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Chronic systemic inflammation is a key driver of polycythemia vera (PV) progression, but the immunomodulatory effects of current
treatments remain poorly defined. The neutrophil-to-lymphocyte ratio (NLR) is an accessible biomarker of systemic inflammation
proven in other contexts, but its role in monitoring PV disease activity has not been established. Using data from three of the
largest PV clinical trials, we evaluated the effects of PV therapies on NLR and its relationship with molecular response and clinical
outcomes. In 404 hematocrit-controlled patients from the ECLAP study, hydroxyurea (HU) failed to significantly lower NLR (p = 0.11)
due to the parallel declines in ANC and ALC. Neither leukocyte counts nor NLR were significantly reduced by phlebotomy in ECLAP
patients treated without cytoreductive therapy. In contrast, the Low-PV study showed that while phlebotomy tended to increase
NLR, low-dose ropeginterferon alfa-2b (Ropeg) significantly reduced NLR (—18.2% and —36.3% in patients with low and high
baseline NLR, respectively) by suppressing ANC rather than lymphocytes. NLR reduction correlated with the primary Low-PV
endpoint (p = 0.021) and reduction of JAK2 variant allele frequency (VAF) [1]. The PROUD-PV/CONTINUATION-PV study confirmed
the superior effect of Ropeg over HU, with a significantly greater NLR reduction at 60 months (—56.5% versus —33.6%, respectively,
p =0.019) in patients with high baseline NLR. Moreover, NLR reduction was associated with decreased JAK2Y"”F VAF (p < 0.0001)
and improved event-free survival (p =0.010). These findings identify NLR as a dynamic biomarker of treatment response and

prognosis in PV and support its incorporation into routine monitoring.
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INTRODUCTION
Standard therapy for all patients with polycythemia vera (PV)
includes regular phlebotomy to maintain hematocrit below 45%
and low-dose aspirin. Cytoreductive therapy is currently reserved
for patients with higher thrombotic risk (age >60 years or prior
thrombotic events), with hydroxyurea (HU) or pegylated
interferon-alpha as first-line agents, and busulfan or ruxolitinib
as second-line options [2-4]. All of these PV treatment strategies
focus on reducing thrombotic events, the leading cause of
mortality, yet emerging evidence highlights the role of chronic
inflammation in the pathobiology of PV. Inflammation, driven by
the JAK2 mutation present in over 95% of PV cases, is increasingly
recognized as a key driver of leukocyte activation, thrombosis,
disease progression, and reduced survival in this disease [5-8].
Neutrophils play a pivotal role in this process, promoting
endothelial injury and thrombosis through the release of
cytokines, reactive oxygen species, and neutrophil extracellular
traps, thereby amplifying local and systemic inflammation

[9-11]. Lymphocytes, particularly regulatory T cells and
CD8+T cells, modulate immune responses, with distinct
subtypes influencing inflammatory pathways [12-14]. Both
neutrophil counts and Iymphocxte counts are directly affected
by the presence of the JAK2Y'”" mutation found in virtually all
patients with PV [15].

While absolute neutrophil count (ANC) and absolute lympho-
cyte count (ALC) have been linked to prognosis in essential
thrombocythemia (ET) [16], and have also been validated in a
cohort of patients with PV [17], the neutrophil-to-lymphocyte ratio
(NLR) may provide a more integrated assessment of inflammatory
burden by capturing both innate and adaptive immune activity
[18]. NLR is a readily available and extensively studied biomarker
with prognostic value in cardiovascular disease (e.g., prediction of
myocardial infarction and stroke) and cancer (e.g., tumor
progression and treatment resistance) [19]. Recent studies in PV
also link elevated NLR to risk of venous thrombosis [20] and
reduced overall survival [21].
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This study uses prospective data from three of the largest PV
clinical trials to evaluate whether NLR could serve as a dynamic
biomarker of treatment response and clinical outcomes. We used
data collected as part of the ECLAP study to compare hydroxyurea
to phlebotomy in 404 propensity score matched patients with PV.
Data from 126 low-risk PV patients enrolled on the randomized
phase Il Low-PV trial allowed comparison of the effects of
Ropeginterferon alfa-2b (Ropeg) versus phlebotomy alone on
leukocyte counts and NLR. Finally, data from the PROUD-PV/
CONTINUATION-PV study enabled a direct HU vs. Ropeg
comparison, assessing NLR dynamics and its association with
JAK2"677F VAF reduction and clinical outcomes.

METHODS

Patients

Patient data were sourced from three databases tracking WBC, ANC, ALC,
and NLR.

ECLAP Database [22]. Included 1638 PV patients treated with PHL or HU
to maintain hematocrit <45% and platelet counts <400x 10%/L, with
annual follow-ups for up to 5 years. Only patients exclusively on PHL
(n=202) or HU (n=202), appropriately matched by propensity score,
were analyzed.

Low-PV Study [23, 24]. A randomized phase Il trial of 127 PV patients
assigned to PHL alone (n = 64) or Ropeg (100 pg every 2 weeks) plus PHL
(n =63) for 12 months.

PROUD-PV/CONTINUATION-PV [25]. A phase Il trial where PV patients
received Ropeg (n=127) or HU (n = 127) for 12 months, with response-
driven dose escalation from 100 ug up to a maximum of 500 ug every
2 weeks (Ropeg) or up to 3,000 mg daily (HU). In the 5-year extension
(CONTINUATION-PV), 88% of HU-treated patients remained on HU despite
switching options.

Ethics approval and consent to participate

In each study, patients provided written informed consent. In ECLAP study,
approval of each local ethics committee was obtained before the start of
the trial. Protocols for Low-PV  (#NCT03003325), PROUD-PV
(#NCT01949805) and CONTINUATION-PV (#NCT02218047) were approved
by the relevant institutional review board or ethics committee at each
participating institution according to the Declaration of Helsinki and the
Good Clinical Practice Guidelines.

Statistical methods

Analysis of data from the ECLAP and Low-PV cohorts was performed by
A.G.; analysis of the PROUD-PV/CONTINUATION-PV datasets was performed
by the responsible biostatistician. All authors had access to primary clinical
trial data.

To ensure comparability between the HU and PHL groups in the ECLAP
database, propensity score (PS) matching was performed. A logistic
regression model was used to estimate PS based on baseline covariates,
including age, gender, years since diagnosis, prior thrombosis, aspirin use,
smoking, obesity, hypertension, diabetes, platelet count, WBC count,
hematocrit, and NLR. One-to-one nearest neighbor matching without
replacement was applied, using a caliper width of 0.2 of the pooled
standard deviation of the logit of PS.

Baseline characteristics of HU/PHL (ECLAP), Ropeg/PHL (Low-PV) and
Ropeg/HU (PROUD-PV/CONTINUATION-PV) groups were summarized using
descriptive statistics.

Leukocyte-derived biomarkers were assessed in the full cohort and in
the subgroup of patients with baseline values above the median.

Linear mixed-effects models with treatment, time and treatment-time
interaction as fixed effects and patient as random intercept (to account for
patient variability), were used to evaluate whether the temporal trend of
each biomarker differed between the two treatments in each database.
Moreover, changes in leukocyte-derived inflammatory biomarkers over
time were reported as median relative changes, stratified by treatment and
compared using the Wilcoxon rank-sum test. P-values were adjusted using
the Benjamini-Hochberg method to control the false discovery rate, where
appropriate.
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The impact of the inflammatory biomarkers on thrombosis and mortality
risk in ECLAP database was assessed using multivariable Cox regression
models adjusting for the effect of age, treatment received and
cardiovascular risk factors. To account for their variation over time, the
biomarkers were included as time-dependent variables. Hazard ratios (HRs)
with 95% confidence intervals (Cls) were reported.

To assess the robustness of the results, a joint modeling approach was used
to simultaneously analyze biomarker trajectories and time to thrombosis/
death. Biomarker evolution over time was modeled with a linear mixed-
effects model (random intercept and slope, unstructured covariance) and for
the survival submodel a Weibull proportional hazards model was used.

Median relative changes in JAK2'S'’F VAF at 12 months according to the
extent of NLR reduction in patients treated with Ropeg was reported for
PROUD-PV/CONTINUATION-PV and Low-PV databases. Moreover, in
PROUD-PV/CONTINUATION-PV database, association between NLR at last
assessment and risk events (thromboembolic events, disease progression
to myelofibrosis or acute myeloid leukemia, or death) was performed as
time to first event analysis (i.e. event-free survival, EFS) in subgroups based
on NLR levels. The log-rank test was used to compare the group-specific
Kaplan-Meier curves. Moreover, frequency of events was reported
according to NLR groups.

Statistical analyses were conducted using STATA software (version 16;
StataCorp LP, College Station, TX) and SAS 9.4.

RESULTS

ECLAP Cohort

Baseline characteristics of PHL and HU groups after PS-
matching. After 1:1 PS-matching, baseline characteristics of
patients from the ECLAP cohort (Table S1) were analyzed. The
matched groups were all maintained with HCT <45% either by
phlebotomy alone (PHL, N =207) or with HU (500-1500 mg/day,
N =207). PS matching ensured that the two groups were well
balanced across key variables including demographics, prior
thrombosis, median time since PV diagnosis, duration of follow-
up, cardiovascular risk-factors, and blood counts. The only
exception was a clinically insignificant difference in baseline HCT.

Events during follow-up. After a median follow-up of 3 years
(range 0.3-4.6) in the ECLAP study, outcomes and the effects of
PHL or HU treatments on WBC, NLR, neutrophils, and lymphocytes
were assessed at 12, 24, and 36 months. Total thromboses were
registered in 44 patients (10.6%): of these, 24 events (5.8%) and 20
(4.8%) were arterial and venous, respectively. Disease progression
was documented in 13 cases (3.1%): myelofibrosis in 11 (2.7%) and
blast phase in 4 (1.0%). Solid tumors and deaths occurred in 18
(4.3%) and in 37 (8.9%) cases.

Effects of Phlebotomy and Hydroxyurea on Leukocyte Biomarkers.
Figure 1 shows 36-month trends in WBC, NLR, ANC, and ALC across
the overall ECLAP cohort and in subgroups with elevated baseline
values. PHL had no significant effects on any measure at any time.
HU modestly reduced WBC over time, but this was not significantly
different from PHL (p = 0.71, Fig. TA). Neither PHL nor HU significantly
reduced NLR in the full cohort (p =0.21) or in those with elevated
baseline NLR>3.3 (p =0.18, Fig. 1B). HU significantly reduced ANC
(p = 0.020) in patients with baseline ANC > 6.0 x 10°/L, confirming its
cytoreductive effect, but ANC remained stable in the full ECLAP
cohort (p=0.54, Fig. 10). ALC remained largely unchanged
(p =0.11); however, in patients with baseline ALC > 1.8 x 10°/L, HU
drove a noticeable decline at 12 and 24 months, whereas PHL had no
significant effect (Fig. 1D). As a result, HU's reduction of ANC was
offset by a parallel decrease in ALC, leading to no significant impact
on NLR in patients with elevated baseline values.

Figure ST confirms these trends, showing that HU reduced WBC
more significantly in patients with high baseline levels, where the
relative reduction from baseline at 36 months was —27.4% compared
to an increase of +5.2% in the PHL group (p <0.001). While HU
modestly lowered NLR (—104%) by 36 months, reductions in
patients with high baseline NLR were not sustained. HU significantly
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Longitudinal trend of WBC, NLR, neutrophils and lymphocytes in patients treated with hydroxyurea (HU) or phlebotomy (PHL),

including subgroups with elevated baseline values (ECLAP database). 36-months trends of WBC (A), NLR (B), neutrophils (C), and
lymphocytes (D) by treatment received in ECLAP database. The trend for the whole cohort and a focus on the subgroup of patients with high
baseline values (above the median value) are reported in each panel. Global differences between the two treatments and differences over
time were evaluated by a linear mixed-effect model with treatment, time and treatment-time interaction as fixed effects and patient as
random intercept. *p-value for the main effect of treatment; **p-values for treatment-time interaction: a significant p-value indicates that the
trend of each biomarker over time is different in the two arms, suggesting that the treatment affects how the parameter changes over time.

reduced ANC, with the greatest decline (—32.6%) at 36 months in
patients with baseline ANC = 6.0 x 10%/L, whereas PHL had little effect
(p <0.001). ALC decline with HU was more pronounced at 12 and
24 months in patients with baseline ALC > 1.8 x 10%/L but was not
significantly different from PHL at 36 months (p = 0.19). HU lowered
both ANC and ALC in parallel, limiting its ability to sustain NLR
reduction. An initial NLR decline at 12 months, likely driven by ANC
reduction, did not persist as ANC and ALC decreased together.

Impact leukocyte biomarkers on the risk of thrombosis and
mortality. A multivariable Cox model (Fig. 2) showed that
persistently high NLR (=3.3) was significantly associated with
increased mortality (HR: 3.59, p = 0.008) and total thrombosis (HR:
2.26, p =0.013). As always, age was a risk factor for death (HR:
1.07, p=0.001) and was borderline for thrombosis (p = 0.054).
Cardiovascular risk factors strongly predicted thrombosis (HR: 4.92,
p=0.011). Changes in total WBC were not associated with these
outcomes, highlighting NLR as a better risk predictor.

These results were confirmed using a joint model, which
showed that higher longitudinal NLR values were associated with
increased thrombotic and mortality risk (Table S4). Each unit
increase in NLR corresponded to a 10% increase in the risk of
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thrombosis (HR 1.10, 95% Cl: 1.02-1.18, p = 0.010) and death (HR
1.10, 95% CI: 1.02-1.17, p = 0.012).

Low-PV Cohort

Baseline characteristics of PHL and Ropeg groups. Table S2
compares baseline characteristics in the Low-PV database
between PHL- and Ropeg-treated patients. The Ropeg group
had more males (73% vs. 62%) and a slightly higher median age
(52 vs. 48 years). Cardiovascular risk factors were similar (48% vs.
55%), with comparable frequency of hypertension, hypercholes-
terolemia, and diabetes. Hematologic parameters, including
hematocrit, platelet, and leukocyte counts, were also similar.

Trends Over Time in Leukocyte-Derived Biomarkers comparing PHL
vs. Ropeg. Figure 3 shows 12-month trends in WBC, NLR, ANC,
and ALC across the entire Low-PV cohort and in the subgroups
with elevated baseline values. Across all patients, PHL had minimal
effects on any of these measures but in those with elevated
baseline values, WBC, ANC and NLR tended to increase over time.
In contrast, Ropeg significantly reduced WBC, NLR, and ANC. WBC
was stably reduced by Ropeg (p < 0.001), whereas PHL resulted in
stable or slightly increasing levels. In patients with baseline

SPRINGER NATURE
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Fig. 2 Multivariable Cox model for the effect of inflammatory biomarkers on risk of total thrombosis and death (ECLAP database).
Estimates were obtained using a multivariable Cox regression model that included the effect of both WBC and NLR over time as time-
dependent variables, adjusting for age, HU treatment, and cardiovascular (CV) risk factors (hypertension, hypercholesterolemia, diabetes,
congestive heart failure, and smoking). Hazard ratios (HRs) for thrombosis (blue triangles) and mortality (red diamonds) were plotted with 95%
confidence intervals (Cls) (solid lines). In this model, total thromboses were considered, rather than separating arterial and venous
thromboses, to ensure adequate statistical power.
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Fig. 3 Longitudinal trend of WBC, NLR, neutrophils and lymphocytes in patients treated with Ropeginterferon (Ropeg) or phlebotomy
(PHL), including subgroups with elevated baseline values (Low-PV database). 12-months trends of WBC (A), NLR (B), neutrophils (C), and
lymphocytes (D) by treatment received in Low-PV database. The trend for the whole cohort and a focus on the subgroup of patients with high
baseline values (above the median value) are reported in each panel. Global differences between the two treatments and differences over
time were evaluated by a linear mixed-effect model with treatment, time and treatment-time interaction as fixed effects and patient as
random intercept. *p-value for the main effect of treatment; **p-values for treatment-time interaction: a significant p-value indicates that the
trend of each biomarker over time is different in the two arms, suggesting that the treatment affects how the parameter changes over time.
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WBC > 8.8 x 10°/L, Ropeg produced a continuous decline, while
PHL had little impact (p <0.001, Fig. 3A). Ropeg progressively
reduced NLR (p=0.018), while PHL-treated patients showed
stable or increasing values. In patients with baseline NLR >3.3,
Ropeg’s effect was stronger, leading to a significant decline
(p <0.001, Fig. 3B), driven primarily by strong neutrophil suppres-
sion and relative lymphocyte sparing. Ropeg continuously
suppressed ANC (p < 0.001), particularly in patients with baseline
ANC = 6.0 x 10°/L, where neutrophil levels declined progressively,
while PHL had little effect or even a slight increase (Fig. 3C).
Lymphocyte levels remained stable in both groups (p=NS,
Fig. 3D).

Figure S2 confirms these trends, showing the relative changes
in biomarkers from baseline. Ropeg reduced WBC by —45.5%
overall and —46.8% in patients with baseline WBC > 8.8 x 10°/L,
while PHL increased WBC by +11.3% (p<0.001), confirming
Ropeg’s strong cytoreductive effect. Ropeg decreased NLR by
—26.6% overall and —36.3% in patients with baseline NLR > 3.3,
whereas PHL increased NLR by +5.4% (p < 0.001). Ropeg reduced
ANC by —50.9% overall and —56.7% in high ANC patients, while
PHL increased ANC (+ 18.9%) (p < 0.001), explaining most of the
NLR decline. Although Ropeg also reduced ALC (—32.0% overall,
—37.0% in high ALC patients), the NLR drop resulted from the
relatively stronger neutrophil suppression compared to lympho-
cyte depletion.

Correlation between changes in Leukocyte-Derived Biomarkers and
JAK2"6'7F VAF. A significant correlation between changes in WBC,
NLR, ANC and JAK2"6"7F allele burden (Pearson’s r = 0.43, r = 0.45
and r=0.51; p<0.001, p =0.002 and p < 0.001) was found (Figure
S4). In contrast, changes in ALC showed no statistically significant
correlation with JAK2"6"”F VAF reduction (r=0.0; p=0.18),
suggesting that the predictive utility of NLR is primarily driven
by neutrophil dynamics. In the subgroup of patients with elevated
baseline levels of inflammatory biomarkers, the same results were
found (Figure S5).

Direct comparison of Ropeg versus HU within PROUD-PV/
CONTINUATION-PV studies

Baseline characteristics of HU and Ropeg groups. Baseline patient
characteristics (i.e. at screening in PROUD-PV) among patients who
enrolled in the long-term CONTINUATION-PV study are shown in
Table S3. The treatment arms were well balanced regarding
demographic and other parameters such as time since diagnosis
of PV and JAK2'®'"F VAF.

Head-to-Head Comparative trajectories in Leukocyte-Derived Inflam-
matory Biomarkers. Figure 4 shows comparative 60-month
trajectories in leukocyte-derived inflammatory biomarkers from
the PROUD-PV/CONTINUATION-PV trial, aligning with findings
from ECLAP for HU and Low-PV for Ropeg. Ropeg led to a more
sustained WBC reduction than HU in both the overall cohort and
in patients with baseline WBC = 10.9 x 10°/L (p < 0.001, Fig. 4A).
Ropeg progressively reduced NLR, while HU showed an initial
decline followed by an increase (p=0.004, Fig. 4B), with a
stronger effect in patients with baseline NLR = 4.3. Ropeg also
stably and progressively reduced ANC, whereas HU initially
lowered ANC but this effect was lost over time (p<0.001,
Fig. 4C), particularly in patients with baseline ANC > 7.8 x 10°/L.
Both treatments reduced ALC, and although Ropeg had a greater
effect initially, especially in patients with baseline
ALC = 1.8 x 10%/L (Fig. 4D), the difference with HU did not persist
past 48 months.

Figure S3 confirms these findings, showing relative changes
from baseline in each biomarker. Ropeg induced a greater and
more sustained WBC reduction than HU, with significant
differences emerging from 24 months onward (p <0.001). At
60 months, WBC decreased by —67.3% with Ropeg vs. —45.1%
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with HU (p < 0.001) in patients with baseline WBC = 10.9x10°/L.
Ropeg reduced NLR by —38.5% vs. —19.1% with HU (p = 0.045),
with an even more pronounced effect in patients with baseline
NLR = 4.3. Ropeg also produced a deeper and sustained ANC
reduction, achieving —65.8% vs. —44.4% with HU (p = 0.002),
particularly in patients with baseline ANC > 7.8 x 10°/L. Ropeg led
to a greater ALC decline at 12 months (—37.8% vs. —28.4% with
HU, p=0.025), but at 60 months, ALC reductions with Ropeg
(—34.7%) and HU (—30.3%) were not significantly different
(p=0.13). These results from this randomized, prospective
clinical trial underscore Ropeg'’s stronger impact on neutrophil
suppression, its ability to modulate inflammation, and its

capacity to  better maintain  lymphocyte  balance
compared to HU.
Correlation between NLR and JAK2"'”" VAF levels. NLR was

strongly associated with JAK2S”F VAF in the PROUD-PV/
CONTINUATION-PV cohort (p < 0.001), with greater NLR reductions
correlating with larger JAK2"5’”F VAF declines at 12 months
(Fig. 5A). A similar trend was observed in the Low-PV cohort
(p = 0.002), where patients with unchanged NLR had only a minor
JAK2 VAF reduction (—13.0%), while those with >50% NLR
reduction showed the most significant VAF decline (—59.3%)
(Fig. 5B).

Outcomes related to NLR in PROUD-PV/CONTINUATION-PV. Event-
free survival (EFS)—with events including thrombosis, progression
to myelofibrosis/AML, or death—was significantly better in
patients with NLR < 4.3 at the last assessment compared to those
with NLR = 4.3 (Log-rank p =0.006) (Fig. 6). In this exploratory
analysis, PV related events occurred in 9/44 vs. 8/125 patients in
the high and low NLR groups, respectively (HR: 3.50, 95% Cl
1.35-9.09, p =0.010).

Figure 7 illustrates the frequency of events based on NLR
dynamics. Patients with persistently low NLR had the lowest
frequency (4.3%), while those with persistently high NLR had the
highest (25.0%). Importantly, those with persistently high or rising
NLR were significantly more likely to experience a PV event than
those with persistently low or decreasing NLR (9/44, 20% vs. 8/125,
6.4%, Fisher's p=0.016, odds ratio 3.7-fold higher).

DISCUSSION

This study investigated the effects of PHL, HU and Ropeg on
leukocyte-derived inflammatory biomarkers—WBC count, ANC,
ALC and NLR—in three different large and balanced cohorts of
patients with PV. The results provide valuable insights into how
different treatment strategies modulate systemic inflammation,
reported by NLR, and its potential impact on thrombotic risk and
disease progression.

In both the ECLAP and Low-PV studies, PHL had minimal
effect on inflammatory markers across the entire cohort, with
WBC, ANC and NLR remaining stable or increasing over time,
particularly in those with elevated baseline values. Unlike
cytoreductive therapies, PHL did not meaningfully suppress
ANC or lower NLR, reinforcing its limited role in inflammation
control beyond HCT reduction. Notably, in patients with higher
baseline WBC (=8.8% 10°/L) or ANC (ANC=6.0x 10°/L), PHL-
alone treated patients exhibited worsening inflammatory
profiles over time, suggesting the need for cytoreduction in
selected patients.

In contrast, HU demonstrated a modest ability to lower WBC
counts, as seen in both the ECLAP and PROUD-PV/CONTINUA-
TION-PV studies, but its impact on systemic inflammation, as
measured by NLR, was limited. In ECLAP, HU had a stronger effect
on ANC suppression (particularly in patients with baseline
ANC = 6.0x 10°/L, p<0.001), but this was offset by concurrent
ALC reductions, leading to no sustained change in NLR over time.
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Fig. 4 Longitudinal trend of WBC, NLR, neutrophils and lymphocytes in patients treated with Ropeginterferon (Ropeg) or hydroxyurea
(HU), including subgroups with elevated baseline values (PROUD-PV/CONTINUATION-PV database). 60-months trends of NLR values by
treatment received in PROUD-PV/CONTINUATION-PV. The trend for the whole cohort and a focus on the subgroup of patients with high
baseline values (above the median value) are reported in each panel. Global differences between the two treatments and differences over
time were evaluated by a linear mixed-effect model with treatment, time and treatment-time interaction as fixed effects and patient as
random intercept. *p-value for the main effect of treatment; **p-values for treatment-time interaction: a significant p-value indicates that the
trend of NLR over time is different in the two arms, suggesting that the treatment affects how the parameter changes over time.

Although HU initially lowered NLR in the first 12 months, this
effect was not sustained at 24 or 36 months, with no significant
difference vs. PHL (p =0.53 and p =0.11, respectively).

The PROUD-PV/CONTINUATION-PV trial further confirmed these
observations, showing that HU-treated patients exhibited only
transient reductions in NLR, followed by a rebound. This inability
to consistently suppress systemic inflammation suggests impor-
tant clinical implications, as persistently high NLR after 12 months
of HU therapy was associated with increased thrombosis risk
(HR=2.26, 95% Cl 1.19-4.30) and worse survival (HR =3.59, 95%
Cl 1.41-9.19). These findings contrast with sickle cell disease (SCD),
where HU significantly reduces NLR and improves inflammatory
profiles [26-28]. The likely explanation lies in fundamental
differences in disease biology: in non-clonal disorders such as
SCD, lymphocyte suppression is less pronounced, preserving
adaptive immunity, whereas in PV, ‘I)/mphocyte depletion is
influenced by both HU and the JAK2"®'”" mutation itself [15].
The latter finding was derived from experimental animal models
showing that JAK2°’”F consistently blocks lymphoid differentia-
tion from committed T and B cell precursors and is of particular
importance for lymphopoiesis in JAK2Y6'”F-driven clonal diseases
such as PV. Over time, JAK2"%"" -associated lymphopenia, which

SPRINGER NATURE

could also be a predictable consequence of long-term JAK2®'7F
MPNs regardless of therapy [15], may favor the emergence of
abnormal lymphocyte subsets [29] and T-cell exhaustion [30],
potentially promoting late complications associated with impaired
immunity such as disease progression and solid tumors [31].

In contrast to both PHL and HU, Ropeg achieved a significant and
sustained reduction in NLR, as demonstrated in both the Low-PV
and PROUD-PV/CONTI-PV studies. Unlike HU, Ropeg’s ability to
lower NLR was primarily driven by selective ANC suppression rather
than broad leukocyte depletion, leading to a more favorable
inflammatory balance. In the Low-PV trial, Ropeg-treated patients
with baseline NLR > 3.3 experienced a 36.3% reduction, compared
to an increase with PHL (p < 0.001). This effect was sustained over
time, particularly in patients with high baseline ANC (= 6.0 x 10%/L),
where Ropeg produced continuous and significant ANC suppres-
sion while better preserving lymphocyte counts.

The PROUD-PV/CONTINUATION-PV trial further validated
Ropeg’s superiority over HU, showing that Ropeg led to a deeper
and more sustained suppression of ANC and NLR. In patients with
baseline NLR = 4.3, Ropeg reduced NLR by 38.5% at 60 months vs.
only 19.1% with HU (p = 0.027). Notably, this longitudinal pattern
of NLR reduction mirrored the decline in JAK2Y®'7" VAF,
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recorded at baseline).

suggesting that Ropeg’s anti-inflammatory effects are directly
linked to its ability to target clonal burden.

We also found a significant correlation between WBC/ANC
changes and JAK2 VAF reflecting the proliferative myeloid compo-
nent of PV that correlates with JAK2-driven myelopoiesis, but NLR
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captures the broader biological impact of the disease by integrating
both innate immune activation (neutrophilia) and suppression of
adaptive immunity (lymphopenia). This duality, driven by the
JAK2Y®"F mutation [15], has been shown to correlate strongly and
precisely with molecular response and clinical outcome.

SPRINGER NATURE



T. Barbui et al.

30.0

n 25.0
S 25.04
L n
52
< o
+ QD
2 Q8 20.0
25
8%

2
5 15.04
w = 12.5
O o
&5
£ 5 10.0 8.9
g8
8w
@
a 5.0 4.3

0.0
Persistently Increasing Decreasing Persistently
low NLR NLR NLR high NLR
(N=69) (N=16) (N=56) (N=28)

Fig. 7 Percentage of patients with events (thromboembolic events, disease progression to myelofibrosis or acute myeloid leukemia, or
death) by NLR at baseline and last available assessment in PROUD-PV/CONTINUATION-PV. The figure shows the proportion of patients
experiencing events based on NLR categories. Patients were categorized based on their baseline and final NLR values into four groups: (i)
persistently low NLR (low NLR at baseline and at the final assessment), (i) increasing NLR (low NLR at baseline but high NLR at the final
assessment), (iii) decreasing NLR (high NLR at baseline but low NLR at the final assessment), and (iv) persistently high NLR (high NLR at both
baseline and final assessment). The cutoff used to define high and low values corresponds to the median baseline NLR of 4.3.

Consistent with this interpretation are the findings in HU-
treated patients in whom NLR remains elevated after 12 months of
treatment. In the Cox multivariable analyses, the inclusion of NLR,
but not leukocytosis, was independently associated with throm-
bosis and survival (HR = 2.26, p =0.013 and HR = 3.59, p = 0.008,
respectively). These findings suggest that NLR captures residual
post-treatment inflammation and immune dysregulation beyond
conventional blood counts, as confirmed by joint modeling, which
more precisely links its longitudinal changes to thrombotic and
mortality risk.

Thus, NLR may serve not only as a prognostic biomarker, but also
as a dynamic surrogate of molecular and therapeutic response in PV
—providing a more comprehensive, accessible and clinically
actionable tool than ANC or total leukocyte count alone.

However, NLR must be interpreted within the clinical context,
considering confounders like chronic inflammation, occult infec-
tions, or iron deficiency from phlebotomy. As a ratio, NLR has
limitations, especially when both neutrophils and lymphocytes are
affected by treatment or comorbidities; thus, absolute counts
remain essential for accurate interpretation in both research and
practice.

In addition, Ropeg’s selective neutrophil suppression with
relative lymphocyte preservation reinforces its potential role as a
potent anti-inflammatory therapy, distinct from HU. The greater
and more durable effect on NLR suppression observed in PROUD-
PV/CONTI-PV compared to Low-PV may be explained by
differences in cohort characteristics or Ropeg doses between the
two studies. The PROUD-PV/CONTI-PV [25] cohort enrolled
patients with higher thrombotic risk PV compared to Low-PV
patients [23, 24] and received Ropeg at doses escalated according
to response, whereas Low-PV used a low fixed dose (cumulative
4-weekly median dose 499 g vs. fixed 100 pug every two weeks in
Low-PV).

A critical finding across these studies was that NLR reduction
closely tracked with JAK2Y®'F VAF suppression, particularly in
Ropeg-treated patients. Patients who experienced a greater than
50% NLR reduction also demonstrated a —59.3% decline in
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JAK2Y®'7F VAF, whereas those with minimal NLR change exhibited
only a —13.0% reduction. Interestingly, this activity was near
identical for those treated on the Low-PV or PROUD/CONTI-PV
studies with reduction in NLR closely mirroring reduction in
JAK2"6'7F VAF. This suggests that NLR may serve as a surrogate
marker for molecular response, reflecting suppression of the JAK2-
mutant clone.

Additionally, NLR reduction was strongly associated with
improved event-free survival (EFS), reinforcing its potential as a
predictive biomarker rather than just an inflammatory marker.

This result needs to be interpreted with caution given the
limited number of events and needs to be validated in larger,
prospective cohorts.

In PROUD-PV/CONTINUATION-PV [25], patients with lower NLR
over time had significantly reduced rates of thrombosis and
progression to myelofibrosis, along with improved overall survival.
This suggests that correction of this inflammatory biomarker with
Ropeg may serve as a surrogate not only for JAK2"6'7F VAF
suppression but also for event-free survival. This biomarker is
widely available and inexpensive and could serve as a valuable
surrogate for monitoring molecular response in routine clinical
practice, particularly for therapies such as Ropeg that target both
clonal hematopoiesis and inflammation.

Given its low cost and widespread availability, NLR may serve as
a practical biomarker for tracking disease response and guiding
therapeutic decision-making in PV.

CONCLUSION

This study highlights the distinct effects of HU and Ropeg on
leukocyte-derived biomarkers in PV. While both reduce leukocy-
tosis and neutrophilia -key thrombosis drivers- Ropeg also
normalizes NLR, lowers JAK2°'7F VAF, and better preserves
lymphopoiesis, suggesting potential to reduce thrombosis and
modify disease progression. These findings support NLR as a
predictive biomarker, reinforcing the importance of inflammation-
targeted strategies in PV management.
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