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Identification of MYCN non-amplified neuroblastoma
subgroups points towards molecular signatures for precision
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BACKGROUND: Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN
non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown.
METHODS: A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress.
Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed
from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and
CIBERSORTx analysis.
RESULTS: We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups
based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a ‘MYCN’
signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an
‘inflamed’ gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a
unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup
predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively.
CONCLUSION: We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients
with MYCN non-amplified neuroblastomas.
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INTRODUCTION
Neuroblastoma is the most common extra-cranial solid tumour in
children, representing 6–10% of all childhood cancers [1]. It is an
embryonic tumour arising from precursor cells in the sympathetic
nervous system and adrenal medulla [2], with a median age of
diagnosis of 18 months [3]. It can also be present in the neck, chest,
abdomen, or pelvis [4]. Neuroblastoma is a highly heterogeneous
disease, with clinical behaviour ranging from spontaneous regres-
sion to drug resistance and metastasis ultimately resulting in death
[5]. The prognosis of the disease is poor with a 5-year overall survival
of approximately 20%, despite more aggressive therapies [6]. As a
result, risk stratification and personalised treatment approaches in
neuroblastomas are urgently needed.
The International Neuroblastoma Risk Group Staging System

(INRGSS) defines the high-risk group to include patients with
MYCN-amplified tumours and patients > 18 months old with
metastatic tumours [7]. N-MYC is a key regulator of transcription,

which activates genes that affect cancer development. It is widely
involved in various pathological processes of neuroblastoma
including cell growth [8], apoptosis [9], differentiation [10],
angiogenesis [11], tumour invasion, and metastasis [12].
MYCN amplification was identified as the first independent

prognostic factor indicating adverse clinical outcomes in neuro-
blastomas [13, 14], which is observed in approximately 20% of
cases [15] and accounts for about 40% of high-risk neuroblasto-
mas [16]. Despite the extensive study of MYCN-amplified
neuroblastomas, there is a significant unmet clinical need in
MYCN non-amplified cases. In particular, the extent of hetero-
geneity within the MYCN non-amplified population is unknown.
Here, we investigated whether transcriptional subtyping of

MYCN non-amplified neuroblastomas can identify molecular
subtypes with discrete prognosis and therapeutic vulnerabilities.
Our analysis suggested that MYCN non-amplified neuroblastomas
were heterogeneous and could be classified into 3 subgroups
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based on their transcriptional profiling. Within them, subgroup 2
had the worst prognosis and this group had a ‘MYCN’ signature
that was potentially induced by the overexpression of Aurora
Kinase A (AURKA); whilst subgroup 3 was accompanied by an
‘inflamed’ gene signature. We propose that transcriptional
subtyping may enhance precision prognosis and therapy stratifi-
cation for patients with MYCN non-amplified neuroblastomas.

RESULTS
Characterisation of molecular subtypes in MYCN non-
amplified neuroblastomas
Following quality control and eliminating duplicates (Supplemen-
tary Figs. 1 and 2; details provided in the Supplementary Methods),
a total of 1566 samples from 16 datasets were identified in GEO
(Gene Expression Omnibus) and ArrayExpress, in which 313 cases
are with MYCN gene amplification (MYCN-AMP) and 1253 cases
MYCN non-amplified (MYCN-normal) (Fig. 1a; Supplementary
Table 1). Following the removal of batch effects (Supplementary
Fig. 3a), 2 clear clusters corresponding to MYCN-AMP and MYCN-
normal neuroblastomas, respectively, were visualised using princi-
pal component analysis (PCA) (Supplementary Fig. 3b). Samples in
the MYCN-normal group (n= 1253) were further randomly divided
into a train and a test group with a 7:3 ratio, containing 878 and 375
cases, respectively (Fig. 1a).
In an unbiased attempt to identify subtypes within MYCN non-

amplified neuroblastomas, we applied consensus clustering to
both train and test groups based on 5792 variable genes (top 50%
median absolute deviation; Supplementary Table 2). As deter-
mined by the relative area under the cumulative distribution
function and cluster-consensus scores, the optimal number of
distinct clusters was 3 (Fig. 1b; Supplementary Fig. 3c). In total,
within the MYCN non-amplified group, subgroup 1 (blue), 2
(green) and 3 (purple) accounts for 46%, 30%, and 24%,
respectively (Fig. 1c). Cross-cohort analysis using an unsupervised
method SubMap [17] (https://www.genepattern.org/modules)
confirmed the robustness of this classification (Supplementary
Fig. 4a; false discovery rate, FDR < 0.05).
Further clinical characterisation of these subtypes identified key

distinguishing features. Patients within subgroup 2 were frequently
observed in the advanced neuroblastomas according to the Interna-
tional Neuroblastoma Staging System (INSS) and in those defined as
‘high risk’ [7] (Fig. 2a, b; Supplementary Fig. 4b). We then analysed their
overall survival together with MYCN-AMP cases. Patients with MYCN
amplification had the worst prognosis (Fig. 2c, d; Supplementary
Fig. 4c). Importantly, there was a high degree of variability for overall
survival among MYCN non-amplified cases, in which subgroup 2 was
associated with a poor prognosis, followed by subgroup 3; while
patients within subgroup 1 had the most favourable outcomes. These
observations were consistent in both train and test cohorts. In addition,
the molecular subtype classification was a strong independent
predictor of mortality including in multivariate analysis with the risk
classification that uses commonlymeasured clinical variables to predict
mortality in neuroblastomas [7]. Using subgroup 1 as a reference, the
hazard ratio (HR) and 95% confidence interval (CI) for subgroups 2 and
3 were 20.2 (4.8−85) and 9.2 (2.1−40), respectively (Fig. 2e). Similar
results were obtained using univariate or multivariate cox regression
analysis with age and INSS stages in MYCN non-amplified neuroblas-
tomas (Supplementary Table 3). A comprehensive multivariate analysis
also revealed our subgroups to be independent of genomic features
such as 1p, 11q, and 17q (Supplementary Fig. 4d–f). Impressively, the
molecular subtype classification alone outperformed INSS stages
(Fig. 2f) and shows a comparable prediction accuracy as the risk
classification (Supplementary Fig. 4g).
Overall, subgroup 2 and subgroup 3 (to a lesser extent) were

associatedwith poor survival inMYCN non-amplified neuroblastomas,
suggesting fundamentally different mechanisms leading to an
advanced disease.

Defining molecular features of the 3 subtypes in MYCN non-
amplified neuroblastomas
Using the same 5792 variable genes described above (Supple-
mentary Table 2), we observed clear distinctions among these
3 subtypes in MYCN non-amplified neuroblastomas (Fig. 3a;
Supplementary Table 4). Intriguingly, subgroup 2 showed a similar
signature to MYCN-AMP cases (Fig. 3a). This was consistent with
the Gene Set Enrichment Analysis (GSEA), showing HALLMARK_-
MYC_TARGETS_V1 and V2 significantly enriched in subgroup 2
(Fig. 3b; Supplementary Table 5; FDR= 0.0021 and 0.0017,
respectively). In contrast, subgroup 3 exhibited an ‘inflamed’
phenotype, with high expression of genes related to IL6_JAK_-
STAT3_SIGNALING, INFLAMMATORY_RESPONSE, INTERFERON_AL-
PHA_RESPONSE and INTERFERON _GAMMA_RESPONSE (Fig. 3b;
Supplementary Table 5; all FDR values less than 0.05). None of
these pathways were enriched in subgroup 1 (Fig. 3b).
The above analysis was extended using weighted gene co-

expression network analysis (WGCNA) [18]. Three molecular
modules were identified (Supplementary Fig. 5; Supplementary
Table 6) and were further used to construct a protein-protein
network consisting of 1393 genes and 4490 edges (Fig. 3c;
confidence score >0.9). Molecular module MEturquoise, which was
significantly correlated with subgroup 2 (Fig. 3d), was enriched for
‘Mitotic cell cycle process’, ‘HALLMARK G2M CHECKPOINT’, and
‘DNA repair’. In subgroup 3, there were 2 molecular modules,
MEblue and MEbrown highly involved (Fig. 3d; Supplementary
Table 6). Molecular module MEblue was enriched for pathways,
including ‘HALLMARK EPITHELIAL MESENCHYMAL TRANSITION’,
‘TGF-beta receptor signalling pathway’, ‘PI3K-Akt signalling path-
way’ and ‘MAPK signalling pathway’ whereas ‘Cytokine-cytokine
receptor interaction’, ‘T cell activation’, ‘B cell-mediated immunity’,
‘Adaptive immune response’ and ‘Innate immune response’ were
significantly enriched in molecular module MEbrown.

Subgroup 2 shows a ‘MYCN’ signature, potentially induced by
Aurora Kinase A (AURKA) overexpression
Our above analysis suggested that mechanisms other than gene
amplification induce N-MYC activity in subgroup 2. Indeed, the
mRNA level of MYCN in subgroup 2 was significantly lower than
cases within theMYCN-AMP group (Fig. 4a; Supplementary Table 4;
P < 0.0001). To evaluate N-MYC activity in neuroblastoma samples,
a total of 87 genes upregulated by N-MYC were selected to classify
its activity [19]. The MYCN score for each sample was calculated
using single-sample gene set enrichment analysis (ssGSEA) based
on this 87-gene expression signature. MYCN scores in subgroup 2
were significantly higher than those in subgroups 1 and 3, and
were comparable to those in the MYCN-AMP group, although
slightly lower (Fig. 4b). Moreover, the MYCN score was an
independent predictor of mortality including in multivariate
analysis with the risk classification (Fig. 4c; HR: 3.3; P < 0.001).
To investigate the potential mechanism that leads to higher

MYCN scores in subgroup 2, correlation analysis coupled with
protein−protein interactions network construction was performed
(Fig. 4d; Supplementary Table 7). Among the candidate genes,
AURKA (Aurora kinase A) was identified to interact with MYCN.
AURKA, a serine/threonine kinase regulating the process of mitosis
[20], was previously demonstrated to regulate N-MYC protein
stability [21]. AURKA was expressed at significantly higher levels in
subgroup 2 when compared to the other 2 subgroups and its levels
were even slightly higher than those in the MYCN-AMP group
(Fig. 4e). Classifying MYCN non-amplified neuroblastomas into high
and low groups, we demonstrated that the AURKA mRNA levels
alone could predict the overall survival (Fig. 4f; HR 4.8; P < 0.0001). In
addition, the high level of AURKA was an independent predictor
(HR 3, P < 0.001) of mortality including in multivariate analysis with
the risk classification (Supplementary Fig. 6).
These findings were further investigated by immunohistochem-

istry (IHC) staining of N-MYC or AURKA in a custom neuroblastoma
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Fig. 1 Characterisation of molecular subtypes in the MYCN non-amplified neuroblastomas. a Workflow showing the study design (details
provided in the Supplementary Methods). b Consensus clustering of top 50% variable genes of train cohort. c Principal component analysis
(PCA) showing neuroblastoma patients with subgroup annotations.
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tissue microarray, which contains 94 MYCN non-amplified
neuroblastomas. Within them, 22 samples were positive for
N-MYC (Fig. 5a), and they had worse survival compared to those
with N-MYC negative staining (n= 72) (Fig. 5b; P= 0.03;
Supplementary Table 8). In parallel, patients with higher levels
of AURKA had unfavourable survival outcomes (Fig. 5c, d;
P= 0.00014). Moreover, a higher percentage of patients with high
AURKA staining was observed in the N-MYC-positive group
compared to the N-MYC-negative group (Fig. 5e; 64% vs. 39%;
P= 0.041).
Taken together, these results suggested that a “MYCN” signature

in subgroup 2 is potentially induced by AURKA overexpression in
MYCN non-amplified neuroblastomas.

Subgroup 3 is accompanied by an ‘inflamed’ gene signature
Considering immune-related pathways were enriched in subgroup
3, the activity of immune cells and pathways were further
systematically explored. ssGSEA was performed to calculate
enrichment scores of 46 immune gene sets summarised from
two previous studies [22, 23], and subgroup 3 showed significantly
higher activity of immune cells and pathways compared to the
other 2 subtypes as well as MYCN-AMP group (Fig. 6a; Supple-
mentary Table 9). Consistently, cytolytic activity (CYT) or MHC-1
(major histocompatibility complex-1) scores were highest in
subgroup 3 (Fig. 6b, c). This was also true when using the
ESTIMATE algorithm to evaluate the immune scores, stromal
scores, and tumour purity scores in neuroblastomas [24], showing
the highest immune and stromal scores, and lowest tumour purity
scores in subgroup 3 (Fig. 6d; Supplementary Fig. 7a, b).
For a comprehensive assessment of immune cell infiltration, we

used CIBERSORTx deconvolution [25] to quantify various immune
populations based on a single cell RNA sequencing (scRNA-seq)
dataset in MYCN non-amplified neuroblastoma [26] (Supplemen-
tary Fig. 7c). While similar immune cell types were present in each
subtype, the absolute number of several immune cell populations
were markedly increased in subgroup 3, including B cells, myeloid
cells, T cells and pDC (plasmacytoid dendritic cells) (Fig. 6e).
Finally, to investigate whether subgroup 3 would benefit more
from immunotherapy than the other subgroups, we compared the
expression matrix of 3 subgroups with published melanoma
datasets including response information after treating with
immunotherapies [27, 28]. The SubMap analysis highlighted that
patients within subgroup 3 are predicted to respond to anti-PD1
immunotherapy (Fig. 6f; Supplementary Fig. 7d). In addition, Su
et al. observed that anlotinib treatment in neuroblastoma mice
reprogrammed the immunosuppressive tumour microenviron-
ment (TME) into an immune-stimulatory TME, leading to an
extension in the duration of vascular normalisation, and dynamic
changes in the expression levels of PD-1 and PD-L1. In addition, it
is noteworthy that the combination of anlotinib with PD-1
checkpoint inhibitors counteracted the immune suppression
induced by PD-L1 upregulation after monotherapy, ultimately
inducing the regression of neuroblastoma [29]. Therefore, we
reanalysed the RNA-seq data of neuroblastoma syngeneic mouse
models treated with vehicle/anlotinib for 9 days. Then, we
compared the molecular features of each condition to our
subgroups. Interestingly, SubMap analysis revealed that subgroup
3 exhibited a significant similarity in expression profile to mouse
models after anlotinib treatment (Fig. 6g; P= 0.032).
Taken together, these results demonstrated that subgroup 3 is

accompanied by an ‘inflamed’ gene signature, and is more likely
to benefit from anti-PD1 therapies.

Identification of independent predictors to subgroup patients
within MYCN non-amplified neuroblastomas
To identify independent predictors for subgrouping, we applied a
multi-cohort analysis pipeline via multiclassPairs [30] (see Supple-
mentary Methods). In total, a random forest model, trained using

928 rules derived from a set of 432 genes (Supplementary
Table 10) displayed the ability to predict different subgroups
accurately in both train and test sets with an F1 score > 0.74
(Supplementary Table 11). The prediction model and example files
can be downloaded from https://zenodo.org/records/10258748.
Furthermore, the random forest model successfully stratified

patients with MYCN non-amplified neuroblastoma into distinct
subgroups 1, 2, and 3 with significant differences in survival across
five independent validation sets (GSE49711 [31], TARGET Micro-
array [32], TARGET RNA-seq, Westermann ALK cohort [33] and
Stefan Hüttelmaier cohort [34] respectively) (Fig. 7a, b; Supple-
mentary Table 11). These independent predictors worked
consistently between microarray and RNA-seq within GSE47792
(Fig. 7c).

Evaluation of different patient stratification strategies
Finally, we evaluated our subgrouping method (named
Hu_Subgroups) together with other reports. van Groningen and
colleagues reported that neuroblastoma is composed of 2 super-
enhancer-associated differentiation states: an ‘ADRN’ subgroup
showing up-regulated genes involved in adrenergic differentiation
and an ‘MES’ subgroup with higher expressions of mesenchymal
markers [35]. To quantify these characteristics, we calculated the
‘ADRN’ or ‘MES’ scores of our subgroups based on a 369-gene
‘ADRN’ signature or a 485-gene MES signature, respectively. We
observed that subgroup 3 showed the highest ‘MES’ scores and
the lowest ‘ADRN’ scores, consistent with our above findings;
while subgroups 1 and 2 had the highest ‘ADRN’ scores with the
lowest ‘MES’ scores in subgroup 2 (Supplementary Fig. 8a, b).
We also compared Hu_Subgroups with the Valentijn classifica-

tion [19]. All subgroup 1 samples (n= 33) and two-thirds of
subgroup 3 (n= 8) belonged to Valentijn’s NEG group, while 13
out of 23 subgroup 2 samples were part of Valentijn’s POS group
(Fig. 8a; Supplementary Table 12). In addition, the multivariate
analysis indicated that our subgroup 3 could be an independent
variable after being adjusted by Valentijn’s classifier (Fig. 8b).
Since 2006, Oberthuer and colleagues have been dedicated to

constructing a molecular classification system capable of accu-
rately categorising patients into favourable and unfavourable
groups, continually iterating over the following decade [36–39].
The most recent molecular predictors NB-th24 and NB-th44 were
introduced in 2017 [40]. A comparative analysis between our
model and their two models reveals a strong consistency in the
favourable and unfavourable outcomes of the respective group-
ings (Fig. 8c). Specifically, 218 out of 230 subgroup 1 samples and
77 out of 124 subgroup 3 samples were labelled as the favourable
group based on SVM_th24. Conversely, more than half of the
subgroup 2 samples were categorised as unfavourable (Supple-
mentary Table 12). Similar results were identified in the SVM_th44
comparison (Supplementary Fig. 8c). Additionally, multivariate
analysis to determine subgroup 2 could serve as an independent
variable after adjusting for Oberthuer’s classifier (Fig. 8d; Supple-
mentary Fig. 8d).
Recently, Westermann and colleagues reported 4 subgroups in

neuroblastoma, including MYCN-amplified (MYCN), MYCN non-
amplified high-risk (MNA-HR), MYCN non-amplified low-risk (MNA-
LR) and mesenchymal (MES) [41]. With our method, patients
within Westermann_MNA-HR can be further classified into
3 subtypes (Fig. 8e), showing different prognosis (Fig. 8f). This
was also true for Westermann_MNA-LR (Fig. 8g). A majority of
cases in Westermann_MES or MYCN belonged to subgroup 3 and
2, respectively (Fig. 8e).
George and colleagues classified 498 neuroblastoma samples

into 4 distinct clusters based on RNA-seq profiles [42]. These
clusters include the George_Hi-MYCN cluster, characterised by
MYCN target genes; the George_neuronal cluster, predominantly
composed of MYCN non-amplified tumours; the George_immuno-
genic cluster, enrichment of immune genes; and the
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George_metabolic cluster, encompassing the remaining samples.
A substantial portion of the George_neuronal cluster and the
George_immunogenic cluster fall into subgroups 1 and 3,
respectively. Specifically, 13 out of 14 samples from the

George_Hi-MYCN cluster are categorised to subgroup 2 (Fig. 8h).
Notably, subgroups within the George_immunogenic cluster and
George_neuronal cluster also demonstrate distinct survival out-
comes (Fig. 8i, j).
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Califano and colleagues classified high-risk neuroblastomas into
3 main subgroups (MYCNAmp, MYCNA), 11q-LOH (loss of hetero-
zygosity), and mesenchymal (MES) [43]. In comparison, in the
GSE85047 microarray, all cases of Califano_ MYCNA were classified
in subgroup 2. Most cases in Califano_MES or Stage1 belonged to
subgroups 3 and 1 respectively (Fig. 8k). Interestingly, most cases

in Califano_11q-LOH were classified in subgroup 2 (Fig. 8k), and
subgroups within Califano_11q-LOH and MYCNA exhibit different
survival results (Fig. 8l).
Together with other reports, our findings emphasised the

extent of inner heterogeneity within the MYCN non-amplified
population and the importance of patient stratification.
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DISCUSSION
Neuroblastoma remains a challenge in the era of personalised
therapy, largely due to inter- and intra-tumoral heterogeneity.
Gene amplification in MYCN is the first genetic marker that
indicates a highly invasive, advanced neuroblastoma, which has
been observed in about 20% of primary and about 40% of high-
risk neuroblastoma cases [44]. Despite the extensive study of
MYCN-amplified neuroblastomas, there is a significant unmet
clinical need in MYCN non-amplified neuroblastomas.
In this study, using tumour expression data and ConsensusClus-

terPlus, we demonstrate that MYCN non-amplified neuroblastomas
are heterogeneous and can be further classified into 3 subgroups
based on their transcriptional profiling. Within them, subgroup 2
has the worst prognosis and this group exhibits a ‘MYCN’ signature
that is potentially induced by the overexpression of AURKA. AURKA
interacts with both N-MYC and SCF (Fbxw7) ubiquitin ligase, which
ubiquitinates N-MYC for degradation. Consequently, overexpression
of AURKA counteracts the degradation of N-MYC, leading to the
growth of neuroblastoma cells [21, 45].
Subgroup 3 is accompanied by EMT and an ‘inflamed’ phenotype,

with high expression of genes related to IL2_STAT5 signalling, IL6
JAK STAT3 signalling, interferon-α activation, interferon-γ activation,
and inflammatory response, consistent with the association
between EMT and immune-related gene expression [46, 47]. The
findings were further confirmed by using CIBERSORTx deconvolu-
tion [25] to quantify various immune populations based upon a
MYCN non-amplified neuroblastoma scRNA-seq data [26], showing
increased percentages of fibroblasts, B cells, myeloid cells, T cells,
and pDC (plasmacytoid dendritic cells).
The clinical implications of this subtype classification are

significant, as each subtype demonstrates a unique prognosis
and vulnerability to investigational therapies. For example,
patients in subgroup 1 show the most favourable prognosis with
a long-term survival rate above 85%, despite some of them being
clinically classified as INSS stage IV or high risk. It might suggest
that we should take a more careful and precise evaluation of some
patients in reality after the consideration of all clinical information
such as age, stage, risk status, or our stratification rather than
making a decision based on a single parameter. With regard to
therapy stratification, evidence showing significantly high MHC-I
and CYT scores in subgroup 3 suggests that patients within this
group may benefit from immunotherapy. Our analysis suggests
that subgroup 3 is predicted to respond to anti-PD1 immunother-
apy. The application of immunotherapy in neuroblastoma has
started with treatments such as GD2 monoclonal antibody
(dinutuximab) and Chimeric antigen receptor T cells (CAR-T)
therapy [48, 49]. Further studies, including in vitro, in vivo, and
clinical validations, are required to investigate if patients within
subgroup 3 can benefit from immunotherapy.
In addition, our study suggests that patients within subgroup 2

may benefit from AURKA inhibitors that can disrupt the interaction
between AURKA and N-MYC. Indeed, AURKA inhibitors, MLN8054

and MLN8237 (Alisertib), are able to disrupt this interaction,
leading to N-MYC degradation and subsequently cell death and
differentiation in neuroblastoma cells [45, 50]. MLN8237 (Alisertib)
is currently under phase 2 clinical evaluation in neuroblastoma
(NCT01154816).
With the establishment of independent predictors, MYCN non-

amplified neuroblastomas were easily classified into one of the
3 subtypes, permitting a realistic scenario in which prospective
subtyping is performed in a cohort, wherein patients are assigned to
different therapeutics (e.g., subgroup 3 to immunotherapy,
subgroup 2 to AURKA inhibitors) based on their subtype. If any
one of these predictions demonstrated significant benefit, it would
represent the first standard-of-care molecular biomarker selection
for MYCN non-amplified neuroblastomas and a foundational step
toward personalised therapy for this devastating disease.

METHODS
Subtype identification
The study design is provided in Fig. 1a with a summary of datasets in the
Supplementary Table S1. A detailed description of the approach and
further characterisation of the subtypes by PCA, ConsensusClusterPlus,
single-sample Gene Set Enrichment Analysis (ssGSEA), weighted gene co-
expression network analysis (WGCNA), and CIBERSORTx analysis is
provided in the Supplementary Methods.

Analysis of hazard ratio and overall survival
The univariate and multivariate Cox proportional hazards model assessed
the hazard ratio of each parameter through the survminer (v0.4.9). We
performed a log-rank test to compare Kaplan-Meier survival curves
between each subgroup by survival (v3.2-10). Prediction error curves of
each prognostic model were generated from pec (v2019.11.03) [51].

Analysis of clinically actionable genes and drug response
To investigate subgroup-specific druggable targets, we performed an
integrative analysis to assess the associations between molecular features
and the response to anticancer drugs in MYCN non-amplified neuroblas-
tomas. A detailed description of the approach is provided in Supplemen-
tary Methods.

Identification of independent predictors
To identify independent predictors for subgrouping, we applied a multi-
cohort analysis pipeline via MetaIntegrator [30] and validated with the
machine learning classifier, support vector machine (SVM) (see details
in Supplementary Methods).

Tissue microarray (TMA) preparation and
immunohistochemistry (IHC)
Separate a small part of the tissue specimen and shape it in a customised
mold for chip production and fix it overnight in 4% paraformaldehyde
(PFA). Tissue blocks were embedded in paraffin in a prepared array. Then
the sample was sliced (5 μm) and adhered to a poly-L-lysine coated glass
slide for immunohistochemical staining, which was performed as

Fig. 8 A systematic comparison of the subgroup classifier with previously published gene expression classifiers. a Prediction differences
in GSE16476 using the subgrouping method from this report (named Hu) or Valentijn and colleagues (Valentijn). b Multivariate analysis of
subgroup classification with Valentijn classification in MYCN non-amplified neuroblastomas. HR (hazard ratio), 95% CI (confidence interval),
patient number (n), and P values are shown. c Prediction differences in E-MTAB-1781 using the subgrouping method from this report (named
Hu) or Oberthuer and colleagues (Oberthuer’s svm_th24). d Multivariate analysis of subgroup classification with Oberthuer’s svm_th24
classification in MYCN non-amplified neuroblastomas. HR (hazard ratio), 95% CI (confidence interval), patient number (n), and P values are
shown. e Prediction differences in GSE49711 using the subgrouping method from this report (named Hu) or Westermann and colleagues
(Westermann). Kaplan−Meier plots showing the overall survival in Westermann_MNA-HR (f) or Westermann_MNA-LR (g) patients using the
subgrouping method from this report. Numbers below are n (%). P values are indicated. h Prediction differences in GSE49711 using
subgrouping method from this report (named Hu) or George and colleagues (George). Kaplan−Meier plots showing the overall survival
in George_Immunogenic (i) or George_Neuronal (j) patients using the subgrouping method from this report. The numbers below are n (%).
P values are indicated. k Prediction differences in GSE85047 using the subgrouping method from this report (named Hu) or Califano and
colleagues (Califano). l Kaplan−Meier plots showing the overall survival in Califano_11q-LOH & MYCNA patients using the subgrouping
method from this report. The numbers below are n (%). P values are indicated.
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previously described [52, 53], using specific antibody against N-MYC (1:600
dilutions; Cell Signalling Technology 51705) and Aurora kinase A (1:200
dilutions; Abcam ab52973). Blindly, with no knowledge of the clinico-
pathological characteristics of the tumour, the immunoreactivity in tissue
sections was observed under three microscopes at random and then
evaluated by 3 pathologists. Differences in scoring were discussed until a
consensus was reached. The tissue sections were then scored under an
optical microscope according to the degree of staining (0−3 points were
negative staining, light yellow, light brown, dark brown) and the positive
range (1−4 points were 0−25%, 26−50%, 51−75%, 76−100%). Finally,
samples were divided into a high-expression group and a low-expression
group based on the median of the final staining score. All procedures
adhered to the ethical standards set by the Clinical Committee of Xinhua
Hospital, Shanghai Jiao Tong University School of Medicine (Approval No:
XHEC-D-2016-037).

CODE AVAILABILITY
Codes were implemented in R and have been deposited in GitHub: https://
github.com/yz3n18/neuroblastoma.

DATA AVAILABILITY
All data supporting the findings of the current study are listed in Supplementary
Materials.
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