and protein
levels were high.
With this nosology of CLL, we compared proteins in the RPPA

data between the two BTK subtypes (Fig. 7A). As observed for
transcript levels, compared to BTK-High subgroup, inflammation
associated proteins were upregulated in BTK-Low subgroup
(Fig. 7B). Consistent with gene expression data, DNA damage

response proteins were expressed at higher levels in BTK-High
cluster (Fig. 7C). This may result in increased genotoxic damage in
BTK-Low subtype which was consistent with enrichment of
inflammatory response in this cohort. Additionally, low expression
of DNA damage response proteins would lead to high H2AX
phosphorylation in BTK-Low subgroup. This was observed with
our data (first row Fig. 7C and Supplementary Fig. 11). Protein
synthesis proteins were expressed at higher levels in BTK-High
subgroup (Fig. 7D) which aligns with higher proliferation,
replication, and greater WBC count in this cohort.
In concert with mRNA data of proapoptotic gene signature in

BTK-Low, cleaved caspase-7 and caspase-8 were significantly
higher in this subtype (Fig. 8A, B). Cells of BTK-Low subtype had
higher protein expression of cyclin D1 and cyclin D3; both are G1-
cell cycle proteins indicating higher G1 population i.e. non-
proliferative fraction (Fig. 8C, D). Consistent with these observa-
tions, replication-related total and phospho-RPA32 was much
higher in the BTK-High subtype (Fig. 8E, F). BCR pathway
(phospho Src as negative regulator, and PKC beta downstream
of BTK) was much lower in the BTK-Low cohort (Supplementary
Fig. 12).

Fig. 2 Consensus clustering is associated with BTK expression in all other 4 cohorts. Normalization of expression data is performed using
RMA and DESeq2 algorithms on Affymetrix microarray (Set2) and RNA sequencing (Set3, Set4, and Set5) datasets respectively. BTK subtypes
are generated using the same consensus clustering methodology in other four cohorts. BTK subtypes in each of these cohorts are significantly
associated (p < 0.05) with BTK mRNA Expression (A-Set2, B-Set3, C-Set4 and D-Set5).
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Fig. 3 Differential gene expression analyses between BTK-High and BTK-Low subtypes. The differential expression analyses are
performed between the BTK-High and BTK-Low subtypes across all five datasets separately. P-values obtained after multiple tests (Wald
tests for RNAseq and t tests for microarrays) were adjusted using BH method. Heat maps are used to illustrate significant differentially
expressing genes (FDR: 0.05, log2FC: 1) in each of the five datasets (A-Set1, B-Set2, C-Set3, D-Set4 and E-Set5). Common significant
differentially expressing genes (FDR: 0.1, log2FC: 0.25) from all the sets are quantified. Venn diagram to show upregulated genes in
BTK-High subtype and BTK-Low subtype (F).
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DISCUSSION
CLL outcomes have been stratified using several clinical and
laboratory features such as disease staging systems (Rai and Binet);
immunophenotyping including, ZAP70, and CD38; molecular
genetics including del(13q), del(11q), del(17p), T12 and complex
karyotype and genomics such as IGHV mutation status and

mutations in TP53, ATM, and others [26–28]. Even with these
features, time to treatment and survival of CLL patients is highly
heterogeneous which underscores need for additional criteria to
understand CLL biology and to treat the disease. To this end, several
genomics databases are available for rigorous analyses to identify
new measures. We initiated this work based on that premise.

GSEA – Hallmark Inflammatory Response 

GSEA – Hallmark TNF�� Signaling via NFkβ

A

B

C

D

Fig. 4 Inflammatory response genes and proapoptotic genes were enriched in BTK-Low subtype. Gene Set Enrichment Analysis and
Sample-level Gene set Score Analysis identified association of multiple pathways in the BTK-Low subtype. The enrichment plots from the
corresponding GSEA are illustrated for Inflammatory response (A) and TNF-alpha signaling via NFkB (B) in all the datasets. Pro-apoptosis gene
set is enriched in the BTK-Low compared to BTK-High subtypes among the CLL cohorts (C). KEGG pathways enriched in common (based on z-
score) among multiple cohorts in BTK-Low subtype are illustrated in bubble chart (D).
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Publicly available database from highly enriched CLL cells of
130 previously untreated patients [Set1 [9]], clearly and signifi-
cantly (p= 1.39e–12) separated in two clusters that were
associated with BTK transcript levels. Our analysis of this dataset
was rigorous and unsupervised; the hierarchical clustering was
repeated 10,000 times, taking 80% of subset of samples and genes

for every iteration to generate robust consensus groups.
Consensus clustering was performed on the normalized expres-
sion data using 5000 genes with the highest median absolute
deviation (MAD). These two (BTK-Low and BTK-High) clusters
showed clinical relevance as they were associated with treatment
probability. Time-to-treatment was <2 years for BTK-High cohort

Fig. 5 BTK-High subtype had enrichment of DNA replication and DNA repair. Gene-set Score Analysis identified enrichment of DNA
replication (A) and nucleotide excision repair pathways (B) within the KEGG database in BTK-High subtype. KEGG pathways enriched in
common (based on z-score) among multiple cohorts in BTK-High subtype are illustrated in bubble chart (C).
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while BTK-Low cohort did not require treatment for >6 years,
which was significantly different. Time to treatment was not
available for all sets, however we extended and validated BTK-
expression-mediated subsets with other datasets, including
previously treated CLL patients and more contemporary technol-
ogy of RNAseq, data were validated in a total of 5 sets of CLL
patients constituting ~700 patient samples. In all cases, consensus
clustering identified two cohorts of patients based on BTK
expression levels. Importantly, protein data not only corroborated
with transcriptomics data but also shed some light on functional
differences between these BTK-High and BTK-Low cohorts.
Our investigations were focused on omics data in CLL primary

lymphocytes and differences in BTK-High and BTK-Low cohorts.
Previously, when MEC-1 cell line with endogenous BTK was
compared with MEC-1 cell line with over-expressed WT-BTK, we
demonstrated increase in phospho-BTK, phospho-PLCy2, and
phospho-ERK in cells with higher BTK levels. This was further
stimulated with IgM in transduced cells. Growth-rate of these cells
were not significantly different [29]. Such model systems need to
be evaluated for omics and functional assays.
The BTK is a non-receptor tyrosine kinase, and the protein is an

integral part of B-cell receptor (BCR) pathway and BCR nexus is
responsible for proliferation, survival, migration, maturation and
function of normal or malignant B-cells such as CLL cells [30–33].
Hence, separation of BTK-Low and BTK-High cohort is consistent
with the role of BCR in CLL biology. Phospho-Src negatively

regulates BCR pathway [34, 35] and this was upregulated in BTK-
Low cohort. PKC-beta is a downstream molecule in the BCR
pathway and was downregulated in BTK-Low subtype. As
expected, the BCR signaling axis was higher in BTK-High cohort.
As shown before [23], UGT2B17 was overexpressed in BTK high
cohort which was significantly different in treatment-naïve groups,
but other signaling pathways including JAK/STAT ad TNF-alpha
[33] were highly expressed in BTK-Low cluster, suggesting reliance
on non-BCR pathways.
The distal BCR pathway leads to activation of several transcrip-

tion factors such as NFkB, a key factor in B-cells. CLL with high-BTK
cohort may have augmented overall transcription in CLL cells. Our
GSEA data suggested transcription pathway enrichment in the
BTK-High group. Importantly, BTK-High cluster had increased
transcription machinery genes. GO analysis [36] of common
differential expressed genes that were upregulated in BTK-High or
BTK-Low cohorts were consistent with function analyses based on
pathway data (Supplementary Tables 4, 5). These data imply that
the Low-BTK and High-BTK clusters are driven by different
independent signal transduction pathways and accordingly could
be treated differently. We further validated these observations
using CLL proteome data.
BTK protein and transcript are synthesized and maintained in

CLL cells and normal B cells through normal transcription.
However, this transcription is dependent on active BCR pathway
signaling that stimulates NFkB and other transcription factors that

Fig. 6 BTK transcript correlated with BTK protein levels and BTK subtypes are associated with chemokine levels and disease burden. CLL
lymphocytes from peripheral blood of 25 patients were isolated to measure basal levels of BTK protein. BTK protein levels (IHC) between BTK-
Low and BTK-High subtypes are statistically significant (A). Spearman correlation is used to assess the association between BTK Protein and
BTK mRNA and values are listed on the graph (B). Data points from BTK-Low are presented as turquoise blue symbols while data points from
BTK-High are represented as red symbols. Plasma CCL3 (Mip-1α) and CCL4 (Mip-1β) levels were quantitated using enzyme-linked
immunosorbent assay (ELISA). Their levels were significantly associated with BTK subtypes (C, D). White Blood Cell (WBC) counts in the
peripheral blood were also quantified for this cohort. Spearman correlation is used to assess the association between BTK Protein and WBC
counts (E). WBC counts are significantly different between the BTK subtypes (F).
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bind to the promoter of BTK and activate transcription [32].
Activation of BCR pathway is through antigen ligation. Some of
the key components of this pathway were enriched in BTK-High
subtype. Microenvironment especially in lymph node is shown to
be responsible for activation of BCR pathway. B-cells show high
levels of BTK protein when in contact with BM or lymph node in
non-diseased mice [37, 38]. Conversely in diseased mice [39] or
primary CLL cells, BTKi treatments result in decrease in the levels
of BTK transcript and protein [40].
The role of BTK and BCR pathway was further established when

covalent and non-covalent inhibitors of BTK were used in the clinic
for patients with B-cell malignancies in general and CLL in
particular. Among the covalent BTK inhibitors, three drugs have
transformed treatment of B-cell malignancies. All three covalent
BTKi, ibrutinib [25, 41], acalabrutinib [42], and zanubrutinib [43]
are US-FDA approved. A long-term inhibition of BTK with these
BTK inhibitors resulted in suppression of disease progression due
to inhibition of B-cell proliferation, lymphocytosis and decline in
lymph node size due to migration of cells from lymph node niches
to peripheral blood [41–43], and transcription inhibition due to
impact on BCR pathway signaling resulting in decrease in
transcription factor-controlled transcription of early response

genes such as BTK, PIM, and survival protein MCL-1 in mice [39]
and humans [40, 44].
BTK-High and BTK-Low cohorts were associated with higher or

lower score of GSE when tested for Hallmark replication pathway.
While BCR pathway is expressed at a lower rate in BTK-Low cluster,
these cells showed enrichment of other signaling pathways such
as TNF signaling, prolactin and PI3K signaling, MAP kinase and
NOD-like receptor signaling and cAMP signaling. BTK-Low subtype
had low tumor burden which is consistent with high expression of
proapoptotic genes as well as low enrichment of proliferation
genes which may be responsible for cell death and low
proliferation rate of these malignant cells. Both hallmark and
KEGG pathways suggested lower DNA replication gene-
enrichment in BTK-Low subgroup while higher enrichment in
the BTK-High cohort which is consistent with its association with
significantly higher or lower WBC counts in BTK-High and BTK-Low
clusters, respectively (Fig. 6F).
In addition to replication, GSEA delineated that the BTK-High

cohort had high DNA repair Hallmark-GSE. To further establish
sample-wise pathway distribution among subtypes, we computed
aggregate scores (GSVA) of all the gene sets in the KEGG pathway
database. Among DNA repair genes, homologous recombination,

Fig. 7 Differential expression of proteins in the RPPA panel and in pathways of interest between BTK-High and BTK-Low subtypes.
Differential protein expression analysis is performed between the BTK-High and BTK-Low subtypes in the RPPA dataset. P values obtained after
multiple t tests were adjusted using BH method. Significant differentially expressing proteins (FDR: 0.05, log2FC: 1) are illustrated by heatmap
(A). Further, differentially expressed proteins involved in inflammatory response (B), DNA repair (C), and protein synthesis (D) are illustrated in
supervised heatmaps.
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mismatch repair, nucleotide excision repair, and non-homologous
end-joining [45] suggested similar distribution i.e. expressed mostly
in high-BTK cluster (Fig. 5B. C). This was not associated with
del(11q) or ATM mutation (Supplementary Table 2), a well-known
culprit for DNA repair in CLL. Absence of an efficient DNA damage
response and DNA repair machinery may be responsible for high
inflammatory response in this cohort, which was observed both in
Hallmark and KEGG pathways (Fig. 4A, B, D). Consistent with the
gene expression data, proteins associated with DNA damage
response such as MLH1, MSH6, ERCC1 and 5, PMS2, Chk1, KAP1,
and XPA were expressed at higher level in BTK-High subgroup
compared to BTK-Low subgroup. DNA repair biomarker, i.e.
phosphorylated H2AX was higher in BTK-Low subtype (Fig. 7C
and Supplementary Fig. 10).
In contrast to replication and repair, genes for inflammatory

response molecules were expressed mostly in BTK-Low cluster. In
concert with DEGs, proteins belonging to these pathways were
differentially expressed among subtypes. Inflammation-related
proteins as well as proteins involved in glycolysis pathway were
overexpressed in BTK-Low clusters. Lower DNA repair, increased
DNA damage are consistent with high inflammation in BTK-Low
cluster. Prospective studies need to evaluate increased incidences
of second cancers in this subtype.
In conclusion, we describe unique consensus classification of

CLL disease which is based on transcriptomic profile and is
strongly associated with BTK gene expression levels. Protein
profiling further validated this nosology. This is first report of such
segregation and as such BTK-cluster subtypes provide precision
therapeutic options. Our study demonstrated and reinforced the
central role of BTK protein and BCR pathway in biology of CLL. This
novel finding needs to be extended to a larger group in a
prospective manner.
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