

CORRESPONDENCE

OPEN

Impact of age on outcome of CAR-T cell therapies for large B-cell lymphoma: the GLA/DRST experience

© The Author(s) 2022

Bone Marrow Transplantation (2023) 58:229–232; <https://doi.org/10.1038/s41409-022-01867-4>

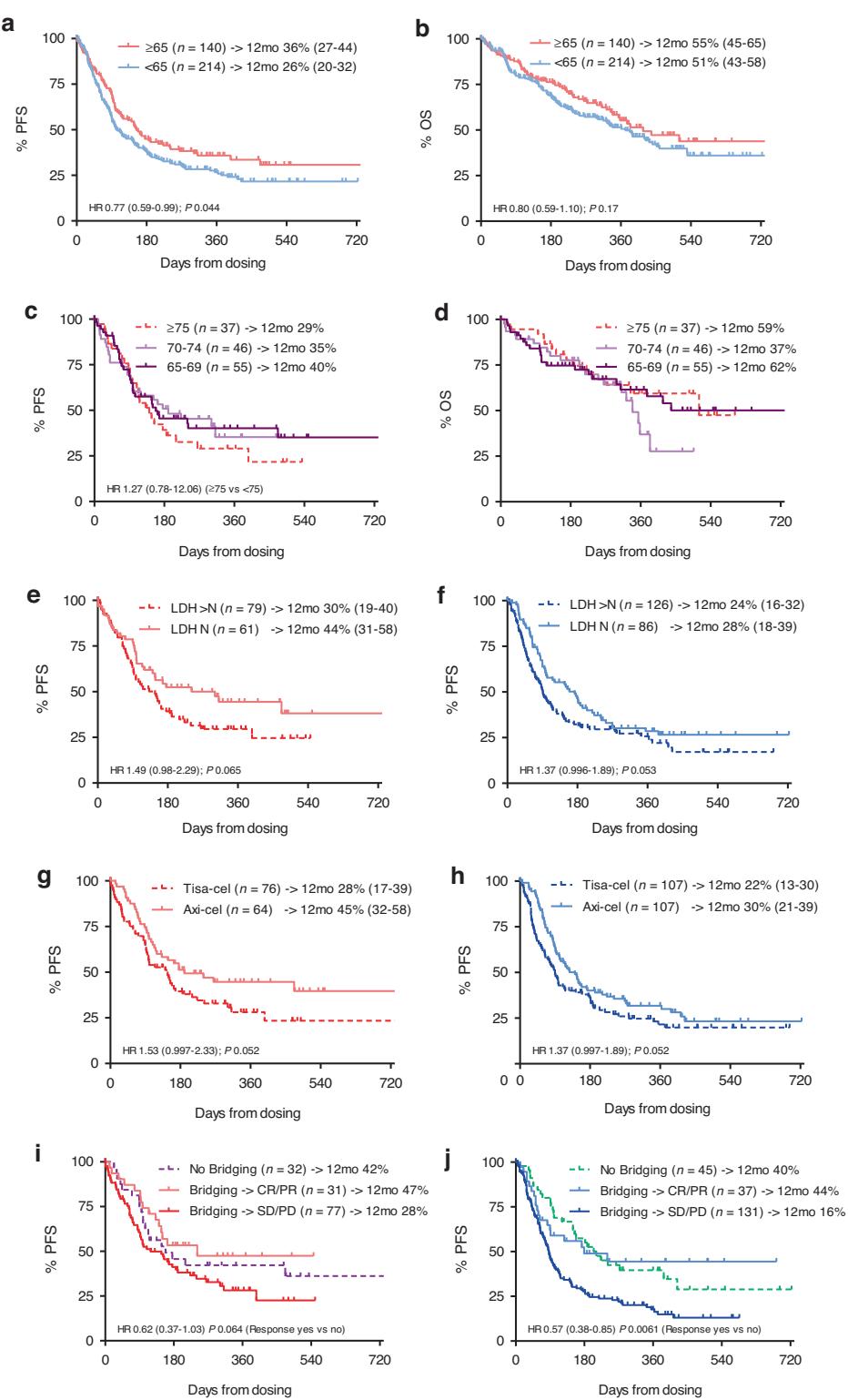
TO THE EDITOR:

Treatment with CD19-directed CAR T-cells has evolved as a standard of care for relapsed or refractory large B-cell lymphoma (r/r LBCL). As LBCL is largely a disease of the elderly, age limitations of CAR T-cell therapy may affect its applicability. Notably, age has not been among the unfavorable predictors of progression-free survival (PFS) in our recent analysis of commercial use of axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) in Germany [1]. Actually, the hazard ratio of 0.904 (0.825–0.990) per decade suggested that the outcome of CAR-T treatment *improved* with increasing age. In order to have a closer look on this remarkable finding, we conducted a follow-up analysis comparing patients younger and older than 65 years in our sample.

Between November 2018 and April 2021 356 patients received axi-cel ($n = 173$) or tisa-cel ($n = 183$) for standard-of-care (SOC) treatment of r/r LBCL. Of these, 140 patients were aged 65 years or older (median age 71 years, range 65–83), whereas the remainder was younger than 65 years (median 53 years, range 19–64). There were no significant differences between the two age cohorts in terms of gender, LBCL subset, pretreatment lines, performance status, LDH at lymphodepletion, International Prognostic Index, ZUMA-1 eligibility, and CAR product used. However, the younger group had a significantly shorter time from diagnosis to dosing, contained a significantly higher proportion of patients who had failed hematopoietic cell transplantation, and tended to have a smaller fraction of bridging responders (Supplementary Table S1). The median follow-up was 11 months.

Regarding toxicities, older and younger patients did not differ in terms of duration of hospitalization and incidence of higher-grade cytokine release syndrome. However, patients aged ≥ 65 years had an almost doubled risk of higher-grade neurotoxicity, both with axi-cel and tisa-cel, even though this was not statistically significant (Supplementary Table S2). Furthermore, non-relapse mortality (NRM) tended to be higher in the elderly group: 12-month cumulative NRM incidence considering relapse/progression as competing risks was 9% (95% confidence interval (95% CI) 4–14%) in patients ≥ 65 years vs 3% (95% CI 1–5%) in patients < 65 years; hazard ratio (HR) 2.25 (95% CI 0.93–5.43). This effect was similar across the two products used, taking into account that overall NRM was significantly lower with tisa-cel compared to axi-cel [1] (Supplementary Fig. S1). In both age cohorts, infections were the leading cause of non-relapse death accounting for two thirds of the events in each group.

With 69 and 43%, respectively, overall response rate (ORR) and rate of complete responses (CR) were significantly higher in patients


aged ≥ 65 years than in younger patients (58 and 31%, respectively, Supplementary Table S2). Also the response benefit of the elderly was observed across both products, but it appeared more pronounced with axi-cel compared to tisa-cel (ORR 89 and 70% in older and younger patients, respectively, with axi-cel, $p = 0.0073$; vs 61 and 50%, respectively, with tisa-cel, $p = 0.16$; CR 56 and 35% with axi-cel, $p = 0.0094$; and 37 and 29% with tisa-cel, $p = 0.33$). The superior response rates in the elderly translated into a significantly better progression-free survival (PFS, at 12 months 36 and 26% for patients aged ≥ 65 years and < 65 years, respectively), whereas overall survival was not significantly different (Fig. 1a, b). When subdividing the elderly cohort further into age groups 65–69, 70–74, and ≥ 75 years, we did not observe significant survival differences between the age categories (Fig. 1c, d).

Apart from age, risk factors for PFS in the total sample were product used, LDH, and bridging [1]. The beneficial effects of normal LDH and axi-cel appeared to be even more pronounced in the upper age group than in younger patients, including the subset being 75 years or older (Supplementary Fig. S2). In contrast, the impact of bridging and the response to it was less impressive in patients aged ≥ 65 years compared to those < 65 years (Fig. 1e–j). This was due to the fact that the PFS of younger patients who did not respond to bridging was particularly poor (12-month PFS only 16% (95% CI 9–23%).

There have been a few studies suggesting that advanced age is not a major obstacle for CD19-directed CAR-T therapy in r/r LBCL [2–5], including the recent large post-authorization safety study conducted by the CIBMTR for axi-cel [6]. In the latter, ORR and PFS tended to be better in 484 patients aged 65 or higher compared to 813 younger patients on multivariate analysis, despite significantly higher risks of overall and grade ≥ 3 CRS and neurotoxicity, respectively, in the elderly [6]. In contrast, neurotoxicities were not found to be significantly increased in older patients in two smaller studies with axi-cel [7] and tisa-cel [8], respectively. Finally, preliminary data from the ZUMA-7 trial, investigating axi-cel as second-line treatment for LBCL, showed a higher CR rate in patients ≥ 65 years [9, 10].

Since there is no reason to believe that older patients have less aggressive tumors or a more functional T-cell system, the most plausible explanation for the superior efficacy especially of axi-cel in the elderly is patient selection. Although the beneficial age effects remained stable after multivariable adjustment for confounders in our cohort [1] and the CIBMTR study [6], there might be risk factors that are not reflected by the parameters considered in the multivariate analyses. Indeed, although we did not assess the time between start of 1st-line therapy and first relapse/progression, the shorter interval between diagnosis and dosing in the younger cohort suggests a larger fraction of patients with primary/early treatment failure, despite more aggressive induction and also salvage therapy (Supplementary Table S2). Thus, the reason for the difference between the age groups observed here might be that our younger patients obviously

Received: 10 September 2022 Revised: 25 October 2022 Accepted: 27 October 2022
Published online: 22 November 2022

Fig. 1 Survival outcomes by age. PFS (a) and OS (b) of patients ≥ 65 or < 65 years; PFS (c) and OS (d) of patients aged 65–69, 70–74, and ≥ 75 years; age effects on PFS by LDH (e, f), CAR product used (g, h), and bridging (i, j) (left panels e, g, i ≥ 65 years; right panels f, h, j < 65 years). Comparisons were made by Log-rank tests.

represent an extraordinarily unfavorable selection [11], while the outcome of the elderly is comparable to other published real-world experience [4–6].

Not surprisingly, the risks of grade ≥ 3 neurotoxicity and NRM tended to be higher in the elderly cohort, especially after axi-cel

treatment. This drawback, however, was overcompensated by the better tumor control provided by axi-cel in the older patient group, with the result that the PFS superiority of axi-cel over tisa-cel was particularly pronounced in the elderly. Taking into account that this effect was stable up to the age group of 75

years or older, this finding contradicts current perceptions considering tisa-cel as the preferred choice for older patients because of its better tolerability [1] and, thus, might have impact on clinical practice.

Of note, detrimental age effects did not emerge in our series even when the elderly group was further sub-categorized, implying that a meaningful upper age limit for CD19 CAR-Ts in this indication could not be defined.

This study is limited by sample size, its retrospective character with inherent selection bias, and the fact that it is a post-hoc analysis. Nevertheless, its results suggest that increasing age per se is not a risk factor for outcome of CD19 CAR-T-cell therapy in LBCL, and a strict upper age limit for this type of treatment does not exist. Finally, despite higher NRM, PFS tended to be better with axi-cel compared to tisa-cel also in the elderly, suggesting that tisa-cel is not the obligatory choice for this subset including selected patients aged 75 years or older.

Peter Dreger¹✉, Udo Holtick², Marion Subklewe³, Bastian von Tresckow⁴, Francis Ayuk⁵, Eva Wagner⁶, Gerald Wulf⁷, Reinhardt Marks⁸, Olaf Penack⁹, Ulf Schnetzke¹⁰, Christian Koencke¹¹, Malte von Bonin¹², Matthias Stelljes¹³, Bertram Glass¹⁴, Claudia D. Baldus¹⁵, Vladan Vucinic¹⁶, Dimitrios Mougiakakos¹⁷, Max Topp¹⁸, Roland Schroers¹⁹, Daniel Wolff²⁰, Simone Thomas^{20,21}, Nicolaus Kröger⁵, Wolfgang A. Bethge²², on behalf of the German Lymphoma Alliance (GLA)*the German Stem Cell Transplantation Registry (DRST)*

¹University Hospital Heidelberg, Department of Hematology & Oncology, Heidelberg, Germany. ²Department I of Internal Medicine, Medical Faculty and University Hospital of Cologne, University of Cologne, Cologne, Germany. ³University Hospital Munich (LMU Munich), Department of Hematology & Oncology, Munich, Germany.

⁴Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. ⁵University Hospital Hamburg, Department for Stem Cell Transplantation, Hamburg, Germany.

⁶University Hospital Mainz, Department of Hematology & Oncology, Mainz, Germany. ⁷University Medicine Goettingen, Clinic for Hematology & Medical Oncology, Göttingen, Germany. ⁸University Hospital Freiburg, Department of Hematology & Oncology, Freiburg, Germany. ⁹University Hospital Charite, Department of Hematology & Oncology, Berlin, Germany. ¹⁰University Hospital Jena, Department of Hematology & Oncology, Jena, Germany. ¹¹University Hospital Hannover, Department of Hematology & Oncology, Hannover, Germany. ¹²University Hospital Dresden, Department of Hematology & Oncology, Dresden, Germany. ¹³University Hospital Muenster, Department of Hematology & Oncology, Muenster, Germany.

¹⁴Klinikum Berlin-Buch, Department of Hematology & Oncology, Berlin, Germany. ¹⁵University Hospital Kiel, Department of Hematology & Oncology, Kiel, Germany. ¹⁶University Hospital Leipzig, Leipzig, Germany. ¹⁷University Hospital Erlangen, Department of Hematology & Oncology, Erlangen, currently University Hospital Magdeburg, Department of Hematology, Magdeburg, Germany.

¹⁸University Hospital Würzburg, Department of Hematology & Oncology, Würzburg, Germany. ¹⁹University Hospital Bochum, Department of Hematology & Oncology, Bochum, Germany.

²⁰University Hospital Regensburg, Department of Internal Medicine III, Hematology and Oncology, Regensburg, Germany. ²¹Leibniz Institute for Immunotherapy, Regensburg, Germany. ²²University Hospital Tübingen, Department of Hematology & Oncology, Tübingen, Germany. * Lists of authors and their affiliations appear at the end of the paper. ✉email: peter.dreger@med.uni-heidelberg.de

DATA AVAILABILITY

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

REFERENCES

- Bethge WA, Martus P, Schmitt M, Holtick U, Subklewe M, von Tresckow B, et al. GLA/DRST real-world outcome analysis of CAR-T cell therapies for large B-cell lymphoma in Germany. *Blood*. 2022;140:349–58.
- Neelapu SS, Jacobson CA, Oluwole OO, Munoz J, Deol A, Miklos DB, et al. Outcomes of older patients in ZUMA-1, a pivotal study of axicabtagene ciloleucel in refractory large B-cell lymphoma. *Blood*. 2020;135:2106–9.
- Pasquini MC, Hu ZH, Curran K, Laetsch T, Locke F, Rouce R, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. *Blood Adv*. 2020;4:5414–24.
- Kuhnl A, Roddie C, Kirkwood AA, Tholouli E, Menne T, Patel A, et al. A national service for delivering CD19 CAR-Tin large B-cell lymphoma - The UK real-world experience. *Br J Haematol*. 2022;198:492–502.
- Kwon M, Iacoboni G, Reguera JL, Corral LL, Morales RH, Ortiz-Maldonado V, et al. Axicabtagene ciloleucel compared to tisagenlecleucel for the treatment of aggressive B-cell lymphoma. *Haematologica*. 2022. <https://doi.org/10.3324/haematol.2022.280805>.
- Jacobson CA, Locke FL, Ma L, Asubonteng J, Hu ZH, Siddiqi T, et al. Real-world evidence of axicabtagene ciloleucel for the treatment of large B-cell lymphoma in the United States. *Transplant Cell Ther*. 2022;28:581.e1–581.e8.
- Wudhikarn K, Bansal R, Khurana A, Hathcock MA, Braksick SA, Bennani NN, et al. Age defining immune effector cell associated neurotoxicity syndromes in aggressive large B-cell lymphoma patients treated with axicabtagene ciloleucel. *Am J Hematol*. 2021;96:E427–E430.
- Ram R, Grisarit S, Shargian-Alon L, Amit O, Bar-On Y, Stepensky P, et al. Toxicity and efficacy of chimeric antigen receptor T-cell therapy in patients with diffuse large B-cell lymphoma above the age of 70 years compared to younger patients - a matched control cohort study. *Haematologica*. 2022;107:1111–8.
- Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. *N Engl J Med*. 2022;386:640–54.
- Sureda A, Westin J, Locke FL, Dickinson M, Ghobadi A, Elsawy M, et al. Clinical and patient reported outcomes in a phase 3 study of Axicabtagene Ciloleucel vs standard-of-care in elderly patients with relapsed/refractory large B-cell lymphoma (ZUMA-7) [abstract]. *HemaSphere*. 2022;6:S211–13.
- Perez A, Johnson G, Patel K, Arciola B, Wood A, Bachmeier CA, et al. Primary progression during frontline CIT associates with decreased efficacy of subsequent CD19 CAR T-cell therapy in LBCL. *Blood Adv*. 2022;6:3970–3.

ACKNOWLEDGEMENTS

This content has been presented in part at the 2022 Annual Meeting of the European Association of Hematology, Vienna, June 2022.

AUTHOR CONTRIBUTIONS

PD and WB designed the research, collected and analyzed data, and wrote the manuscript. All other authors collected data and reviewed the manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

PD consultancy for AbbVie, AstraZeneca, bluebird bio, Gilead, Janssen, Miltenyi, Novartis, Riemser, Roche; speakers bureau for AbbVie, AstraZeneca, Gilead, Novartis, Riemser, Roche; research support from Riemser; UH honoraria from Novartis, Gilead, BMS, Miltenyi, Roche; MS research support Amgen, BMS, Gilead, Miltenyi, MorphoSys, Novartis, Roche, Seagen, Advisory Board Amgen, BMS, Gilead, Janssen, Novartis, Pfizer, Seagen, Speaker's Bureau Amgen, BMS, Gilead, Novartis, Pfizer, Takeda; BvT advisor or consultant for BMS/Celgene, Incyte, Miltenyi, Novartis, Pentixafarm, Amgen, Pfizer, Takeda, MSD, Gilead Kite, honoraria from AstraZeneca, Novartis, Roche, Takeda, and MSD, research funding from Novartis, MSD, Takeda, travel support from AbbVie, AstraZeneca, Kite-Gilead, MSD, Gilead Kite, honoraria from Novartis, Gilead, BMS, Janssen, Takeda, Therakos/Mallinckrodt, research funding from Therakos/Mallinckrodt; GW honoraria Gilead, Novartis, Takeda, Clinigen, Amgen; OP honoraria or travel support from Astellas, Gilead, Jazz, MSD, Neovii Biotech, Novartis, Pfizer and Therakos, research support from Gilead, Incyte, Jazz, Neovii Biotech and Takeda, advisory boards of Jazz, Gilead, MSD, Omeros, Priothera, Shionogi and SOB; US advisory board Novartis; CK Advisory boards: Abbvie, Amgen, BMS, EusaPharm, GSK, Janssen, Kite/Gilead, Medigene, Novartis, Roche, Sanofi, Takeda, Pfizer, Incyte; MVb honoraria and travel funds Gilead, Novartis, Janssen, Takeda, Daiichi Sankyo; MSt honoraria Kite/Gilead, Jazz, MSD, Novartis, Pfizer, BMS/Celgene; CDB received

honoraria and travel funds from BMS, Amgen, Novartis, Jazz, Gilead, Janssen; VV honoraria and travel funds for Gilead, honoraria and consultancies for Novartis, Gilead, BMS/Celgene; DM consultancies for AbbVie, Roche, BMS, Hexal, Novartis, MSD, Celgene, Janssen-Cilag, Pfizer, Astra-Zeneca, and Jazz Pharma; DW honoraria from Behring, BMS, Gilead, Novartis, Takeda; research support from Novartis; ST honoraria and travel funds Abbvie, BMS/Celgene, EUSA Pharma, Janssen, Gilead, Medigene, Novartis, Pfizer; Research funding BMS/Celgene, Gilead; NK honoraria Kite/Gilead, Jazz, MSD, Neovii Biotech, Novartis, Riemser, Pfizer, BMS Research support from Neovii, Riemser, Novartis, BMS; WB honoraria and travel funds Gilead, Novartis, Miltenyi and Janssen, Research grants Miltenyi. BG, RM, RS, MT and EW declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41409-022-01867-4>.

Correspondence and requests for materials should be addressed to Peter Dreger.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <http://creativecommons.org/licenses/by/4.0/>.

© The Author(s) 2022

ON BEHALF OF THE GERMAN LYMPHOMA ALLIANCE (GLA)

Peter Dreger¹✉, Udo Holtick², Marion Subklewe³, Bastian von Tresckow⁴, Francis Ayuk⁵, Eva Wagner⁶, Gerald Wulf⁷, Reinhardt Marks⁸, Olaf Penack⁹, Ulf Schnetzke¹⁰, Christian Koencke¹¹, Malte von Bonin¹², Matthias Stelljes¹³, Bertram Glass¹⁴, Claudia D. Baldus¹⁵, Vladan Vucinic¹⁶, Dimitrios Mougiakakos¹⁷, Max Topp¹⁸, Roland Schroers¹⁹, Daniel Wolff²⁰, Simone Thomas^{20,21} and Wolfgang A. Bethge¹✉

THE GERMAN STEM CELL TRANSPLANTATION REGISTRY (DRST)

Peter Dreger¹³, Nicolaus Kröger⁵ and Wolfgang A. Bethge¹✉²²