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Phylobone: a comprehensive database of bone extracellular
matrix proteins in human and model organisms
Margalida Fontcuberta-Rigo 1, Miho Nakamura1,2,3✉ and Pere Puigbò4,5,6✉

The bone extracellular matrix (ECM) contains minerals deposited on highly crosslinked collagen fibrils and hundreds of non-
collagenous proteins. Some of these proteins are key to the regulation of bone formation and regeneration via signaling pathways,
and play important regulatory and structural roles. However, the complete list of bone extracellular matrix proteins, their roles, and
the extent of individual and cross-species variations have not been fully captured in both humans and model organisms. Here, we
introduce the most comprehensive resource of bone extracellular matrix (ECM) proteins that can be used in research fields such as
bone regeneration, osteoporosis, and mechanobiology. The Phylobone database (available at https://phylobone.com) includes 255
proteins potentially expressed in the bone extracellular matrix (ECM) of humans and 30 species of vertebrates. A bioinformatics
pipeline was used to identify the evolutionary relationships of bone ECM proteins. The analysis facilitated the identification of
potential model organisms to study the molecular mechanisms of bone regeneration. A network analysis showed high connectivity
of bone ECM proteins. A total of 214 functional protein domains were identified, including collagen and the domains involved in
bone formation and resorption. Information from public drug repositories was used to identify potential repurposing of existing
drugs. The Phylobone database provides a platform to study bone regeneration and osteoporosis in light of (biological) evolution,
and will substantially contribute to the identification of molecular mechanisms and drug targets.
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INTRODUCTION
The bone extracellular matrix (ECM) consists of both organic
compounds, which make up approximately 40% of the matrix, and
inorganic compounds, which account for the remaining 60%.1 The
organic fraction of the ECM is mostly composed of collagen (90%)
and hundreds of non-collagenous proteins2 that play structural and
regulatory roles.3,4 Liquid chromatography tandem mass spectro-
metry (LC-MS-MS) proteomics has eased the elucidation of regulatory
[.1] mechanisms, therapeutic strategies, and biomarkers for bone
regeneration and osteoporosis research.5 Several studies of bone
proteomics have reported using secreted proteins from cells,
including mesenchymal stem cells, osteoblasts, and osteoclasts.6

However, since the bone ECM contains minerals deposited on highly
crosslinked collagen fibrils, it is highly challenging to solubilize for
proteomics analyses.7 Usually, a combination of decalcification and
chemical treatments is necessary for the extraction of proteins and
LC-MS-MS-based proteomics.8 Thus, the availability of bioinformatics
resources is necessary to facilitate comparative studies of bone
extracellular matrix proteomes, both within human populations and
across different model organisms. Although several non-collagenous
proteins of the bone ECM proteome have been identified, the list
and roles of most proteins,1 as well as individual and cross-species
variations, have not been fully explicated. Therefore, the identifica-
tion of non-collagenous proteins in humans and model organisms
will significantly advance the field of bone regeneration and
osteoporosis.

In this article, we introduce the most comprehensive [.1]
database of putative bone ECM proteins in 39 species, including
Homo sapiens and the most common animal models (e.g., Danio
rerio, Mus musculus, and Xenopus laevis), useful for the study of
osteoporosis.9 Due to deer antlers being a speculated model of
bone regeneration and osteoporosis,10–14 the database includes
proteins from six species of the Cerevidae family. The
Phylobone database, which includes 255 (28 collagenous and
227 non-collagenous) proteins, presents information on protein
sequences, functional characterizations, and potential drugs
that interact with bone ECM proteins. The database provides a
robust tool for the study of bone weakness and regeneration,
and will be a suitable resource for the identification of novel
target proteins and therapeutic peptides for the treatment and
prevention of osteoporosis. Thus, Phylobone will support
emerging therapies targeting novel disease mechanisms to
provide a powerful strategy for osteoporosis management in
the future.15

MATERIALS AND METHODS
Preliminary list of bone ECM proteins
A list of 255 seed proteins previously identified in the literature as
proteins present in the ECM was gathered from the UniProt
database.16 These seed proteins were previously identified in the
proteome of the bone ECM of D. rerio (n= 243), H. sapiens
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(n= 255), and Cervus nippon (n= 57)17,18 (Table S1). UniProt codes
of D. rerio (Zebrafish) proteins that were obsolete (or fractions of
protein sequences) were updated with current UniProt codes.
Additional putative bone ECM proteins from H. sapiens were
identified from the literature 11,18–21 and gathered from the
UniProt database.16 Each protein group was initially identified
based on the human bone ECM proteome, with a unique code
ranging from PB0001 to PB0255.

Selection of species of interest
We selected 31 representative species of vertebrates to cover a
wide range of phylogenetic groups (Table S2). The list includes a
wide coverage of vertebrates, including most common model
organisms and other vertebrates that are potentially important
as model organisms of bone regeneration and osteoporosis (e.g.,
six members of the Cervidae family, including Cervus hanglu
yarkandensis, Odocoileus virginianus texanus, Cervus canadensis,
Cervus elaphus, Muntiacus muntjak, and Muntiacus reevesiveus).
Moreover, we included in the search some species of inverte-
brates (n= 8) and other taxonomic groups that are phylogen-
etically distant to vertebrates (e.g., Arabidopsis, Archaea,
Bacteria, Choanoflagellata, Cnidaria, Ctenophora, Fungi, and
Porifera).

Gathering ECM proteins from public databases
Orthologous proteins were gathered from public repositories of
the National Center for Biotechnology Information (NCBI).
Phylobone draws its results from NCBI’s Eukaryotic Genome
Annotation pipeline22 and NCBI Gene dataset23 to identify
orthologous [.1] sequences of some vertebrates (e.g., M. musculus,
Rattus norvegicus, Gallus gallus, and Bos taurus). Additional protein
sequences of vertebrates were gathered from protein BLAST
searches (blastp)24 with a threshold of 10-6 on the NCBI’s non-
redundant protein sequences (nr). Synthetic construct sequences
(taxid: 32630) and annotated partial proteins were not included in
the Phylobone database.

Phylogenetic analysis and reconstruction of phyletic patterns
Phylogenetic analyses were performed with NGPhylogeny web
server.25 We utilized the One Click Workflow option to obtain
multiple sequence alignments (MAFFT algorithm26), clean
alignments (BMGE algorithm27) and phylogenetic trees (PhyML
algorithm28) of the 255 protein. Phyletic patterns of each
protein group were built with custom-made perl scripts and
information from NCBI’s Taxonomy.29 We selected various
species of different taxonomic groups, including 5 primates, 1
rabbit, 2 rodents, 2 carnivores, 10 even-toed ungulates
(including 5 members of the family Cervidae), 2 reptiles, 3
birds, 2 frogs, 4 bony fishes, and 8 invertebrates (Table S3).

Functional analysis
Clusters of Orthologous Groups (COG) functional categories and
Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations
of all the selected proteins in the database are retrieved from
eggnog.30,31 The dataset of 255 protein groups was mapped onto
eggNOG-mapper30,31 to identify the COG functional categories
involved in bone ECM proteins. COGs are classified into 26
functional groups.32 Gene Ontology (GO) enrichment data for
human and zebrafish proteins were collected from GO33 with the
Panther resource. Benjamini–Hochberg false discovery rate (FDR)
correction was used for the searches. Pfam34 was used to retrieve
data about the domains of each human protein in the dataset.
Pfam has structural and functional information for each domain
as well as links to other databases, such as InterPro.35 In addition,
information on the functional domains of all protein sequences in
the dataset was annotated with CD-Search (with default
parameters: E-value cut-off of 0.01; composition-corrected

scoring: applied; low-complexity regions: not filtered; maximum
aligns: 500).36

Protein–protein interaction network
Protein–protein interactions of each human protein in the
database were retrieved from European Bioinformatics Institute’s
Intact [.1] webserver37 and visualized with Cytoscape.38 Between-
ness centrality was used to evaluate the centrality of each protein
in the network. This parameter gives a value to a node calculated
according to Eq. (1):

Cn ¼
X

s≠t≠n

σst=n

σst
(1)

where Cn is the betweenness centrality value of the node n, σst is
the number of shortest paths from s to t and σst=n is the number of
shortest paths from s to t that n lies in between.

Conservation between zebrafish and human proteins
The conservation level between zebrafish and human proteins has
been assessed by calculating the percentage of amino acid
matches in pairwise alignments of orthologous proteins.

Targets by existing drugs
To facilitate the research on repurposing drugs for osteoporosis
treatment, we used information from the Drug Bank39 and KEGG40

databases to identify bone ECM proteins that are targets of
currently available drugs on the market.

RESULTS
Phyletic patterns
The phyletic distribution of proteins in the selected group of
species shows a high conservation of the number of bone ECM
proteins within the vertebrate species (Fig. 1 and Table S3).
Seed proteins to build the Phylobone database were obtained
from humans and zebrafish, which were present in 255 (100%)
and 251 (98%) protein groups. Most vertebrates were present in
~90% of the protein groups. This finding underscores the
significance of the presence of these proteins in the bone ECM,
as they exhibit a high degree of conservation across multiple
species. Such conservation may have important implications for
the function and regulation of bone tissue across vertebrates.
Moreover, certain proteins, such as amelogenin (PB0250), are
only present in mammals, amphibians, and reptiles because of
potential evolutionary adaptations in tetrapods.41 Note that
there are exceptional gaps in certain members of the Cervidae
family (e.g., C. elaphus, M. reeversi, and M. muntjak have fewer
known proteins than the rest of mammals) due to incomplete
annotation of the genomes. As expected, only around one-third
of the proteins found in invertebrates have homologs in
vertebrate species, and in many cases, the levels of similarity
were found to be quite low. None of the protein sequences
have homologs in lower taxonomic groups, such as bacteria.

Functional analysis
Protein functional domains. As expected, the most abundant
protein functional domain in the Phylobone dataset is collagen,
which is present in 12% of human proteins, covering 90% of the
organic fraction of the bone ECM.2 Collagen is essential for
homeostasis maintenance, and it serves as a scaffold to many
other macromolecules and hydroxyapatite, enabling cell attach-
ment and bone resistance to mechanical forces.1,42,43 Further-
more, 214 non-collagenous functional domains are present in
human sequences of the dataset (Fig. 2 and Table S4). They are
mostly common in bone formation, resorption, cell attachment,
or as intermediaries in a variety of metabolic pathways.
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Leucine-rich repeats (LRRs) are the second most common
functional domains due to the large abundance of leucine-rich
proteoglycans (SLRPs) in bone ECM.1 LRRs play an important role
in bone formation and the maintenance of bone homeostasis.
Moreover, laminins, von Willebrand factor (VWF), epidermal
growth factor (EGF), and trypsin domains are also frequent.
Laminins, VWF, and EGF have significant roles in bone
regeneration and stability—laminins are involved in cell adhe-
sion, proliferation, and differentiation;44 VWF enhances the
inhibition of osteoclastogenesis;45 and EGF can stimulate bone
resorption.46 Trypsin is an important domain in the ECM because
of its ability to cleave proteins. Several matrix-degrading
enzymes, such as cathepsin K and matrix metalloproteinases,
also contribute to the efficient degradation of bone.47

Analysis of gene ontology. We compared GO enrichment analyses
of biological process, molecular function, and cellular component
categories between humans and zebrafish (Fig. 3 and Fig. S1–6)).
GO annotations are more abundant in humans, but there is a
certain functional overlap with zebrafish that can be utilized to
evaluate the use of zebrafish as a model organism of osteoporo-
sis.48 A common category in biological processes is bone
mineralization, which is essential for bone regeneration.49 In
terms of molecular functions, several binding activities are
abundant in both humans and zebrafish. As expected, collagen
is frequent in the GO cellular component categories of both
species, as it is the main component of bone ECM.1

Clusters of orthologous groups. The Phylobone database is a
compilation of ECM proteins; thus, several proteins are categor-
ized in the COG database under the functions of extracellular
structures (W) and signal transduction (T) (Fig. 4a). Signal
transduction is an indispensable function of the ECM for
controlling homeostasis and transmission of molecular signals

into the cell.50 Furthermore, proteins involved in bone signaling
regulate bone formation and resorption49 (Fig. 5). The third and
fourth most common COG functional categories are function
unknown (S) (Phylobone may shed some light on the identification
of the functions of these proteins when studied in suitable animal
models), as well [.1] as post-translational modification, protein
turnover, and chaperones (O). Proteins of the ECM are expected to
be highly integrated to enable signaling functions and to control
homeostasis.

Protein interaction network of bone ECM proteins in human. We
built a protein interaction network of 5 781 human proteins,
including putative bone ECM proteins and those that potentially
interact (independently of body tissue) with them (Fig. 4b). The
parameter of betweenness centrality showed higher values in
bone ECM proteins compared to those that interacted with them
(Fig. 4c). This result is in agreement with the central role of bone
ECM proteins in maintaining tissue homeostasis and regulatory
processes. Interactions with cellular components also allow
signaling (e.g., cell–matrix interactions permit osteoblast differ-
entiation4). The amyloid beta precursor protein, a transmembrane
protein that can be cleaved by a secretase and released in the
ECM,51 showed the highest value of betweenness centrality (Fig.
4d). This protein regulates osteoclast function (affecting bone
remodeling), is present in both bone and brain, and can link
osteoporosis and neurodegenerative diseases.52,53 Fibronectin
also had one of the largest values of betweenness centrality. This
glycoprotein of the ECM extracellular matrix has an important role
in osteogenesis because it promotes pre-osteoblast mineralization
and differentiation.54 Furthermore, fibronectin acts as a scaffold
for the cleavage of procollagen (interacting with both bone
morphogenic protein 1 and procollagen).55 This ability to bind to
other ECM proteins gives fibronectin its high centrality value and
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Fig. 1 General parameters of the selected species in the Phylobone database. Tree visualization was made with iTOL v577 and shows the
following datasets: G+ C percentage (yellow), genome size (blue), number of proteins (green), number of putative bone extracellular matrix
proteins (purple), and taxonomic information
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an important role in bone formation and regeneration with a
single mechanism.

Candidate proteins to be used in future studies
The objective of the phylobone database is to serve as a valuable
resource for further investigations in the areas of bone regenera-
tion, osteoporosis, and related fields. Through phylogenetic
analysis, it has been observed that several ECM proteins are
conserved between zebrafish and humans (Table S5). This
conservation potentially suggests their significant regulatory role
or importance in maintaining homeostasis. Moreover, the
database includes 36 proteins out of 255 proteins from the bone
ECM that have existing drugs and are putative candidates for
repurposing existing drugs (Table 1 and Table S6), including 10
drugs that interact with more than one protein (Table 2).

DISCUSSION
How to use the Phylobone database to study bone regeneration
and osteoporosis
Osteoporosis is one of the most common bone problems in the
middle age and elderly population worldwide.56,57 Approximately
9 million fractures per year (one every three seconds) are caused

by osteoporosis, which contributes significantly to morbidity and
mortality in developed countries.15 Given that life expectancy is
increasing globally, osteoporosis has become an emerging topic,
as it significantly affects the quality of life of individuals in most
countries.15 Osteoporosis is a metabolic disease caused by an
imbalance between bone anabolism and catabolism.48 In general,
the recommendations to reduce the risk of osteoporosis are intake
of adequate calcium, exposure to sunlight, intake of vitamin D,
and engaging in weight-bearing exercises. It is known that a
reduction in mechanical loading due to prolonged bed rest or
long-term exposure to microgravity can lead to a reduction in
bone mass.58,59 The mechanisms of weight-bearing exercises to
prevent osteoporosis are not fully understood; yet, during weight-
bearing exercise, collagen fibrils, which represent 90% of the
organic components of the bone ECM, generate electricity that is
stored in the inorganic components of the ECM.60 Since bone ECM
has both structural and regulatory roles, non-collagenous organic
components have a key role in bone regulation by mechanical
loading.3,4

Several non-collagenous proteins of the bone ECM proteome
have been identified previously, including osteocalcin, osteonec-
tin, and R-spondins; however, the list and roles of bone ECM
proteins in humans (and model organisms) are not fully
elucidated.1 Some ECM proteins have been reported to play an
important role in promoting bone formation. Type I collagen, the
most abundant protein in the bone ECM, plays a structural role in
providing mechanical support, such as bone strength and
fragility,61 and regulates integrin receptors for osteoblasts.62

Moreover, the bone ECM proteome comprises hundreds of non-
collagenous proteins with structural, regulatory, and homeostatic
roles63 (Fig. 5). Osteopontin is a non-collagenous protein in bone
ECM related to mechanical stress with multifunctional functions.64

This protein is produced by osteoblasts as well as osteoclasts,65

and it inhibits the activities of osteoblasts while promoting
osteoclast activities.66 There are other proteins responsible for
maintaining bone homeostasis, such as bone morphogenetic
proteins (BMPs).67

Phylobone database to study mechanobiology
Outcomes from the Phylobone project will also have an impact on
the field of mechanobiology. Several publications have determined
the role of some cell types, cellular membrane receptors, and bone
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ECM proteins in mechanical loading.64,68,69 For instance, osteocytes
are known as mechanosensing cells in bone tissue, as they
transduce mechanical signals to biochemical responses.68 PIEZO1 is
a mechanosensitive ion channel component that became a topic of
discussion because its discoverer won the Nobel Prize in 2021.70

PIEZO1 regulates homeostasis via crosstalk of osteoblasts (bone-
making cells) and osteoclasts (bone-eating cells).69 Further,
mechanical properties, especially fluid shear stress in bone ECM,
have significant effects on cells and their interactions.71 However,
only a few non-collagenous proteins of the ECM (e.g., osteopontin)
have been related to mechanical stress.64

Potential repurposing of existing drugs
The Phylobone database is a key resource for advancing research
on the prevention of osteoporosis and the development of new
treatments for bone regeneration. The most common treatments
for osteoporosis are bisphosphonates, monoclonal receptor
activator of nuclear factor-kB ligand (RANKL) antibodies, mono-
clonal sclerostin antibodies, and a parathyroid hormone pep-
tide.72 The parathyroid hormone peptide increases osteoblast
activity and inhibits osteoclast recruitment, whereas the targets
of the other treatments inhibit osteoclast resorption.73 However,
these treatments have limitations and problems with side effects
and serious risks. For instance, bisphosphonates have been
reported to have higher fracture rates after long-term use,
characterized as more than six years and requiring a

“bisphosphonate holiday”.74 RANKL antibodies have been
reported to have some side effects, such as skin eczema,
flatulence, cellulitis, and osteonecrosis of the jaw.75 Thus, there is
still a need for osteoporosis treatment. However, finding new
drugs is expensive; thus, repurposing existing drugs, such as
those in Table 1, is a main goal for the identification of novel
treatments and preventive methods. Given that several proteins
of the bone ECM proteome have been identified as playing a
regulatory role in osteogenesis and bone degradation,1 we
hypothesize that key proteins of the ECM involved in mechanical
loading could be potential drug targets for the treatment and
prevention of osteoporosis.

Conclusions and future developments
The aim of the Phylobone research project is to provide a platform
to study bone regeneration and osteoporosis in light of (biological)
evolution. The current database includes the most comprehensive
repository of bone ECM proteins in human and animal models. The
phylobone database provides a bioinformatics resource that
includes sequences, phylogenetics, and functionals. Thus, this
resource will be helpful in addressing a major technical challenge
in bone biology: the identification of non-collagenous proteins
involved in bone formation, regeneration, and progression of
osteoporosis disease. In the future, we anticipate an update of the
Phylobone database with more experimental data on the regulatory
role of bone ECM proteins in bone regeneration and osteoporosis.
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Table 1. List of the 36 bone extracellular matrix (ECM) proteins that are the target of at least one available drug on the market

PB code Uniprot code Uniprot name N. of Drugs Protein description

PB0124 P00742 FA10_HUMAN 17 Coagulation factor X

PB0003 P00734 THRB_HUMAN 13 Prothrombin

PB0080 P01031 CO5_HUMAN 12 Complement C5

PB0242 P02766 TTHY_HUMAN 10 Transthyretin

PB0107 P14780 MMP9_HUMAN 8 Matrix metalloproteinase-9

PB0178 O14793 GDF8_HUMAN 7 Growth/differentiation factor 8

PB0204 P08253 MMP2_HUMAN 6 72 kDa type IV collagenase

PB0235 P06756 ITAV_HUMAN 5 Integrin alpha-V

PB0238 P00747 PLMN_HUMAN 4 Plasminogen

PB0067 P00740 FA9_HUMAN 3 Coagulation factor IX

PB0008 P02743 SAMP_HUMAN 3 Serum amyloid P-component

PB0132 P05121 PAI1_HUMAN 3 Plasminogen activator inhibitor 1

PB0236 P05556 ITB1_HUMAN 3 Integrin beta-1

PB0112 P45452 MMP13_HUMAN 3 Collagenase 3

PB0160 P61812 TGFB2_HUMAN 3 Transforming growth factor beta-2 proprotein

PB0159 P00751 CFAB_HUMAN 2 Complement factor B

PB0161 P21333 FLNA_HUMAN 2 Filamin-A

PB0100 P43235 CATK_HUMAN 2 Cathepsin K

PB0017 P69905 HBA_HUMAN 2 Hemoglobin subunit alpha

PB0175 P01009 A1AT_HUMAN 1 Alpha-1-antitrypsin

PB0030 P01024 CO3_HUMAN 1 Complement C3

PB0187 P01042 KNG1_HUMAN 1 Kininogen-1

PB0212 P02753 RET4_HUMAN 1 Retinol-binding protein 4

PB0077 P04114 APOB_HUMAN 1 Apolipoprotein B-100
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DATA AVAILABILITY
The Phylobone database is freely accessible at https://phylobone.com. The current
version of the dataset includes 8615 putative bone ECM proteins from 39 species of
vertebrates and invertebrates, and is categorized into 255 protein groups. Each
protein in the database is annotated with basic information that includes its name,
organism, a general protein description, a list of gene ontologies (GO) associated,
protein–protein interactions (PPI), functional domains, metabolic pathways, and
drugs. We have precomputed a phyletic profile of proteins and species based on the
identification of orthologous sequences in vertebrates, including common model
organisms. Protein sequences, multiple sequence alignments, and PhyML phyloge-
netic trees are available to visualize on the web browser and download. Seed
sequences of humans and zebrafish, which have been used to build the database, are
also available. Moreover, the database includes several links to external resources,
including Uniprot,16 Protein Atlas,76 Intact,37 InterPro35 and the BLAST alignment
tool.24 All proteins have been mapped onto currently existing drugs and the
database includes links to the DrugBank39 and KEGG40 databases.
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