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Series Editors’ Note
The decision whether to recommend a transplant to someone with acute leukemia in first remission is complex and
challenging. Diverse, often confounded co-variates interact to influence one’s recommendation. Briefly, the decision metric
can be viewed in three spheres: (1) subject-; (2) transplant-; and (3) disease-related co-variates. Subject-related co-variates
include items such as age and comorbidities. Transplant-related co-variates include items such as donor-types, graft source,
proposed conditioning and pre- and post-transplant immune suppression.

But what of disease-related variables? Previously haematologists relied on co-variates such as WBC at diagnosis,
chemotherapy cycles to achieve first remission, cytogenetics and most recently, mutation topography. However, these co-
variates have largely been replaced by results of measurable residual disease (MRD)-testing. Many chemotherapy-only and
transplant studies report strong correlations between results of MRD-testing on therapy outcomes such as cumulative
incidence of relapse (CIR), leukemia-free survival (LFS) or survival. (CIR makes biological sense in a transplant context
whereas LFS and survival do not give competing causes of death such as transplant-related mortality (TRM), graft-versus-
host disease and interstitial pneumonia unrelated to relapse probability).

This raises the question of how useful results are of MRD-testing in predicting CIR after transplants. Elsewhere we
discussed accuracy and precision of MRD-testing in predicting outcomes of therapy of acute myeloid leukemia (Estey E,
Gale RP. Leukemia 31:1255−1258, 2017; Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Leukemia
31:1482−1490, 2017). Briefly put, not terribly good. Although results of MRD-testing are often the most powerful predictor
of CIR in multivariable analyses, the C-statistic (a measure of prediction accuracy) is often only about 0.75. This is much
better than flipping a fair coin but far from ideal.

In the typescript which follows, Othus and colleagues discuss statistical issues underlying MRD-testing in the context of
haematopoietic cell transplants. We hope readers, especially haematologists who often need to make transplant
recommendations to people with acute leukemia in first remission, will read it carefully and critically. The bottom line
is MRD-test data are useful but considerable uncertainty is unavoidable with substantial false-positive and -negative rates.
We need to acknowledge this uncertainty to ourselves and to the people we counsel. The authors quote Voltaire who said:
Doubt is not a pleasant condition, but certainty is an absurd one. Sadly so, but we do the best we can.

Robert Peter Gale, Imperial College London, and Mei-Jie Zhang, Medical College of Wisconsin and CIBMTR.
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Doubt is not a pleasant condition, but certainty is an
absurd one.

Voltaire, in: Letter to Frederick William, Prince of Prussia;
28 November 1770

Introduction

Testing for measurable (‘minimal’) residual disease (MRD)
in people with acute leukaemias and other haematologic
cancers has gained popularity [1–16]. Results of these tests
are now often included as an endpoint in reports of clinical
trials outcomes and increasingly used in clinical practice
with haematopoietic cell transplantation no exception. In
addition to stratification for the risk of cancer recurrence,
MRD testing is used to inform transplant-related medical
decisions. For example, many experts, consensus statements,
and management guidelines suggest considering results of
MRD testing in the decision whether persons with acute
lymphoblastic leukaemia (ALL) or acute myeloid leukaemia
(AML) should receive a transplant in first remission, in
selecting the type of haematopoietic cell graft, intensity of
pretransplant conditioning and type, intensity or duration of
post-transplant interventions such as immune suppression
and/or pre-emptive post-transplant anti-leukaemia therapy
[17–21]. However, as with any other prognostic or pre-
dictive test, the interpretation of MRD-test results is subject
to limitations in statistical properties that need to be con-
sidered when translating these data to the clinic. Adding to
this complexity, there are many techniques to quantify MRD
and each has different operating characteristics. Treatment
strategies are often decided based on results of one MRD test
reported as a binary (negative or positive). This approach
ignores basic characteristics of these tests, and the test’s
accuracy and precision (Fig. 1) in predicting clinical out-
comes is not well described and often misunderstood. MRD
tests using different techniques, such as multi-parameter
flow cytometry and quantitative polymerase chain reaction
(PCR), done on the same sample may give different results,
especially when the readout is a binary: positive or negative
[22, 23]. As such, data from MRD tests using different

techniques should be considered complementary rather than
duplicative. Discordances further complicate interpreting
MRD-test results. Using binary readouts from MRD tests
has several statistical issues besides decreased sensitivity and
specificity including decreased power, underestimation of
variation in outcome between groups (persons with very
low-level positive MRD-test levels may be outcome-wise
closer to MRD-test-negative persons than those who test
high-level MRD positive), and inability to identify any linear
relationships with outcomes [24]. Flexible models of quan-
titative MRD, such as spline models ([25]; elaborated on in
another part of this series), can help to elucidate non-linear
relationships in the data.
Here we discuss characteristics and properties common to
all MRD tests including sensitivity, specificity, accuracy,
precision, and positive- and negative-predictive values
(see Table 1 for glossary and definitions of statistical terms).
We define and compare these quantities, discuss their role in
informing medical decisions, and describe the role of ran-
domized trials in evaluating MRD-test results. For a broader
discussion of outcome prediction in people with haemato-
logic cancers, see [26].

The perfect MRD test and why it does not
yet exist (and may never exist)

Critical appraisal of the performance properties of any
MRD test requires defining what the ideal MRD test should
do and what is the clinical comparator. For example, is the
test designed to detect some or all residual cancer cell(s) or
only cancer cells biologically able to cause relapse within a
specified interval (perhaps the subject’s remaining lifetime)
or which cause relapse within a specified observation
interval? These are distinct, sometimes overlapping, goals.
Equally relevant is the outcome we want to predict with the
MRD-test result. Do we plan to use it to predict relapse,
best analysed as cumulative incidence of relapse (CIR)
because of competing events, relapse-free or event-free
survival, overall survival, or some other endpoint of clinical
interest? With the current interest in MRD testing for risk-
stratification and treatment decision-making, a perfect MRD

High accuracy
High precision

Low accuracy
High precision

Low accuracy
Low precision

High accuracy
Low precision

Fig. 1 Accuracy (closeness of
repeat measurements to true
value) and precision (closeness
of repeat measurements to each
other) of medical tests (e.g.
MRD tests)
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test might be defined as one which accurately identifies and
quantifies the smallest population(s) of cancer cells in
someone in histological complete remission which, if left
untreated, cause relapse whilst being indifferent towards
residual cancer cells which do not cause relapse during a
specified observation interval.
The follow-up period in retrospective MRD-test analyses is
important but often ignored. Most clinical trials have a finite
follow-up interval, say, 2 or 5 years. We can evaluate
whether results of a positive MRD test predict relapse over a
lifetime only if all relapses are observed during this interval
(i.e. there will be no further relapses after the finite follow-up
time). Are the positive MRD tests in subjects without relapse
in the follow-up interval false-positives or has the observa-
tion interval been insufficient for all relapses to occur?
Moreover, it is likely some subjects who might have
relapsed during the observation interval died of other causes,
say graft-versus-host disease (GvHD) or a heart attack,
before they could relapse. We can correct for this only
imperfectly by accounting for competing causes of failure as
is done by CIR analyses. Other persons may die after the
observation interval of related or unrelated events, say can-
cer recurrence or a stroke. We will not, of course, know of
these events. As such, there must be an unavoidable rate of
false-positive and -negative MRD-test results, real or not,
when events occur beyond the observation interval if the
goal is to use MRD to evaluate lifetime risk. Further com-
plicating this analysis is that some patients may have such
high risk of a competing event (e.g. non-relapse mortality)
that their CIR will not be relevant as such patient would be
predicted to die before relapse could ever occur.

Although several technologies focused on immune phe-
notype or cytogenetic and/or molecular abnormalities have
been developed to detect neoplastic haematopoietic cells,
each with advantages and disadvantages, our understanding
of cancer stem cells and how they differ in the context of
immune phenotype and/or molecular features from other
cancer cell populations is incomplete and unavoidably
imperfect [3–6, 9–11, 27–33]. In other words, one reason
the perfect MRD test with 100% sensitivity and specificity
to predict cancer recurrence at the cohort- or subject-levels
does not yet exist is related to incomplete knowledge of the
neoplastic cells able to cause relapse. There are however
additional reasons accounting for the substantial rates of
false-positive and -negative tests.

For the clinical performance of any MRD test the theo-
retical maximum sensitivity and specificity of an assay to
detect operationally relevant residual cancer cells (i.e. those
causing relapse), together with other characteristics such as
the reproducibility and repeatability or test–retest reliability
(the components of a test’s precision) or replicability are
important. Of course, these characteristics are not unique to
MRD tests but apply to other medical assessments such as
the histological assessment of a bone marrow specimen
[34]. The precision of the test may be impacted by small
volume sample (discussed later) as well as measuring
technology (e.g. calibration of flow cytometers or PCR
machines). In addition to sampling site and volume, other
sampling details (timing, frequency, etc.) and result inter-
pretation, for which many uncertainties remain, are of
practical consideration. For example, even using histologi-
cal criteria for complete remission, synchronous biopsies at

Table 1 Glossary of statistical terms

Accuracy Closeness of a measurements to true value

AUC—area under the receiver operating
characteristic (ROC) curve

AUC is equal to the probability a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one (assuming ‘positive’ ranks higher than
‘negative’)

C-statistic Probability someone with an event had a higher risk score than a someone without an event

Negative-predictive value Proportion of negative test results that are true-negatives

Power Probability a test rejects the null hypothesis when a specific alternative hypothesis is true

Precision Closeness of repeat measurements to each other

Positive predictive value Proportion of positive test results which are true-positives

Receiver operating characteristic (ROC) curve Graphical plot displaying the sensitivity and one-specificity ability of a quantitative score to
classify a binary outcome as the score’s discrimination threshold is varied

Repeatability (test–retest reliability) Closeness of the agreement between the results of successive measurements of the same
measure carried out under the same condition (same person, same experimental setup)

Replicability Closeness of the agreement between the results of measurements of the same measure
carried with same method (different person, same experimental setup)

Reproducibility Closeness of the agreement between the results of measurements of the same measure
carried with different method (different person, different experimental setup)

Sensitivity True-positive rate—proportion of true-positives that are found to be MRD positive

Specificity True-negative rate—proportion of true-negatives that are found to be MRD negative

Statistics and measurable residual disease (MRD) testing: uses and abuses in hematopoietic cell. . . 845



several sites may be discordant. This is true not only for
solid cancers such as prostate cancer but also for haema-
topoietic cancers. Discordance rates are even higher for
metachronous biopsies. In other words, the perfect MRD
test to predict cancer recurrence at the cohort- or subject-
levels may never exist.

Measures of accuracy for binary definitions
of MRD

When results of a test with quantitative, numerical data are
reduced to a binary outcome, an unfortunate and often
inaccurate strategy, there are four possible, mutually
exclusive, outcomes: (1) true-positive; (2) true-negative; (3)
false-positive; or (4) false-negative. The 2 × 2 diagram in
Table 2 summarizes the distribution of the four test out-
comes. In medical testing we are often concerned with
falsepositives and negatives. Assume in this example we
wanted to develop an MRD test that would identify and
quantify cells which without further treatment are biologi-
cally able to cause relapse within a specified interval. For
such a test, a false-positive would be an MRD test result
indicating there are remaining cancer cells destined to cause
relapse when, in fact, no intervention is needed to prevent
cancer recurrence within the specified observation interval.
This could be because the test is not sufficiently specific or
because it identifies cancer cells that cannot or do not cause
relapse within the observation interval. There are several
potential reasons for these errors including the cells detected
by the MRD test lack the biological ability to cause cancer
recurrence during the observation interval or because
of stochastic considerations (the cells have the biological
ability to cause relapse but this does not occur for unpre-
dictable reasons such as the cell(s) never divide(s)). A false-
negative MRD test would indicate that there were no
remaining cells which would result in relapse unless there is
an effective intervention. The true-positive rate is equal to
1− the false-negative rate and is often referred to as sen-
sitivity. The true-negative rate is equal to 1− the false-
positive rate and is often referred to as specificity.
In addition to the four measures described above, positive-
and negative-predictive values (PPV and NPV) are impor-
tant in understanding the performance of any test. PPV and

NPV are the proportions of positive tests which are true-
positives and negative tests which are true-negatives. PPV
and NPV depend on sensitivity and specificity of the test
and, importantly, on the true prevalence of positive subjects
compared with the positive and negative test results.
These values can be estimated for a binary test and binary
outcome with straightforward 2 × 2 table calculations.
Table 3 provides sample data showing how these values can
be calculated. In this example we use MRD measured by
multi-parameter flow cytometry from an AML trial in
subjects age 18–60 years [35, 36]. We note similar calcu-
lations can be done with more complicated definitions of
MRD including combining MRD results across multiple
time-points or summaries of MRD kinetics over time.

In this cohort MRD data were available on 170 subjects
achieving histological complete remission [36]. Relapse-
free survival at 1 year was measured from the date of his-
tological complete remission and relapse and death were
considered events. In this example:

● sensitivity (true-positive rate= probability MRD test is
positive amongst subjects who will relapse and/or die in
the following year)= 18

18þ20= 47%
● specificity (true-negative rate= probability MRD test is

negative amongst subjects who will neither relapse nor
die in the following year)= 99

99þ33= 75%
● PPV (probability of experiencing relapse and/or death

within 1 year amongst subjects who are MRD positive)=
18

33þ18= 35%
● NPV (probability of experiencing neither relapse nor

death within 1 year amongst subjects who are MRD
negative)= 99

99þ20= 83%

Even acknowledging additional anti-leukaemia therapy
was given before the 1-year mark to most of these subjects,
these calculations highlight data from this MRD test with
the outcome of relapse at 1-year result in substantial mis-
classification rates. However, even with this high level of
mis-classification, the MRD-test result is strongly asso-
ciated with relapse-free survival with an odds ratio of 2.7
for 1-year relapse-free survival consistent with the strong
prognostic association of MRD observed across many
cohorts of people with AML [5].

Table 2 Classification of MRD-test results by true relapse state
without further treatment

True relapse state

Will not relapse Will relapse

MRD-test negative True-negative False-negative

MRD-test positive False-positive True-positive

Table 3 MRD-test results by relapse state

True relapse state

No RFS event in 1 year RFS event in 1 year

MRD-test negative 99 20

MRD-test positive 33 18

MRD was retrospectively evaluated [35]. Relapse-free survival (RFS)
was measured from the date of histological complete remission to the
first of either relapse or death

846 M. Othus et al.



Unfortunately, sensitivity, specificity, PPV, and NPV of
MRD tests are not routinely described in biomedical pub-
lications. Most focus on the prognostic strength of the MRD
test showing, on average, outcomes of persons with MRD-
negative tests are significantly better than outcomes of
persons with MRD-positive tests. Typically, the outcome
interrogated is survival although an MRD-test result is
biologically more likely to correlate with CIR because
survival is influenced by other outcomes, including some,
such as therapy-related toxicity (TRM) not expected to
correlate with MRD-test result, whereas others like GvHD
are confounded with CIR (persons with GvHD are less
likely to relapse than those without GvHD). Although
understandable from a clinical perspective (and perhaps
driven by requirements from Health Authorities) the focus
of many if not most reports on survival rather than CIR
makes little biological sense. As an additional limitation,
when estimating sensitivity, specificity, or other statistical
quantities in settings with censored data or competing risks,
a 2 × 2 table cannot be accurately constructed and specific
statistical methodologies are needed to account for these
data features [37]. These analyses are complex and deba-
table; for example, the definition of specificity can vary on
how persons with a competing event are analysed [38].

Because of the strong correlation between MRD-test
results and cancer recurrence (and related outcomes) and the
diverse treatment options for many persons with haemato-
logic cancers many physicians wish to use MRD-test results
to determine best-possible therapy options. But biomarkers
with strong prognostic associations can still have very poor
predictive properties with respect to identifying the best
therapy for someone [39]. For example, an odds ratio (OR)
of 3 can be associated with greater than 50% false-positive
or false-negative rates. A test with 90% specificity and 80%
sensitivity can require an OR of 36 or higher, much higher
than odds ratios or hazard ratios typically found in reports
of MRD testing in the biomedical literature. But even an
OR of 36 may be insufficient to have a very accurate bio-
marker. For example, a sensitivity of 97% and a specificity
of 50% will also have an odds ratio of 36, highlighting the
importance of reporting values including sensitivity and
specificity, not just an OR or a hazard ratio.

Accuracy of quantifying MRD-test data

Although MRD tests are typically quantitative, results are
often reported as positive or negative. This quantitative
measurement can be converted to a binary measurement
(positive or negative) by identifying people as positive who
have any residual cancer cells detected by the test or by
setting a minimum threshold of residual disease to be
detected, for example, >0.1% of cells with an abnormal

immune phenotype or residual cells with a mutation variant
allele frequency >0.001. Many statistical methods are pro-
posed to identify the ‘best’ threshold for creating a binary
but using thresholds instead of the quantitative measure-
ment is often associated with reduced (at times, sub-
stantially reduced) predictive performance [25, 40].
A common statistic reported as a generalization of sensi-
tivity or specificity is the area under the receiver operating
characteristic (ROC) curve (AUC) often translated to a
concordance or C-statistic, discussed below. The ROC
curve is plotted by tabulating the sensitivity and one-
specificity of binary markers defined by every possible cut-
point in the quantitative biomarker. As such it is invariant to
the scale or units of the biomarker and so ROCs can be
compared for different MRD measurements. The AUC is a
single-summary value of the ROC and is constrained to be
between 0 and 1. The C-statistic is the proportion of pairs of
persons correctly ranked by the biomarker (i.e. the person
with worse outcome in the pair also has a worse biomarker
score). A C-statistic <0.5 is consistent with the test being
worse than the flip of a fair coin in predicting outcome, a
C-statistic of 0.5 is consistent with a flip of a fair coin and a
C-statistic of 1 is perfect prediction (no false-positives or
negatives). With a binary outcome, the AUC is equal to the
C-statistic. C-statistics are defined more generally than
AUC and so can be reported for time-to-event endpoints.
The C-statistic for the data in Table 2, 0.59, shows weak
predictive accuracy. We note that the C-statistic is a
function of the prevalence of a biomarker, and so a test with
constant sensitivity and specificity can vary between
populations with varying MRD-positive prevalence.

What even the perfect MRD test cannot tell
you

It is unlikely any MRD test will have perfect sensitivity to
detect a designated target or targets and/or biomarker(s).
Even with perfect sensitivity one might get a false-negative
MRD-test result because of inconsistent presence of the
assay target(s) in cancer cells.
As we summarized previously [5], it is a common mis-
understanding that improvements in the MRD-test tech-
nology will eventually eliminate false-negative MRD tests
by providing a complete accounting of the remaining resi-
dual cancer cells. Rather, the ability to detect low levels of
residual cancer cells is limited primarily by the character
and size of the sample tested, not MRD-test sensitivity. This
is an important limitation considering MRD tests are typi-
cally based on small samples such as 1 mL of bone marrow
from an estimated 750 mL volume in a 70 kg male or a
10 mL blood sample from a 5.5 L estimated blood volume.
There is also the issue of topographic heterogeneity. For
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example, leukaemia cells are thought to occupy specific
bone marrow niches rather than being uniformly distributed.
Taking larger bone marrow samples will not necessarily
resolve this bias. For example, bone marrow samples larger
than 5 mL simply contain more blood cells, not more bone
marrow cells [41, 42].

The MRD-test performance may also be impacted by the
frequency of testing. Single time-point measurements more
likely result in false-positive and -negative MRD-test results
than when result trends are considered. Re-testing can
decrease the likelihood of incorrectly interpreting an MRD-
test result. Even without intervention, however, repeat
MRD-testing results are occasionally discordant in both
possible directions: a negative to positive MRD test or the
converse. Discordances have many explanations but preci-
sion of the test and small volume sampling of a topo-
graphically heterogeneous population of cancer cells
[43, 44] are important considerations. Requiring concordant
results to declare a person MRD-positive or -negative
increases specificity but decreases sensitivity. Test result
validation using alternative methodologies may be useful in
such circumstance but may be impractical. Sequential
MRD testing can be particularly helpful as a strategy
to increase sensitivity if changes in MRD-levels (e.g.
increasing transcript levels or increasing percentage
of immune-phenotypically abnormal cells) are the readout.
A single discordant datapoint would be insufficient to make
an estimate of clinically relevant changes in residual cancer
cells. The optimal interval and duration of sequential MRD
testing is unknown and may depend on several variables
such as the type and mutation profile of the cancer, type of
therapy, or interval since achieving remission.

Evidence for basing treatment decisions on
MRD-test results

Biomarkers measured prior to treatment to provide infor-
mation of the likelihood of response to a specific therapy are
often called predictive biomarkers. Common examples of
predictive biomarkers in oncology are genomic biomarkers
which indicate who should receive a targeted therapy, or
‘fitness’ biomarkers such as a performance score indicating
a persons’ ability to survive intensive therapy. Because
MRD tests are imperfect, because people are misclassified
and because retrospective and observational studies are
subject to many biases [45], randomized trials are needed to
prove the benefit of using MRD-test results for therapy
decisions such as whether or not to do a transplant in
someone with ALL or AML in first remission. Not only
because MRD-test technologies are quickly evolving, there
has been insufficient commitment to the large, long-term
randomized clinical trials needed to prove the value in

making therapy decisions based on results of MRD testing.
Nevertheless, such trials are needed to accurately char-
acterize the trade-offs present in such a treatment strategy.
Retrospective non-randomized data cannot be used to
evaluate this because the outcomes are often confounded by
physician actions based on the results of MRD tests such as
giving additional therapy or performing a transplant or
making treatment decisions on the basis on other criteria
including clinical judgement.
False-negatives and -positives are important when con-
sidering MRD-test results for decisions on interventions
associated with serious adverse medical consequences such
as allogeneic hematopoietic cell transplant. Assuming an
example in which a cohort of AML patients underwent
MRD testing at the completion of post-remission therapy
(Fig. 2; hypothetical example like data reported by Terwijn
et al. [46]):

● If all MRD-test-positive persons were deemed at high
risk of relapse and received transplant, many persons
would have received it with no possibility of benefit and
substantial possibility of harm.

● If all MRD-test-negative persons were deemed low risk
of relapse and did not receive a transplant, many would
have relapsed. Whether or not they could be rescued
with a transplant at this time is controversial. However,
there are no convincing data a transplant done earlier
would have improved their subsequent relapse outcome.

Our bottom line

Interpreting results of MRD testing is complex. Whether
making therapy decisions based on MRD-test results
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Fig. 2 Hypothetical example of cumulative incidence of relapse for
adults with AML with positive or negative MRD-test result after
completion of post-remission therapy. Abstracted from data reported
by Terwijn et al. [46]
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improves clinical outcomes can only be tested in rando-
mized clinical trials [47–50]. Such data are lacking. Is MRD
testing useful? Clearly. However, it is important physicians
understand when they act on an MRD-test result, either by
giving or withholding a therapy, they will often be wrong.
Risks associated with these MRD-test result-based deci-
sions are asymmetrical. When the intervention is safe, an
incorrect prediction may have little medical consequence
although it may have other adverse effects such as psy-
chological and fiscal. In contrast, when the intervention is
associated with serious adverse medical consequences
including death, this uncertainty needs to be acknowledged
by the physician and conveyed to the patient. Harm may be
of a lesser magnitude when the decision to withhold an
intervention is based on results of MRD testing as there are
no convincing data yet that most earlier interventions for an
event such as cancer recurrence improves outcomes [51–
53]. As Stephen Hawking said: The greatest enemy of
knowledge is not ignorance, it is the illusion of knowledge.
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