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SMN deficiency inhibits endochondral ossification via
promoting TRAF6-induced ubiquitination degradation of
YBX1 in spinal muscular atrophy
Zijie Zhou 1, Xinbin Fan1,2, Taiyang Xiang1, Yinxuan Suo1, Xiaoyan Shi3, Yaoyao Li1, Yimin Hua4, Lei Sheng1✉ and Xiaozhong Zhou1✉

Survival of motor neuron (SMN) protein encoded by SMN1 gene, is the essential and ubiquitously expressed protein in all tissues.
Prior studies demonstrated that SMN deficiency impaired bone development, but the underlying mechanism of abnormal
endochondral ossification remains obscure. Here, we showed SMN is involved in hypertrophic chondrocytes differentiation through
regulating RNA splicing and protein degradation via analyzing single cell RNA-sequencing data of hypertrophic chondrocytes. Of
note, SMN loss induced dwarfism and delayed endochondral ossification in Smn1 depletion-severe spinal muscular atrophy (SMA)
mouse model and Smn1 chondrocyte conditional knockdown mouse. Histological analysis revealed that SMN deficiency expanded
the zone of hypertrophic chondrocytes in the growth plates, but delayed turnover from hypertrophic to ossification zone.
Widespread changes in endochondral ossification related gene expression and alternative splicing profiles were identified via RNA
sequencing of growth plate cartilages from SMA mice on postnatal day 4. Importantly, Mass spectrometry-based proteomics
analysis elucidated Y-box-binding protein 1 (YBX1) as a vital SMN-binding factor, was decreased in SMA mice. YBX1 knockdown
reproduced the aberrant gene expression and splicing changes observed in SMA growth plate cartilages. Comparing the binding
proteins of SMN and YBX1 revealed TNF receptor-associated factor 6 (TRAF6), which promoted ubiquitination degradation of YBX1.
By conditionally deleting Smn1 in chondrocytes of WT mice and overexpressing Smn1 in chondrocytes of SMA mice, we proved that
SMN expression in chondrocytes is critical for hypertrophic chondrocyte-mediated endochondral ossification. Collectively, these
results demonstrate that SMN deficiency contributes to rapid systemic bone dysplasia syndrome by promoting TRAF6-induced
ubiquitination degradation of YBX1 in growth plate cartilages of SMA mice.
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INTRODUCTION
In vertebrates, long bones and vertebrae are formed through
endochondral ossification. Chondrocyte differentiation in the
growth plate is involved in endochondral ossification and is a
major factor for bone growth. Impaired endochondral ossifica-
tion leads to severe skeletal dysplasia. Apart from progressive
atrophy and weakness of proximal voluntary muscles, spinal
muscular atrophy (SMA), a fatal genetic disorder, also presents
skeletal abnormalities, including bone growth defects, long bone
fractures, osteopenia, and scoliosis.1–3 To date, several effective
therapeutics including antisense oligonucleotides Nusinersen,
small molecular drug Risdiplam, and gene therapy Onasemno-
gene abeparvovec have been approved for SMA patients, and
significantly extend life-span especially for severe patients.4 This
prompts us to further consider how to better improve living
quality of SMA patients. Bone, as a critical factor determining
quality of life, exerts important roles in supporting motor
function and protecting soft tissues like muscles. Considering
that bone development abnormalities may be attributed to
impaired endochondral ossification, we further explore the

mechanisms underlying endochondral ossification defects in
SMA patients.
SMA is caused by homozygous mutations or deletions of

survival of motor neuron 1 (SMN1) which encodes the essential
and ubiquitously expressed protein SMN located in both nucleus
and cytoplasm.5 The most well-known role of SMN is in the
assembly of the spliceosomal snRNPs, which are required for the
catalysis of intron removal during pre-mRNA splicing.6 Widespread
defects in splicing have been reported in various tissues such as
spinal cord, muscle, liver and brain in SMA mice where it was
observed that the level of aberrant splicing increases with disease
progression.7–9 SMN also plays important roles in multiple
fundamental cellular homeostatic pathways including mRNA
trafficking, cytoskeletal dynamics, and ubiquitin-proteasome
system.10–14 All animal species possess only one Smn1 gene, and
knockout of Smn1 is embryonic lethal, whereas humans harbor a
paralogous backup SMN2 gene, which expresses the same SMN
protein.5,15 However, two crucial nucleotide transitions in SMN2,
including C6T in exon 7 and a lesser degree G-44A in intron 6,
induce skipping of exon 7 in approximately 90% of SMN2
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transcripts and consequently produce about 10% full-length SMN
protein.16–18 The small amount of full-length SMN protein
expressed by SMN2 is not sufficient to fully rescue the loss of
SMN1, but it is essential for the survival of SMA patients.
Accumulating evidence indicated that bone structural impair-

ments and developmental defects in SMA patients and mouse
models are primarily attributable to cell-autonomous mechanisms.
Hensel et al. demonstrated that in SMA mice, bone growth defects
occur before mineralization defects, even earlier than the onset of
neuromuscular symptoms, indicating that bone growth defects
are partially independent of neuromuscular degeneration.19

Moreover, Conditional knockout of Smn1 in mouse mesenchymal
progenitors led to bone development defects and impaired
growth plate homeostasis which inhibited neuromuscular junc-
tion, emphasizing the importance of promoting bone growth in
treating SMA.20 And this study also elucidated that SMN protein
loss reduced local insulin-like growth factor in chondrocytes,
accounting for inhibited bone growth in mice.20 Although defects
in endochondral ossification have been observed in SMA, no
comprehensive studies have yet investigated the impairment of
this process at cellular and molecular levels.
In the present study, we showed that SMN protein is involved in

hypertrophic chondrocytes differentiation through regulating RNA
splicing and protein degradation via analyzing single cell RNA-
sequencing (scRNA-seq) data of hypertrophic chondrocytes, which
are characterized by the marker gene collagen X type I (Col10a1).
SMN deficiency impaired endochondral ossification, and sup-
pressed the differentiation of hypertrophic chondrocytes and the
turnover from hypertrophic zone (HZ) to ossification zone in
growth plates in SMA and chondrocytes-specific deletion of Smn1
mice. Using mass spectrometry and GO enrichment analysis,
splicing factor Y-box-binding protein 1 (YBX1) was identified as a
crucial SMN-binding protein and regulated mis-splicing of
endochondral ossification related genes in growth plate cartilages
of SMA mice. Mechanistically, SMN ablation increased the
interaction between YBX1 and TNF receptor-associated factor 6
(TRAF6) to promote YBX1 ubiquitination degradation. Finally, after
treatment with antisense oligonucleotide 10–29 (ASO10-29), a
therapeutic antisense oligonucleotide to increase SMN level, we
observed a recovery of chondrocyte pathology, YBX1 protein level,
and alternative splicing events. Together, these results demon-
strate that SMN deficiency inhibits endochondral ossification via
increasing TRAF6-induced ubiquitination degradation of YBX1 in
growth plate cartilages of SMA mice.

RESULTS
SMN regulates the progression of endochondral ossification
To investigate the role of SMN in bone development, we analyzed
scRNA-seq data from two publicly available datasets (GSE190616
and GSE179148).21 These datasets included 2 273 and 1 068
tdTomato+ cells at E16.5 and two months of age respectively,
which are isolated from tibia and femur of a hypertrophic
chondrocyte lineage tracing mouse model (Col10a1Cre;
Rosa26fs-tdTomato). We detected widespread and uniform distribu-
tion of Smn1 expression in tdTomato+ cells at E16.5, which
primarily consists of hypertrophic chondrocytes and their
descendants (Fig. 1a, c), only Cluster 2 exhibited high Smn1
expression at 2 months (Fig. 1b, d). We then explored the cellular
composition at 2 months. Clusters 0–2 were identified as skeletal
stem and progenitor cells (SSPCs) based on their expression of
canonical markers such as Grem1, Lepr, and Pdgfra. Clusters 3 and
4 were characterized by high expression of Bglap, Cpe, and Alpl,
and Mepe, Dmp1, and Fam20c, respectively, and were thus
annotated as osteoblasts and osteocytes (Fig. 1e). Trajectory
analysis using Monocle 3 revealed that Clusters 0 and 1 (SSPCs)
reside at the root of the pseudotime trajectory and give rise to
Cluster 2, which subsequently differentiates into osteoblasts

(Cluster 3) and osteocytes (Cluster 4) (Fig. 1f). These results
suggest that Col10a1+ hypertrophic chondrocytes have already
transitioned into SSPCs by 2 months of age and continue to
differentiate along the osteogenic lineage. During this transfer,
Cluster 2 appears to serve as a pivotal intermediate population,
positioned between early SSPCs and mature osteolineage cells.
Notably, Cluster 2 exhibits specific expression of Smn1, along with
Ptn and Palmd, two genes implicated in osteogenic differentiation
and calcification.22,23 To highlight the unique molecular profile of
Cluster 2, we designated it as SSPCPtn::Palmd::Smn1.
GO enrichment analysis of the marker genes for Cluster 0 and

Cluster 1 revealed enrichment for cellular homeostasis (Fig. S1a) and
vascular development (Fig. S1b), respectively. Moreover, marker
genes of SSPCPtn::Palmd::Smn1 showed strong correlation with extra-
cellular matrix organization, actin cytoskeleton, mesenchymal cell
differentiation, and ossification, suggesting that SMN may be
important for the differentiation of hypertrophic chondrocytes into
bone (Fig. 1g). To investigate how SMN regulates endochondral
ossification, we calculated the Spearman correlation coefficients (ρ)
and P-values between Smn1 and other 14 715 genes. We identified
549 genes with ρ value greater than 0.3, P-value less than 0.05, and
positive cell count exceeding 50. GO enrichment analysis showed
that these genes were involved in autophagy, DNA repair, protein
localization, proteasome-mediated ubiquitin-dependent protein
catabolic process, and RNA splicing (Fig. 1h). Thus, SMN protein
may influence the progression of endochondral ossification
mediated by hypertrophic chondrocytes, potentially through its
involvement in various biological processes, such as ubiquitin-
dependent protein degradation and RNA splicing.

SMN deficiency retards bone development during
postnatal growth
Consistent with previous study,24 we utilized a severe SMA mouse
model with a mean lifespan of 10 days (Fig. S2a). Considering that
the first symptom appears at P5 with impaired motor function,19 we
selected three time points: P0, P4, and P7, representing neonatal,
pre-symptomatic, and symptomatic stages, respectively. No sig-
nificant difference was observed in weight and body size of SMA
mice compared to the Het group from P0 until P4 (Fig. S2b, c). Alcian
blue and alizarin red double staining revealed the reduced length of
body, humerus, femur, and tibia in SMA mice starting from P4
(Fig. 1i–l). Longitudinal limb bone development is driven by
endochondral ossification controlled by the growth plates, which
are divided into the resting zone (RZ), proliferative zone (PZ), and HZ
based on morphology and function.25 Immunofluorescence staining
revealed widespread expression of SMN protein in growth plate
cartilage, with particularly strong signals in HZ (Fig. 1m). To validate
the reduction of SMN protein, we performed Western blot analysis
and confirmed a significant decrease in SMN expression (~50%) in
SMA growth plate cartilage across all three timepoints (Fig. S2d).
Together with the transcriptional findings, these results support the
notion that SMN is essential for growth plate–mediated endochon-
dral ossification. SMN deficiency is therefore likely to impair bone
development at the pre-symptomatic stage.

SMN deficiency induces abnormal growth plate anatomy
Growth plate cartilages of SMA and Het mice were stained with
hematoxylin-eosin (HE) at P0, P4 and P7 (Figs. 2a and S3a). No
difference was detected in growth plate size (Fig. S3a), area
proportions of different regions (Fig. S3b), and height of HZ
(Fig. S3c) at P0 between Het and SMA group, suggesting that the
skeletal developmental defects in SMA mice occurred postnatally.
The size difference of the growth plates between SMA and HET
mice was more pronounced at P7 compared to P4 (Fig. 2a).
Starting from P4, the percentage of HZ area of SMA mice became
higher than Het mice (Fig. 2b). Moreover, HZ height in SMA mice
was slightly higher at P4 with no statistical difference and
significantly higher at P7 (Fig. 2c).
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m Immunofluorescence staining of SMN in growth plates of Het mice at P4. Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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We then investigated whether restoring SMN immediately
after birth could rescue defects in endochondral ossification and
bone development. In line with previous work, we utilized
ASO10-29, an MOE-modified antisense oligonucleotide that
promotes exon 7 inclusion of SMN2 gene to increase SMN
levels.26 ASO10-29 was administrated to newborn pups at dose

of 90 mg/kg, twice between P0 and P1 (Fig. S4a), and significantly
increased SMN protein in SMA femur on P7 (Fig. S4b). Increased
SMN rescued bone dysplasia in SMA mice according to the alcian
blue and alizarin red double staining result (Fig. S4c). After
ASO10-29 administration, both percentage and height of HZ in
SMA mice were restored to levels comparable to those in Het
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mice (Fig. 2b, c). Moreover, the proportion of RZ area, which was
reduced in untreated SMA mice at P7, was markedly increased
following ASO10-29 treatment (Fig. S4d). The PZ area proportion
did not exhibit any significant differences between the Het and
SMA groups, regardless of whether it was at P4, P7, or after ASO
treatment (Fig. S4e).
Safranin O-Fast Green (SF) staining revealed that cell size of

hypertrophic chondrocytes increased and cell density decreased
in HZ of Het mice from P4 to P7 (Fig. 2d–f), which is a natural
phenomenon during endochondral ossification.27 However, the
hypertrophic chondrocytes in HZ of SMA mice exhibited smaller
size and higher density compared to the Het group, a condition
that was recovered by ASO10-29 treatment, indicating an increase
of immature hypertrophic chondrocytes. (Fig. 2d–f). At P4 and P7,
Von Kossa (VK) staining showed reduced calcification in the
metaphysis, while more calcium deposition occurred in the HZ of
SMA mice (Fig. 2g–i), indicating the inhibited transition from HZ to
ossification zone. ASO10-29 reduced the calcification rate in HZ
and increased it in metaphysis (Fig. 2g–i). Taken together, SMA
mice exhibited an abnormal growth plate anatomy characterized
by suppressed differentiation of hypertrophic chondrocytes. The
bone dysplasia could be rescued by SMN supplementation, which
consequently alleviated the restriction on long bone
development.

SMN deficiency dysregulates expression of genes related to
survival and differentiation of chondrocytes
To understand the molecular mechanism of endochondral
ossification defects in SMA mouse model, we conducted bulk
RNA sequencing on the growth plate cartilages of P4 SMA and Het
mice (Fig. 3a). Samples from SMA mice were distinguishable from
those of control mice according to principal component analysis
(Fig. S5a). Genes that were upregulated or downregulated >2 folds
with a P-value < 0.05 were considered significantly differentially
expressed. We identified 633 upregulated genes and 241 down-
regulated genes (Fig. 3b). Analysis of gene ontology (GO)
enrichment for biological processes showed that ossification,
chondrocyte differentiation, and chondrocyte development were
predominantly altered in SMA growth plates (Fig. 3c). Genes related
to chondrocyte development, including matrilin 1 (Matn1),
collagen Ⅱ type Ⅰ (Col2a1), and aggrecan (Acan) were down-
regulated (Fig. 3d). Chondrocyte differentiation related genes,
including SRY-box transcription factor 9 (Sox9), transforming
growth factor beta 1 (Tgfb1), Col10a1, RUNX family transcription
factor 2 (Runx2), Wnt family member 10B (Wnt10b), and indian
hedgehog signaling molecule (Ihh) were reduced in SMA group
(Fig. 3d). Ossification related genes, including alkaline phosphatase
(Alpl), Sp7 transcription factor (Sp7), and collagen Ⅰ type Ⅰ (Col1a1)
also significantly decreased in SMA growth plate cartilages (Fig. 3d).
Additionally, Kyoto encyclopedia of genes and genomes (KEGG)

pathway analysis of significantly differentially expressed genes
revealed that several of the top enriched pathways involve
sarcomeric and cytoskeletal genes commonly associated with
cardiac muscle function, including Myl2, Myl3, Myh6, and Myh7
(Fig. 3e). Given that proper cytoskeletal remodeling is essential for
chondrocyte hypertrophy and growth plate morphogenesis, the
enrichment of these genes suggests that hypertrophic chondro-
cytes in SMA mice may experience aberrant cytoskeletal dynamics,
potentially disrupting their terminal differentiation during endo-
chondral ossification. On the other hand, insulin administration
has been shown to promote chondrocyte differentiation and
maturation.28 Both insulin deficiency and insulin resistance are
known to exert deleterious effects on bone tissue.29 Therefore, the
enrichment of insulin resistance pathways suggests that SMN
deficiency may impair chondrocyte differentiation through
disrupted insulin signaling.
Moreover, enrichment of the p53 signaling pathway (Fig. 3e)

suggests dysregulated cell proliferation and apoptosis.30 qPCR

validation showed downregulation of proliferation marker Mki67,
and upregulation of Cdkn1a and the pro-apoptotic gene Bax in
SMA growth plate cartilage (Fig. S5b), indicating enhanced cell
cycle arrest and apoptosis. However, TUNEL staining revealed
positive signals only in the periosteum, but not in chondrocytes
within the growth plate (Fig. S5c). This suggests that although Bax
expression is elevated, chondrocytes have not yet undergone
apoptosis at this stage. Therefore, apoptosis is unlikely to be the
primary mechanism underlying impaired endochondral ossifica-
tion caused by SMN deficiency.
In conclusion, SMN deficiency impairs expression of genes

related to proliferation and differentiation in chondrocytes.

SMN deficiency suppresses endochondral ossification progression
Apart from cell proliferation and apoptosis, chondrocyte differ-
entiation is crucial in the process of endochondral ossification and
bone development. Chondrocyte differentiation is initially con-
trolled by SOX9 and then shifts to RUNX2 during hypertrophy.
Then COL X-marked hypertrophic chondrocytes regulate matrix
mineralization and subsequently differentiate into SP7-dependent
osteoblasts to promote bone ossification.31,32 We examined
expression of SOX9, RUNX2, COL Ⅹ, and SP7 in SMA growth
plates through immunofluorescence. SOX9 showed a significant
reduction throughout the growth plates of P4 SMA mice,
especially in HZ (Fig. 3f, Fig. S5d, e). RUNX2, primarily expressed
in hypertrophic chondrocytes, was also downregulated across P4
SMA growth plates (Fig. 3g, Fig. S5f, g). Consistent with increased
HZ height, the range of COL X-positive cells expanded long-
itudinally in P4 SMA mice growth plate cartilages, whereas the
mean fluorescence intensity (MFI) of COL X was markedly lower
compared to the Het mice, reflecting restricted mature of
hypertrophic chondrocytes (Fig. 3h). Moreover, the level of SP7
decreased in P4 SMA metaphysis, indicating restricted bone
ossification (Fig. 3i).
To confirm that the restoration of SMN can reverse these

changes, ASO10-29 was utilized to elevate SMN levels. Immuno-
fluorescence staining of growth plate sections at P7 revealed a
widespread decrease in SOX9 and RUNX2 levels throughout the
growth plates of SMA mice at P7 (Fig. S6a, b), consistent with the
trends seen at P4. MFI of COL X and SP7 was downregulated in HZ
and metaphysis of SMA mice, respectively (Fig. S6c, d). In growth
plates of SMA mice treated with ASO10-29, we observed marked
upregulation of SOX9, RUNX2, COL X, and SP7 levels (Fig. S6a–d).
Overall, these results suggest that SMN loss suppresses the

differentiation of mature hypertrophic chondrocytes, thereby
inhibiting endochondral ossification. Notably, these defects can
be reversed by early restoration of SMN protein levels.

SMN deficiency dysregulates pre-mRNA alternative splicing in
genes linked to endochondral ossification
SMN protein plays a crucial role in biogenesis of small nuclear
ribonucleoproteins, which are essential for RNA splicing events.33

We investigated the alternative splicing profile of SMA growth
plate cartilages compared to control littermates at P4. Five main
types of alternative splicing, including alternative 3′ splice site
(A3SS), alternative 5′ splice site (A5SS), skipped exon (SE), mutually
exclusive exons (MXE), and retained intron (RI), were analyzed.
Using a significant threshold of P < 0.05 and ΔPSI > 0.1, we
identified a total of 3177 significant splicing events within 2159
genes. Pre-mRNA splicing in SMA cartilages showed changes in
A3SS (6.17%), A5SS (3.65%), MXE (15.83%), RI (8.72%), and SE
(65.63%) (Fig. 4a). We observed a higher number of significant AS
events with decreased inclusion in SE (69.9%) and increased
inclusion in RI (76.2%) compared to Het group (Fig. 4b). Since SMN
deficiency had the largest effect on SE, we further analyzed genes
with significant SE events using GO analysis and found significant
enrichment in endochondral ossification, bone development,
bone mineralization, bone resorption, and bone remodeling
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(Fig. 4c). Six transcripts, including vascular endothelial growth
factor A (Vegfa), Runx2, purinergic receptor P2X, ligand-gated ion
channel, 7 (P2rx7), PTK2 protein tyrosine kinase 2 beta (Ptk2b),
alpha-L-iduronidase (Idua), and fibroblast growth factor receptor 3
(Fgfr3), were widely involved in the affected biological pathways
(Fig. 4d). Using rMATS Sashimi plot software, we visualized the SE
events of these six genes. Semiquantitative PCR validated
increased SE events in exon 4 of Idua, exon 11 of P2rx7, and
exon 4 of Fgfr3, and decreased SE event in exon 7 of Vegfa in
cartilages of P4 SMA mice (Fig. 4e–h), while no difference in SE
events was detected in Runx2 and Ptk2b (Fig. S7a, b). In growth
plates of P7 SMA mice following ASO10-29 injection, aberrant
splicing events were corrected, resulting in increased exon
inclusion levels for Idua, P2rx7, Fgfr3, as well as restored exon
skipping for Vegfa (Fig. 4i). Analysis of Smn1 alternative splicing
revealed an 85.5% reduction in exon 7 inclusion in the SMA group
(Fig. S7c). This finding aligns with the established mechanism of
SMA mouse model, in which exon 7 of Smn1 was mutated to
induce SMN knockdown. Moreover, we examined the expression
of these genes through qPCR. Gene levels of Idua, P2rx7, Fgfr3, and
Runx2 significantly decreased in SMA cartilages, while Vegfa and
Ptk2b showed no difference compared to Het group (Fig. S7d).
Overall, SMN deficiency broadly dysregulated pre-mRNA alter-
native splicing patterns of genes linked to endochondral
ossification in SMA growth plate cartilages.

SMN deficiency leads to reduction of YBX1
To identify potential key regulators that modulate gene
transcription and alternative splicing in SMA growth plate
cartilages, we performed mass spectrometry-based quantitative
proteomics which revealed 827 proteins as SMN-binding targets
(Fig. 5a). GO analysis indicated that SMN-binding proteins were
closely related to RNA splicing and regulation of gene
expression (Fig. 5b). Venn analysis showed that YBX1 and TAR
DNA binding protein (TARDBP) were involved in both biological
processes (Fig. 5c). Importantly, YBX1 knockout has been proven
to cause osteopenia,34 while its function in SMA-related
endochondral ossification defects remains unclear. Interaction
between SMN and YBX1 was verified via Co-IP (Fig. 5d).
According to immunofluorescence staining, co-localization of
SMN and YBX1 existed in cytoplasm, but not in nucleus (Fig. 5e).
Furthermore, SMN deficiency reduced YBX1 protein levels in
both SMA growth plate cartilage and ATDC5 cells, whereas SMN
overexpression significantly restored YBX1 protein levels
(Fig. 5f–h). However, Ybx1 mRNA levels remained unchanged
under both knockdown and overexpression conditions
(Fig. 5i, j), indicating a post-transcriptional regulatory mechan-
ism. In vivo, ASO10-29 treatment significantly restored YBX1
levels throughout the growth plates of SMA mice (Fig. S8a).
These findings suggest that SMN positively regulates YBX1
protein expression at the post-transcriptional level, potentially
influencing RNA splicing and gene expression.

YBX1 knockdown induces SMA-like phenotypes in chondrocytes
Then we further explored the role of YBX1 in chondrocyte
differentiation in SMA model. Knockdown efficiency of siYbx1 was
confirmed through qPCR (Fig. S9a). Ybx1 knockdown declined
hypertrophic chondrocyte differentiation related genes, including
Sox9, Runx2, Col10a1, and Sp7 in ATDC5 cells (Fig. 6a). In addition,
Ybx1 knockdown also reduced expression of Idua, P2rx7, Fgfr3, and
Runx2 (Fig. S9b), consistent with the gene alterations detected in
SMA cartilages (Fig. S7d). Semiquantitative PCR validated
increased SE of Idua and P2rx7, as well as decreased SE of Vegfa,
after transfection with siYbx1 in ATDC5 cells (Figs. 6b and Fig. S9d).
Compared with in vivo data from SMA cartilages, SE of Fgfr3
showed an inverse tendency and was suppressed in ATDC5 cells
with Ybx1 depletion (Figs. 4h, i, 6b, and Fig. S9d). No differences in
SE events were detected in Runx2 and Ptk2b (Fig. S9c, d). In

summary, decreased YBX1 protein induced by SMN deficiency is
likely the primary contributor to aberrant gene expression and
splicing patterns in SMA growth plate cartilages.

SMN deficiency promotes TRAF6-induced ubiquitination
degradation of YBX1
Since YBX1 decreased in SMA growth plates without changes in
transcription, we adopted cycloheximide (CHX) chasing assay and
found that SMN deficiency accelerated the degradation of YBX1,
which was prevented by proteasome inhibitor MG132 (Fig. 6c).
These results suggested that YBX1 is subject to proteasome-
dependent degradation in the absence of SMN. To explore the
underlying mechanism, we aimed to identify the specific ubiquitin
ligase responsible for YBX1 ubiquitination. Venn analysis between
mass spectrometry results of SMN-interacting proteins and BioGRID
dataset of YBX135 identified β-catenin, pre-mRNA-processing factor
19 (PRPF19), TRAF6, and valosin containing protein (VCP) as
potential candidates (Fig. 6d). TRAF6 has been reported to induce
ubiquitination of inhibitor of kappa B kinase (IKK) that binds to
SMN.36 Further experiments confirmed the interaction between
SMN, YBX1 and TRAF6 (Fig. S10a). We then investigated the effects
of SMN deficiency on TRAF6 level and detected no difference in
SMA growth plate cartilages (Fig. S10b) or ATDC5 cells transfected
with siSmn1 (Fig. S10c), compared to their respective control groups.
These findings suggest that SMN knockdown does not directly alter
TRAF6 protein levels but rather enhances TRAF6-mediated ubiqui-
tination and subsequent degradation of YBX1. Co-IP analysis
confirmed that SMN deficiency increased the interaction between
TRAF6 and YBX1, leading to elevated ubiquitin tagging of YBX1
(Fig. 6e, f). Conversely, SMN overexpression reduced this interaction
and ubiquitination, thereby restoring YBX1 protein levels (Fig. 6e, f).
Moreover, treatment with C25-140, a selective inhibitor of TRAF6’s
E3 ubiquitin ligase activity,37 effectively elevated YBX1 levels,
thereby underscoring the critical role of TRAF6 in mediating YBX1
ubiquitin-dependent proteasomal turnover (Fig. 6g). Together, SMN
deficiency promotes YBX1 degradation through TRAF6-induced
ubiquitination.

Loss of SMN in chondrocyte caused retardation of bone
development
To preclude the possibility of indirect impacts of SMN on
abnormal bone development, we conducted conditional knock-
down of chondrocytic Smn1 (Smn1-cKD mice) by injection of
AAV9-Col2a1p-shSmn1 into WT mice at P3 and daily record their
weight until P12 (Fig. 7a). Immunofluorescence verified the
knockdown efficiency of SMN in entire growth plate of Smn1-
cKD mice (Fig. 7n and Fig. S12a). A significant difference of weight
between control and Smn1-cKD group was detected starting from
P7 (Fig. 7b). However, femur length was not reduced in Smn1-cKD
mice, unlike in mice with systemic Smn1 knockdown (Fig. S11a).
Micro-computed tomography (Micro-CT) analysis of L2 vertebra
showed reduced bone volume fraction (BV/TV) and attenuated
trabecular thickness (Tb.Th) in Smn1-cKD mice (Fig. 7c, e, f).
Moreover, the increased trabecular bone pattern factor (Tb.Pf) in
Smn1-cKD group indicated a transition in trabecular morphology
from plate-like to rod-like structures, suggesting a phenotype of
osteoporosis (Fig. 7g). However, the bone mineral density (BMD),
trabecular separation, and trabecular number (Tb.N) showed no
difference after Smn1-cKD (Fig. S11b–d). Similar to the vertebrae,
the femurs of Smn1-cKD mice also exhibited lower BV/TV and
Tb.Th (Fig. 7d, h, i), increased Tb.Pf (Fig. 7j), while maintaining
similar BMD, Tb.Sp, and Tb.N (Fig. S11e–g) compared to the
control group. The cortical bone in the femurs of Smn1-cKD mice
also exhibited lower trabecular thickness (Ct.Th) and consistent
BMD and bone area fraction (BA/TA) compared to the control
group (Fig. S11h–j).
To determine whether conditional knockdown of Smn1 in

chondrocytes causes bone development defects, we conducted
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histochemical and immunofluorescence staining to compare the
anatomical structure of the growth plate and the levels of
endochondral ossification-related proteins. The proportion of HZ
area and HZ height were both elevated in Smn1-cKD mice, while
proportion of RZ and PZ area were similar to that in control mice
(Fig. 7k, Fig. S11k, l). SF staining demonstrated smaller size and

higher density in hypertrophic chondrocytes of Smn1-cKD mice
(Fig. 7l). VK staining revealed more calcification in HZ and delayed
calcification in metaphysis of WT mice after Smn1-cKD (Fig. 7m).
Moreover, the protein levels of YBX1, SOX9, RUNX2 exhibited a
widespread decrease in growth plates of Smn1-cKD mice,
particularly in HZ (Fig. 7o–q and Fig. S12b–d). The MFI of COL X
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was significantly lower in HZ, and SP7 levels decreased in
metaphysis of Smn1-cKD mice compared to the control mice
(Fig. 7r, s, Fig. S12e, f), indicating a retardation in the progression
of bone ossification.
In conclusion, the bone development abnormalities in SMA

mice are primarily caused by the absence of Smn1 in chondro-
cytes, independent of SMN deficiency in other tissues.

Chondrocyte-specific SMN restoration partially reverses
endochondral ossification defects in SMA mice
Although Smn1-cKD mice exhibited alterations in multiple aspects
of endochondral ossification, these changes were less pronounced
than those observed between SMA and HET mice. This suggests a
compensatory support that mitigates the effects of SMN
deficiency in chondrocytes. We conditionally overexpressed
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Smn1 in chondrocytes (Smn1-cOE) within the SMA mouse model
to evaluate whether restoring SMN in cartilage alone could rescue
defects in endochondral ossification under systemic SMN defi-
ciency. We administered AAV9-Col10a1p-oeSmn1 to SMA mice at
P1 and performed analyses at P9 (Fig. 8a). To evaluate the effect of
chondrocyte-specific Smn1 overexpression, we firstly assessed
SMN protein levels in the growth plate by immunofluorescence.
Smn1-cOE significantly restored SMN expression in the resting and
proliferative zones, and even led to supraphysiological SMN levels
in the hypertrophic zone (Fig. S13a), confirming the efficiency of
AAV9-Col10a1p-oeSmn1 delivery.
Compared to SMA mice, Smn1-cOE mice showed substantial

recovery of body weight (Fig. 8b) and femur length (Fig. S13b),
although these parameters remained lower than those in Het
control. Micro-CT analysis demonstrated that the reductions in BV/
TV, Tb.Th, and the increase in Tb.Pf observed in SMA mice were
significantly ameliorated in Smn1-cOE mice (Fig. 8c–f). However,
these values in Smn1-cOE mice still differed from those in Het
mice (Fig. 8c–f), indicating an incomplete rescue of trabecular
bone structure. Consistent with findings in Smn1-cKD mice,
neither SMN deficiency nor its restoration affected BMD, Tb.Sp,
or Tb.N, implying that SMN primarily influences the morphology
rather than the quantity or spatial distribution of trabecular bone
(Fig. S13c–e). Interestingly, cortical bone indices such as Ct.Th and
Ct.BA/TA were fully restored to Het levels in Smn1-cOE mice
(Fig. 8g–i), suggesting that SMN deficiency in non-chondrocytic
cell types may primarily contribute to trabecular, but not cortical
bone alterations.
Histological and immunofluorescence analyses further sup-

ported these findings. The enlarged HZ area, decreased RZ area,
increased HZ height, and altered mineralization patterns in SMA
growth plates were significantly rescued in Smn1-cOE mice
(Fig. 8j, l, Fig. S13f, g). Notably, the size and density of hypertrophic
chondrocytes were completely restored (Fig. 8k). Protein levels of
YBX1, SOX9, RUNX2, and COL X in the hypertrophic zone, along
with SP7 expression in the metaphysis, were all upregulated
compared to SMA mice (Figs. 8m–q and Fig. S14a–e), supporting
the role of SMN in regulating the terminal differentiation and
function of hypertrophic chondrocytes.
These findings, taken together with the phenotypic alterations

observed in Smn1-cKD mice, demonstrate that chondrocytic SMN
expression is essential for the progression of hypertrophic
chondrocyte-driven endochondral ossification. Meanwhile, SMN
in non-chondrocytic cells appears to partially compensate for the
loss of SMN in chondrocytes, thereby mitigating the severity of
ossification defects in Smn1-cKD mice (Fig. 8r).

DISCUSSION
In SMA patients and mouse models, inhibition of bone develop-
ment has been reported, partially independent of neuromuscular
degeneration.19 Most mammalian skeletons are composed of
bones that originate from cartilage templates through endochon-
dral ossification. However, whether low levels of SMN affect
endochondral ossification in a cell-autonomous manner has not
been previously addressed. Here, we demonstrate that Smn1 is
involved in hypertrophic chondrocytes differentiation and Smn1
depletion in early symptomatic stages leads to dwarfism by
impeding the differentiation of hypertrophic chondrocytes and
turnover from HZ to ossification zone in growth plates. Mechan-
istically, SMN deficiency enhances the interaction between TRAF6
and YBX1, promoting ubiquitination degradation of splicing factor
YBX1. Decreased YBX1 causes mis-splicing in genes crucial for
endochondral ossification, including Fgfr3, Vegfa, Idua, and P2rx7.
These findings underscore the regulatory role of SMN in gene
expression and alternative splicing during endochondral ossifica-
tion, elucidating the upstream molecular events contributing to
impaired bone development in SMA.

A recent study demonstrated that mice lacking Smn1 gene
specifically in limb mesenchymal progenitor cells, a type of bone-
forming cells, and having one copy of SMN2 (SMN2 1-copy
Smn1ΔMPC), exhibited inhibited bone development and decreased
body size from embryonic phase. Interestingly, our severe SMA
mice lacking Smn1 and possessing two copies of SMN2 gene
(Smn1−/−; SMN22TG/0) did not exhibit significant abnormalities in
limb length and body size until P4, indicating the delayed SMA
symptoms. In the absence of Smn1 gene, the number of SMN2
gene copies inversely correlates with the age of disease onset and
severity. Histologically, SMN2 1-copy Smn1ΔMPC mutants and SMA
mice showed reduced height and chondrocyte number in HZ of
growth plate cartilages, along with decreased cell proliferation
marked by Ki67.19,20 Our findings further indicate suppressed cell
proliferation in growth plate cartilages. Previous studies reported
reduced cell number and/or decreased proliferation in various
tissues such as the heart, hippocampus, retinal, and optic nerve of
SMA mouse models, suggesting that alteration in cell proliferation
is a widespread phenomenon across multiple tissues in SMA.38–40

During endochondral ossification, chondroblasts proliferate
rapidly at the distal end, organizing themselves into columns
perpendicular to the long axis of growth. Thus, inhibited
chondrocytes proliferation is likely a cause of short bone in
SMA. However, our study revealed a relatively expanded HZ and
increased hypertrophic chondrocyte density in severe SMA mice
with two copies of SMN2 gene, phenomena that cannot be
explained solely by suppressed proliferation, suggesting that
different SMN protein levels have various impacts on bone
development.
Hypertrophic chondrocytes are the principal engine of bone

development, serving as the primary drivers of mineralization of
their surrounding matrix and attracting blood vessels and
chondroclasts. Subsequently, hypertrophic chondrocytes either
undergo apoptosis31 or transdifferentiation into osteoblasts for
trabecular bone formation in the embryonic and neonatal stages
in mouse models.21,41,42 Therefore, the observed increase in HZ
height and hypertrophic chondrocyte density may result from
several factors, including decreased apoptosis and vascular
invasion, accelerated differentiation of chondrocytes, accumula-
tion of immature hypertrophic chondrocytes and delayed terminal
transdifferentiation into osteoblasts.43 Our data showed upregula-
tion of apoptosis related gene Bax in SMA cartilages, suggesting
that enhanced apoptosis does not account for the expansion of
HZ. Studies reported vascular-related defects in severe SMA
patient and mouse models, including digital necrosis, vascular
thrombosis, and decreased capillary density in various tissues.44–47

There was no significant difference in Vegfa gene expression, but
increased Vegfa121 and decreased Vegfa165 were observed in
SMA growth plate cartilages, which encodes heparin-sulfate
binding domains crucial for VEGFA’s interaction with the
extracellular matrix.48 VEGFA165 can effectively promotes the
growth and the proliferation of endothelial cells, whereas Wang
et al. demonstrated that VEGFA121 and VEGFA165 exerted
opposing effects on angiogenesis due to activation of different
phosphorylation sites of VEGFR2.49 Thus, impaired vascular
invasion due to reduced SE of Vegfa likely contributes to the
expanded zone of hypertrophic chondrocytes in SMA mice.
Accelerated differentiation of chondrocytes from the prolifera-

tive to the early hypertrophic stage and accumulation of immature
hypertrophic chondrocytes could also account for the expansion
of the zone of hypertrophic chondrocytes. But two critical
regulatory factors SOX9 and RUNX2 were downregulated in SMA
growth plates, inhibiting the differentiation of chondrocytes and
increasing accumulation of immature hypertrophic chondrocytes.
This led to a reduced number of mature hypertrophic chondro-
cytes; however, cell density in HZ of SMA mice is significantly
increased and cell size is smaller, as a matter of fact. In RUNX2
deficient mice, hypertrophic chondrocytes maturation was
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Fig. 8 Chondrocyte-specific SMN restoration partially reverses endochondral ossification defects in SMA mice. a Experimental design involves
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chondrocytes from Het, SMA and Smn1-cOE mice at P9. Histograms show cell size and cell density of hypertrophic chondrocytes in HZ (n= 6
per group). P-value was derived from two-tailed unpaired Student’s t test. l VK staining of growth plates and metaphysis from Het, SMA and
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inhibited and were absent in most skeletons.50 Moreover, RUNX2
deficiency reduced the number of transdifferentiated osteoblasts
from hypertrophic chondrocytes, leading to a reduction in
trabecular bone formation.51 Lui et al. demonstrated that down-
regulation of SOX9 in hypertrophic chondrocytes promotes
transdifferentiation of hypertrophic chondrocytes into osteo-
blasts,52 which is contradictory with our results. But considering
the different role of SOX9 and RUNX2 in regulating transdiffer-
entiation of hypertrophic chondrocytes, we suppose that the
decreased RUNX2 level inhibited the process of transdifferentia-
tion. Importantly, Col10a1 expression was restrained in hyper-
trophic chondrocytes, correlating with excessive ossification in HZ
and decreased ossification in metaphysis, indicative of delayed
terminal chondrocyte mineralization. In conclusion, the expanded
zone of hypertrophic chondrocytes and reduced ossification in
severe SMA mouse models are mainly caused by impaired
vascular invasion and delayed transdifferentiation and ossification
of hypertrophic chondrocytes. However, the mechanism by which
SMN deficiency induces these changes remains obscure.
The primary role of SMN protein is to facilitate snRNP assembly

by forming SMN complex with Gemins2-8 and Unrip.33,53 snRNPs
are major components of the spliceosome which regulate pre-
mRNA splicing.54,55 Loss of SMN altered the stoichiometry of
snRNAs and caused widespread defects in pre-mRNA splicing in
numerous transcripts of diverse genes in SMA mouse models.9,56

As revealed by RNA and single-cell sequencing analysis, SMN is
implicated in differentiation of hypertrophic chondrocytes through
alternative splicing, yet the key molecules acting downstream of
SMN remain elusive. Here, YBX1 was identified as a key protein in
SMA cartilages. YBX1, as an RNA-binding protein, is responsible for
pre-mRNA transcription and splicing, mRNA stability, and transla-
tion.57,58 YBX1 regulates multiple cellular processes, including
proliferation, apoptosis, cell differentiation, and cell stress
response.59,60 Depletion of YBX1 inhibits cancer cell proliferation
and causes embryonic development defects.61,62 Importantly, YBX1
knockdown leads to exon skipping changes in BMSC osteogenesis
related genes such as Fn1, Sp7, and Spp1, ultimately shifting BMSC
differentiation.34 In cartilages of SMA mice, we observed exon
skipping changes in endochondral ossification related genes,
including Fgfr3, Vegfa, Idua, and P2rx7, consistent with in vitro
results of YBX1 depletion in ATDC5 cell line. Together, decreased
YBX1 expression due to SMN deficiency may be the primary reason
for alterations in chondrocyte proliferation, apoptosis, and
endochondral ossification of SMA mice.
However, no difference in transcript level of Ybx1 was observed

in SMA, indicating that decreased YBX1 protein is triggered by
protein degradation. Poly-ubiquitination and subsequent degrada-
tion of YBX1 have been explored in various cell types.63,64 In
chondrocytes, CHX and MG132 assays confirmed that YBX1 protein
degradation occurs through ubiquitin-proteasome system (UPS).
SMN was previously reported to interact with several components
of the UPS, including UBA1 and several E3 ligases, mediating cell-
wide ubiquitination.10 By comparing mass spectrometry results of
SMN and the Co-IP database of YBX1-binding proteins (BioGRID),
TRAF6 was identified as a potential SMN-related E3 ubiquitin ligase
inducing YBX1 ubiquitination. Activation of TRAF6 has been shown
to suppress cartilage extracellular matrix degradation and inflam-
mation in osteoarthritic rats, highlighting its importance in cartilage
homeostasis.65 Notably, SMN was identified as a negative regulator
of an ubiquitylation complex that includes TRAF6, bendless, and
DIAP2 in Drosophila.66 Kim EK et al. reported that SMN functions as
a novel inhibitor of TRAF6-mediated IKK ubiquitination in BV2
cells.36 Nonetheless, our current findings suggest that SMN
depletion enhances the interaction between TRAF6 and YBX1,
promoting its proteasome-mediated degradation. Based on these
results, we speculate that SMN depletion reinforces the ubiquityla-
tion complex composed of TRAF6, leading to the degradation of
various targeted proteins, not limited to YBX1 and IKK.

While our study provided detailed insights into inhibited
endochondral ossification in SMA mice, potential limitation should
be acknowledged. YBX1 degradation induced by SMN depletion
may not be limited to growth plate cartilages but could also occur
in other tissues such as the brain and spinal cord. Further studies
should investigate the interaction between SMN, YBX1, and TRAF6
in other organs to validate our findings. Nonetheless, our data
strongly suggest that SMN ablation activates TRAF6-induced YBX1
degradation, disrupting the expression and splicing of genes
related to endochondral ossification, ultimately leading to bone
development deficiencies.

MATERIALS AND METHODS
Mice and in vivo treatment
All mouse studies were conducted in accordance with the
guidelines and protocols approved by the Institutional Animal
Care and Use Committee (IACUC) of the Second Affiliated Hospital
of Soochow University, Jiangsu, China. The study complied with
Animal Research: Reporting in Vivo Experiments (ARRIVE) guide-
lines to minimize the discomfort and pain of the animals. The
initial breeding pairs of human SMN2 transgenic mice were
purchased from Jackson Laboratory (stock number 005058), and
the severe SMA model (Smn1−/−, SMN22TG/0) was generated as
described.67 Genotypes of mice were identified with One Step
Mouse Genotyping Kit (Vazyme, PD101-01). For tissue sample
collection, mice were sacrificed by CO2 asphyxiation, and then
femurs or growth plate cartilage tissues were immediately
isolated, snap-frozen in liquid nitrogen for storage at −80 °C.
Both male and female mice were utilized in all experiments, as no
discernible sex differences were noted in any of the measured
endpoints.

Alcian blue-alizarin red double staining of the skeleton
Mice were sacrificed by CO2 asphyxiation and fixed in 4%
paraformaldehyde for 24 h. Skin and organs of mice were
removed before fixation in 95% ethanol for 48 h and then
immersed into lacquer thinner for 1 week and again 95% alcohol
for 2 days. Tissues were stained with Alcian blue solution (Sigma-
Aldrich, B8438) for 24–48 h and destained with 95%, 90%, 40%,
and 15% alcohol for 2–3 h, respectively. The ethanol was then
replaced with 2% KOH clearing solution for 2 h and then stained
with Alizarin red solution (Sigma-Aldrich, A5533) for 15–30min,
followed by incubation in 2% KOH until the soft tissue
disintegrated for 1 week. The mice were stored long-term in
glycerol.

Micro-CT
The vertebras and femurs from WT mice injected with AAV9-shCtrl
or AAV9-Col2a1p-shSmn1 were isolated and cleaned of muscles
and skin. Afterwards, the femurs were fixed in 4% paraformalde-
hyde prior to analysis. Imaging of the tissues was conducted using
a NEMO micro-CT system (PINGSENG Healthcare, NMC-200).
Scanning parameters were set at 90 kV and 88mA, with a field
of view of 10 mm (voxel size of 20 μm; scanning duration of
14min). The 3D images were visualized using the Quantum GX II’s
3D Viewer software. The region 0.5 mm below the lowest point of
upper edge of femoral diaphysis was used to measure trabecular
parameters, while the area 0.5 mm around the midpoint of the
femoral long axis was used for cortical parameter measurements.
Due to the indistinct boundary between the cortical and
trabecular bone in the vertebrae, the entire vertebra was
considered trabecular bone for calculations.

Histology and immunofluorescence staining
Femurs were fixed in 4% paraformaldehyde for 24 h and then
decalcified with 10% EDTA. Tissues were embedded in paraffin
and 5 μm-thick paraffin sections were cut for HE, SF, and
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immunofluorescence staining. Fixed non-demineralized femurs
were used for Von Kossa staining. For immunofluorescence
staining, sections were dewaxed and rehydrated and followed
with antigen retrieval by Tris-EDTA (PH 9.0) (Abcam, ab93684) in
boiling water for 20 min. Sections were permeabilized with 0.3%
(v/v) Triton-X100 (Sangon, 9002-93-1) for 10 min and then blocked
with 10% (v/v) goat serum for 30 min. Primary antibodies
including SMN (Abcam, ab314895, 1:100), SOX9 (Abcam,
ab185966, 1:100), RUNX2 (Abcam, ab192256, 1:100), Collagen
Type X (Abcam, ab260040, 1:100), SP7 (Abcam, ab209484, 1:500),
YBX1 (Abcam, ab76149, 1:100) were incubated overnight at 4 °C.
Sections were incubated with corresponding secondary antibo-
dies conjugated to Alexa Fluor 488 (Invitrogen, A-11008) and
Alexa Fluor 568 (Invitrogen, A-11004) for 1 h at room temperature.
Nuclei were counter-stained with DAPI (Thermo Fisher Scientific,
62248). The images were captured with a confocal microscope
(Zeiss, LSM800). The area of different zones in growth plates, cell
size, cell density, and calcification area were analyzed using
ImageJ.

Cell culture
The chondrogenic cell line ATDC5 was cultured in Dulbecco’s
modified Eagle’s medium (DMEM, Gibco, 11965092) containing
10% fetal bovine serum (Gibco, 16140071) and 1% Penicillin-
Streptomycin-Amphotericin B Solution (Procell, PB180121) at
37 °C, in a humidified atmosphere containing 5% CO2. The ATDC5
cell line was purchased from Procell (FuHeng, FH0378) and has
been authenticated by STR profiling. The siRNAs to deplete Smn1
or Ybx1 and plasmids containing ubiquitin were purchased from
GenePharma and details are listed in Supplementary Table S1.
According to the manufacturer’s instructions, ATDC5 cells were
seeded in 6-well plates at 70% confluency, and 100 nmol of each
siRNA or 0.1 ng plasmids was transfected into cells in each well,
using Lipofectamine 3000 (Invitrogen, L3000001). Otherwise,
ATDC5 cells were treated with 20 mol/L C25-140 (MCE, HY-
120934), an inhibitor of TRAF6’s ubiquitin ligase activity, for 0, 2, 4,
6, 8 and 10 h before collection.

Western blot analysis
The growth plate tissues were pulverized in liquid nitrogen and
protein extracts were separated on a 10% SDS-polyacrylamide gel
and electro-blotted onto PVDF membranes (Bio-Rad, 1620184).
The membrane was blocked with 5% non-fat milk for 1–2 h and
was incubated overnight at 4 °C with primary antibodies including
SMN (Abcam, ab314895, 1:1 000), YBX1 (Abcam, ab76149, 1:5 000),
TRAF6 (CST, 67591S), Ubiquitin (CST, 20326S), and GAPDH
(Proteintech, 60004-1-Ig). Membranes were incubated with
secondary antibodies (Proteintech, SA00001-2, 1:1 000) at room
temperature for 1 h. After three washes with TBST, immunolabel-
ing was activated by an Omni-ECL™ Femto Light Chemilumines-
cence Kit (Epizyme, SQ201) and captured by a GeneGnome XRQ
analyzer (Syngen). Gray value was analyzed using ImageJ
normalized to GAPDH.

Co-immunoprecipitation (Co-IP)
Co-IP was carried out using Protein A/G PLUS-Agarose (Santa Cruz,
sc-2003) according to the manufacturer’s instructions. Briefly, total
proteins were extracted and quantified. A total of 2mg protein in
500 μL supernatant was incubated with 10 μg anti-SMN (Abcam,
ab314895), anti-YBX1 (Abcam, ab76149), anti-TRAF6 (CST, 67591S) or
anti-IgG (Abcam, ab6708) antibodies for 12 h at 4 °C. Agarose beads
were washed, eluted in sample buffer, and boiled for 10min at
100 °C. Immune complexes were subjected to Western blot and
mass spectrometry analysis. Anti-IgG was used as a negative control.

Mass spectrometric analysis
In-gel digestion was performed using trypsin as previously
described.68 After digestion, peptides were extracted from the

gel piece with 50% acetonitrile/0.1% formic acid. The extracted
peptides were dried in SpeedVacuum concentrator and resus-
pended in 0.1% formic acid for LC-MS/MS analysis. Peptide
samples were separated by EASY nLC-1200 (Thermo Fisher
Scientific). The isolated peptides were subjected to Nano source
followed by Q Exactive HF-X mass spectrometer. Mass spectra
were processed and searched using Proteome Discoverer (version
2.4, Thermo Fisher Scientific) against the Swissprot protein
database (release 2022_01). The mass tolerance allowed for the
precursor ions is 10 x 10-6, while the mass tolerance of fragment
ions is set to 0.01 Da. Carbamidomethyl on cysteine was specified
as fixed modification, while oxidation on methionine and acetyl
on protein N-terminal were specified as variable modification.
Peptide confidence was set at high.

RNA isolation, semi-quantitative and quantitative real-time PCR
Trizol (Invitrogen, 15596026) was used to extract total RNA from
growth plate cartilages of mice and ATDC5 cells after pulverizing
them in liquid nitrogen with mortar and pestle. One microgram
of total RNA was reverse transcribed with Hiscript III Reverse
Transcriptase (Vazyme, R302-01). Semi-quantitative real-time
PCR was performed with 2× Taq Plus Master Mix (Vazyme, P212-
01) in PTC-200 (BIO-RAD, CA, USA). Quantitative real-time PCR
was performed with ChamQ SYBR qPCR Master Mix (Vazyme,
Q311-02/03) in QuantStudio 5 (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The primers for
all genes are supplied in Supplementary Tables S2 and S3. Gene
expression levels were analyzed relative to Gapdh.

RNA sequencing analysis and resource of scRNA-seq data
Neonatal mice at P4 were euthanized, and the femurs were rapidly
harvested in cold PBS. Under a stereo microscope, surrounding
soft tissues and metaphyseal bone were removed with micro-
scissors. The epiphysis was bisected longitudinally to expose the
growth plate and cartilage was carefully dissect with fine forceps.
Total RNA was isolated from the growth plate cartilages of the
femurs on P4. RNA-seq was performed using an Illumina Genome
Analyzer, with an average of 44–52 million mapped reads per
sample. The raw data were subjected to QC analyses using FastQC
v0.11.7 software. The transcripts were normalized to those of the
control group and transcripts with low variance (<0.1) across
samples were removed. Statistically significant changes in gene
expression were calculated using the DESeq2-package. Genes with
FC > 2 and Q-value < 0.05 were considered as differentially
expressed genes and the DAVID Bioinformatics Resources 6.8.
rMATS software was used to calculate the inclusion of a given
differentially expressed exon as percent spliced-in (PSI) and assess
the fraction of a gene’s mRNA.
The scRNA-seq data were downloaded from two deposited

dataset (GSE190616 and GSE179148). We excluded cells with
fewer than 200 detected genes, more than 7% mitochondrial
genes, or those expressed in ≤5 cells. Cells were categorized into
different clusters as described in Long et al., 2022. and marker
genes for each cluster were identified using the R package of
Seurat 5.69–73 Monocle analysis was performed (num_dim= 50)
using the Monocle3 R package.74–77

CHX chase assay
ATDC5 cells were transfected with negative control or siSmn1 for
4 h and then treated with MG132 (20 μmol/L) or CHX (50 μg/mL)
for 0, 2, 4, 6, 8 or 10 h. Cells were collected at the indicated time
points and subjected to Western blot analysis. All experiments
were performed at least three times independently.

Antisense oligonucleotide and AAV9 treatment
MOE-modified ASO10-29 (5′-ATTCACTTTCATAATGCTGG-3′) with
phosphorothioate backbone and all 5-methylcytosines were
synthesized by Genepharma. The oligonucleotide solution was
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injected subcutaneously twice at 90 mg/kg between P0 and P1
and tissue samples were collected at P7. AAV9-shCtrl, AAV9-
Clo2a1p-shSmn1 and AAV9-Col10a1p-oeSmn1 were synthesized by
Genechem. The rAAV9 virus was diluted in 50 µL of saline at a
concentration of 2 × 1011 vg/g and administrated via retro-orbital
injection at P1 or P3. Blanching of the superficial temporal vein
indicates successful injection.

Statistical analysis
The Shapiro–Wilk test was performed to evaluate the normality of
the numerical data. Normally distributed data are presented as the
mean ± standard deviation (SD), while non-normally distributed
data are presented as the median (25th percentile, 75th
percentile). A two-tailed unpaired Student’s t test was used for
comparisons between 2 groups obeying normal distribution. One-
way ANOVA followed by Tukey post hoc test was applied for
comparisons among several groups obeying normal distribution.
In condition of an abnormal distribution or a small sample size
(n < 6), Wilcoxon rank-sum test was applied for comparisons
between 2 groups and Kruskal–Wallis test was applied for
comparisons among several groups. A P-value of <0.05 was
considered statistically significant. GraphPad Prism 9.0 software
was used for all statistical analyses.
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