British Journal of Cancer

REVIEW ARTICLE

Translational Therapeutics

www.nature.com/bjc

W) Check for updates

Why does circadian timing of administration matter for
immune checkpoint inhibitors’ efficacy?

Abdoulaye Karaboué (', Pasquale F. Innominato

. L. =
Francis A. Lévi{®'®°

© The Author(s) 2024

34 Nicholas 1. Wreglesworth®®, Boris Duchemann'®, René Adam'’ and

BACKGROUND: Tolerability and antitumour efficacy of chemotherapy and radiation therapy can vary largely according to their
time of administration along the 24-h time scale, due to the moderation of their molecular and cellular mechanisms by circadian
rhythms. Recent clinical data have highlighted a striking role of dosing time for cancer immunotherapy, thus calling for a critical
evaluation.

METHODS: Here, we review the clinical data and we analyse the mechanisms through which circadian rhythms can influence
outcomes on ICl therapies. We examine how circadian rhythm disorders can affect tumour immune microenvironment, as a main
mechanism linking the circadian clock to the 24-h cycles in ICIs antitumour efficacy.

RESULTS: Real-life data from 18 retrospective studies have revealed that early time-of-day (ToD) infusion of immune checkpoint
inhibitors (ICls) could enhance progression-free and/or overall survival up to fourfold compared to late ToD dosing. The studies
involved a total of 3250 patients with metastatic melanoma, lung, kidney, bladder, oesophageal, stomach or liver cancer from 9
countries. Such large and consistent differences in ToD effects on outcomes could only result from a previously ignored robust
chronobiological mechanism. The circadian timing system coordinates cellular, tissue and whole-body physiology along the 24-h
timescale. Circadian rhythms are generated at the cellular level by a molecular clock system that involves 15 specific clock genes.
The disruption of circadian rhythms can trigger or accelerate carcinogenesis, and contribute to cancer treatment failure, possibly
through tumour immune evasion resulting from immunosuppressive tumour microenvironment.

CONCLUSIONS AND PERSPECTIVE: Such emerging understanding of circadian rhythms regulation of antitumour immunity now
calls for randomised clinical trials of IClIs timing to establish recommendations for personalised chrono-immunotherapies with

current and forthcoming drugs.
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INTRODUCTION

Cancer immunotherapy has developed with ups and downs since
the late 1800s [1], with clinical trials mainly starting in the 1970s,
and involving first live or inactivated microorganisms, then
polyclonal or monoclonal antibodies, interferons, and interleukins.
A leap forward in efficacy was achieved with the demonstration of
unprecedented antitumor efficacy using immune-checkpoint
inhibitors (ICls) in chemo-refractory tumors [2]. ICIs are humanized
monoclonal antibodies that target inhibitory receptors pro-
grammed cell death protein 1 (PD-1), cytotoxic T-lymphocyte
antigen 4 (CTLA4) and programmed death-ligand 1 (PD-L1). PD-1
receptor is mainly expressed in activated T-cells, B-cells, natural
killer cells, monocytes, and mesenchymal stem cells [3]. PD-L1 is

expressed by many types of tumor cells and also constitutively
expressed on dendritic cells, macrophages, mesenchymal stem
cells, and bone marrow-derived mast cells [4, 5]. CTLA-4 (CD152) is
predominantly expressed by T cells [6].

PD-1 is targeted by nivolumab, pembrolizumab, dostarlimab,
sintilimab and cemiplimab, CTLA4 by ipilimumab and treme-
limumab, and PD-L1 by atezolizumab, durvalumab, and
avelumab. Receptor blockade by the specific antibody elicits
an anti-tumor response, a process mostly orchestrated by
cytotoxic T-cells [7, 8]. Specifically, antigen-presenting cells,
e.g., dendritic cells, capture tumor antigens in the primary
tumor tissues, then migrate to the tumor-draining lymph
nodes, where T-cells are subsequently primed. Ultimately,
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Bar graph of efficacy endpoints of immune checkpoint inhibitors in compared timing groups from 18 studies involving a total of

3250 patients with different cancer types. a Median progression-free survival data. b Median overall survival data. Violet bars correspond to
late time-of-day ICl dosing. Blue bars correspond to early time-of-day of ICl administration. The main characteristics of these studies are
summarized in Table S1. Note: Qian et al. study results not shown despite statistically significant differences in overall survival in favor of the
early time-of-day group, because median values were not reached Reported p values from timing groups comparisons of PFS or survival
curves: *P > 0.20; ** 0.05 < p £0.20; *** 0.01 < p < 0.05; ****0.001 < p <0.01.

primed T-cells infiltrate into the primary tumor sites and
mediate tumor eradication.

These scientific advances led to the award of the 2018 Nobel
Prize in Physiology or Medicine to Tasuku Honjo and James Allison
for their discoveries in cancer immunology. Professor Honjo was
awarded due to his discovery of the programmed cell death
molecule-1 (PD-1) on T cells. Professor Allison discovered another
important immunosuppressive molecule, ie the cytotoxic
T-lymphocyte antigen-4 (CTLA-4) [9]. However, clinical evidence
has demonstrated heterogeneous responses in patients receiving
ICls, and primary or secondary therapy resistance is common [10].
Such between-patients differences in ICls efficacy could result
from chronopharmacologic effects, that would make immune cells
and cancer cells respond differently to immunotherapy as a
function of its administration timing along the 24 h time scale.
Here, we first summarize the main results from fourteen
retrospective studies, which have reported large and consistent
differences in efficacy outcomes as a function of the Time of Day
(ToD) of ICI infusions over the past 2 years. We then outline the
physiologic and molecular mechanisms at work within the
circadian timing system (CTS), which rhythmically regulates
immune cell functions and trafficking, besides cellular metabolism
and proliferation over the 24-h. Thus, circadian time dependencies
characterize both the tolerability and efficacy of chemotherapeu-
tic and immunotherapeutic agents, thus supporting their optimi-
zation according to circadian rhythms, so-called chronotherapy
[11, 12], as well as its personalization based upon circadian
biomarkers metrics.

IMPROVED ICI'S EFFICACY THROUGH EARLY TIME OF DAY
INFUSIONS

In seminal clinical observations, one of us (AK) first noticed a
strikingly longer follow-up for those patients who received most
nivolumab infusions in the morning as compared to those treated
mostly in the afternoon for metastatic non-small cell lung cancer
(mNSCLC) [13]. The results suggested a possible role for the CTS

on immunotherapy effects, similar to that found for chronomo-
dulated chemotherapy [14-16]. Seventeen of eighteen retro-
spective studies have now reported prolonged progression-free
and/or OS through early ToD of ICI infusions in five different
cancer types (Fig. 1, Table S1).

ToD of immunotherapy for metastatic non-small-cell lung
cancer patients

In 95 mMNSCLC patients on second-line nivolumab, both PFS and
OS were 3 to 4 times as large in those receiving the majority of
nivolumab infusions before 12:54, i.e. the median value of the per-
patient median timing of infusions, with respective Hazard Ratios
of an earlier progression or an earlier death of 0.258 [95% CL,
0.115-0.580] and 0.174 [0.082-0.370] [11]. Predominantly morning
administration of nivolumab was significantly more effective
irrespective of performance status and tumor PD-L1 expression, as
shown in multivariable analyses (PFS, p = 0.001; OS, p < 0.001). The
larger the proportion of infusions given before 12:54, the better
the PFS and OS outcomes. Thus, median OS was 34.2 months for
those patients receiving at least 67% of ICIS infusion before 12:54,
12.4 months for those given at least 67% of ICl infusions after
12:54 and 15.3 months for those receiving at least 33% of ICls
before and 33% after 12:54 (p = 0.023).

Two studies investigated whether ToD of infusions influenced
the efficacy of single-agent pembrolizumab as 1st or 2nd line in
180 mNSCLC patients each [17, 18]. The early ToD group
comprised patients who received <20% infusions after 16:30
whilst the late ToD group involved patients who received >20%
infusions after 16:30, according to the initial methodology
proposed by Qian et al. [12]. As compared to the late ToD group,
the early ToD groups displayed longer PFS in both studies, i.e. 19.7
vs 6.6 months, Log Rank, p =0.056 [17], and 9.4 vs 4.9 months,
p =0.020 [18]. Median OS was also largely prolonged in the early
vs late ToD group, yet not significantly so (Fig. 1). The relevance of
the ToD of the initial 4 ICl infusions was shown in a study involving
197 mNSCLC [19], using 12:00 noon as a time cut-off. Their early
ToD group consisted of patients receiving at least one of the initial
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4 1Cl infusions before noon, whilst their late ToD group involved
those receiving all initial four infusions after 12:00 noon. Median
PFS was 6.5 months in the early ToD group and 3.2 months in the
late group (p =0.066). Median OS were 16.1 and 7.4 months,
respectively (p=0.003). In a multivariate analysis, HR was 0.42
[0.27-0.63] (p<0.001) for PFS and 0.54 [0.35-0.84] (p = 0.007)
for OS.

The critical relevance of early ToD of infusions over the initial 4
treatment courses was confirmed in 97 mNSCLC patients receiving
1st line pembrolizumab as a single agent (N =41) or combined
with chemotherapy (N=56) [20]. Thus OS was significantly
prolonged through the administration of three or four of the 4
initial pembrolizumab infusions before 11:45 (early ToD group) as
compared to one or two (late ToD). Thus, respective 2-year survival
rates were 65% and 38% (p=0.010). Multivariable analysis
confirmed that the delivery of a majority of the four initial
pembrolizumab-based courses in the morning was an indepen-
dent predictor of a longer OS (HR = 0.28 [0.13-0.64], p = 0.003).

In a cohort of 361 patients with metastatic NSCLC, Catozzi et al.
also found that early ToD infusions of pembrolizumab, nivolumab,
atezolizumab, durvalumab, or avelumab significantly prolonged
overall survival. They identified 11:37 as the best discriminant cut-
off time. As a result, median overall survival times were
30.3 months for the patients whose majority of ICl infusions
occurred before 11:37as compared to 15.9 months for those
treated later in the day (p = 0.0024) [21].

All the above studies also showed that the early ToD groups
received significantly more ICl infusions as compared to the late
ToD groups since efficacy was best on early ToD treatment. Such
an explanation is consistent with all the results where an ICl-based
treatment arm proved more effective in randomized trials. Thus
ICls withdrawal is mostly related to disease progression [22]. As a
result, time to treatment failure was also found to be longer
following early vs late ToD administration of nivolumab,
pembrolizumab or atezolizumab in 129 mNSCLC patients, with
respective median times of 14 months (Cl 95%, 8.9-23.4) vs
4.9 months (2.8-13.5) [22]. There were not enough events for any
comparative survival assessment at the time of the report.

ToD of immunotherapy for metastatic malignant melanoma
patients

In 299 patients with stage IV malignant melanoma in the MEMOIR
Cohort Study, Qian et al. [12] first reported that more frequent early
ToD dosing of nivolumab, pembrolizumab and/or ipilimumab nearly
doubled OS as compared with late ToD administrations. The early or
late ToD groups involved the patients who had received less than
20% of ICls infusions before 16:30 or 20% or more infusions after
16:30, respectively. In a propensity score-matched (PSM) analysis of
146 patients, the relative risks of earlier disease progression or death
were nearly twice as low in the early vs late ToD group. Median OS
was 4-8 years [3-9—-not estimable] for the late ToD group, and was not
reached for the early ToD group (HR = 2:04 [1-04-4-00]; p = 0-038). ICI
timing was an independent prognostic factor for OS in multivariable
analyses and remained unaltered using different types of ICls, or prior
corticosteroids or brain radiotherapy.

The above ToD effects were confirmed in a cohort of 121
patients with advanced melanoma [23]. The patients receiving all
initial four infusions in the afternoon (after 12:00- noon) displayed
worse PFS (3.3 vs 7.6 months; p=0.009) and worse OS (5.5 vs
24.9 months; p <0.001) compared to those given at least one of
the initial four infusions in the morning. The results were
confirmed using multivariable analyses.

Another retrospective study involving 73 patients with stage IV
melanoma further showed that those patients receiving more
than 75% of infusions of nivolumab, pembrolizumab, or nivolu-
mab + ipilimumab in the afternoon had a shorter median survival
as compared with those receiving more morning infusions
(14.9 vs. 38.1 months; HR = 0.45 [0.23-0.86]; p < 0.01) [24].
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ToD of immunotherapy for metastatic urothelial or renal
cancers

A significant association between early ToD of ICl infusions and
improved patient outcomes has been reported for metastatic
urothelial or renal cancers in four studies.

In 92 patients receiving single-agent ICls for metastatic
urothelial cancer in Spain or ltaly, Ortega et al. [25] showed that
those receiving fewer than 20% ICl infusions before 16:30, had
longer PFS and OS, compared to those receiving 20% or more ICl
infusions after 16:30. Median PFS ranged from 11.4 to 3.6 months
(HR=2.66 [1.53-4.63] (p =0.001) and median OS varying from
14.0 to 6.8 months (HR = 2.62 [1.48-4.63] (p = 0.001). Early ToD of
infusions also improved tumor response rate (59.3% vs 16.0%). In
201 patients receiving pembrolizumab (8% of the patients),
nivolumab (61%), or dual nivolumab/ipilimumab (31%) for stage
IV renal cell carcinoma (RCC), Patel et al. [26] observed that the
patients receiving 25% or more of their ICl infusions in the
morning (before 13:00) had significantly longer OS compared to
those receiving more than 25% of infusions after 13:00. Median OS
were 58 and 34 months, respectively (HR=0.51, [0.29-0.89]
(p =0.017). Early ToD was prognostic of longer survival, indepen-
dently of age, sex, tumor histology, liver or brain metastases, pre-
treatment LDH, and initial ICI. Similar results were found in a study
involving 56 patients receiving anti-PD-1/PDL-1 as 1st or 2nd line
treatment for metastatic RCC [27]. Those patients receiving 20% or
more ICl infusions after 16:30 experienced worse OS (HR = 3.1
[1.27-7.36] (p=0.01), shorter time on treatment (HR=25
[1.21-4.99] (p =0.013) and shorter time to next treatment line
(HR=1.9, [0.96-3.71] (p=0.067) as compared to those who
received less than 20% of the infusions after 16:30. In 145 patients
treated with nivolumab alone, or in combination with ipilimumab
as first- or second-line treatment for metastatic RCC, Dizman et al.
[28] showed consistent trends towards improved response rate,
prolonged time-to-treatment failure, and OS among those
patients receiving less than 25% of ICl infusions after 16:30.

ToD of immunotherapy for metastatic gastrointestinal cancers
In 62 patients treated with nivolumab for recurrent or metastatic
squamous cell carcinoma of the esophagus, significantly superior
response rate, PFS, and OS resulted from the administration of the
first infusion of nivolumab before 13:00 compared to its
administration after 13:00 [29]. Response rate and PFS were also
significantly larger in those patients who received the majority of
infusions before 13:00 during the first 3 months of treatment. In
contrast, no significant differences were found in response rate,
PFS, and OS as a function of whether the majority of all nivolumab
infusions was given before or after 13:00.

In 248 patients receiving nivolumab monotherapy for meta-
static gastric cancer, Ishizuka et al. observed significant difference
in response rate, PFS and OS according to whether patients
received more or fewer than 70% of ICl infusions before 14:00. The
respective efficacy data were: ORR, 16.9% vs 3.3%, (P = 0.01); PFS,
2.3 vs 1.6 months (HR=0.65; P<0.01); OS, 7.6 vs 3.9 months,
(HR=0.64; P<0.01) [30].

In 131 patients receiving atezolizumab * bevacizumab as first-
line treatment for advanced hepatocellular carcinoma, Pascale
et al. showed that the administration of the first two treatment
courses after 13:00 was associated with a significant reduction of
median OS as compared to the administration of at least one of
the two first courses before 13:00 (11.5 months vs 18.7 months),
p=0.015). This ToD-related difference in OS outcome was
supported by multivariate analysis [31].

A meta-analysis evaluated the consistency of ToD-related
efficacy findings, using published data from 13 studies involving
1663 patients with advanced non-small-cell lung cancer (47%),
renal cell carcinoma (24%), melanoma (20%), urothelial cancer
(5%), or esophageal carcinoma (4%). The patients had received
anti-programmed cell death protein 1, or anti-programmed
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death-ligand 1 (98%) and/or anti-cytotoxic T-lymphocyte- asso-
ciated protein 4 (anti-CTLA-4) (18%). The early ToD groups had
nearly twice as long OS and PFS, as compared to late ToD-treated
patients. Respective overall HRs were 0.50 [95% Cl, 0.42-0.58];
P <0.00001) for OS, and 0.51 [0.42-0.61]; P < 0.00001) for PFS [32].

A single study involving 106 patients with more than six
different types of solid tumours found no difference in PFS or OS
between early and late ToD infusion of pembrolizumab. No role
was found for cut-off points at 12:00 noon or at 15:06 (median) or
at 16:30, nor for the proportion of cycles given after this cut-off
point (20% or 50%). The authors ascribed this negative result to
the large heterogeneity of their patient population [33].

Thus, 17 of the 18 above study reports, involving a total of 3144
metastatic cancer patients from nine countries in 4 continents,
have consistently indicated improved patient outcomes following
predominant early ToD administrations of ICls (Fig. 1a, b). How-
ever, the definition of the threshold for early ToD varies from 11:37
to 16:30, whilst the definition of the proportion of late ToD
infusions associated with poor ICls efficacy ranges from 20% to
75%.. Four studies further highlighted the critical relevance of
early ToD over the initial 2-months of ICl treatment. Thus, there is
a clear need both for improving precision regarding the
determination of optimal timing and for assessing the current
evidence for the circadian mechanisms at work for cancer
chronotherapy.

FROM CIRCADIAN RHYTHMS TO CANCER CHRONOTHERAPY
The circadian timing system

Circadian rhythms consist of endogenous biological oscillations
with a period of about 24 h, which characterize most physiological
parameters, thus contributing to well-being and health [34-40]. In
mammals, circadian rhythms regulate sleep-wakefulness, rest-
activity, appetite, muscular and cognitive performance, body
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temperature, hormonal secretions, cellular metabolism, prolifera-
tion, and death, as well as immune cells production, functions and
trafficking [41]. Circadian rhythms display precise 24-h periods,
following their synchronization with 24-h environmental cycles,
and especially the regular alternation of light and darkness over
the 24h [38, 42]. Other environmental cues that influence
circadian rhythms include timed physical activity and rest, socio-
professional and familial interactions, and feeding patterns
[43-46]. The circadian coordination and adjustment to environ-
mental cues mostly operate through the suprachiasmatic nuclei
(SCN), a hypothalamic pacemaker located above the optic chiasm
[47]. Most circadian rhythms are suppressed following SCN
physical ablation or functional alteration, through chronic jet lag
for instance [48-51]. SCN-dependent rhythmic signals coordinate
genetic molecular clocks that reside within each mammalian cell,
resulting in a hierarchical clocks network that constitutes the
circadian timing system (CTS) [38, 52]. Indeed, mammalian cells
are endowed with a molecular clock involving 15 clock genes
(NPAS2, PER2, DBP, ARNTL, PER3, NR1D1, CRY1, NR1D2, CLOCK,
CRY2, BHLHE40, PER1, BHLHE41, RORA, and TIMELESS), that
interact with each other through three transcription/post-tran-
scription regulatory loops, thus generating circadian oscillations in
individual mammalian cells. The BMAL1:CLOCK (or NPAS2) protein
dimers, in particular, play a key role in the molecular clock through
the activation of the transcription of clock genes Per’s, Cry’s and
Rev-erb’s [44, 53] (Fig. 2). Dynamic single-cell reporter studies have
revealed the tight coupling between the molecular circadian clock
and the cell cycle, in individual non-malignant cells, whilst such
coupling might be altered in individual cancer cells [54]. In healthy
mouse and/or human tissues, cell cycle events, DNA repair,
apoptosis and autophagy are controlled by the circadian clock
[55]. Experimental studies have further highlighted the essential
roles of tissue-specific regulation and intercellular signaling in
clock synchronization.
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Chronopharmacology and chronotherapy

Comprehensive reviews have summarized the evidence of
circadian time-dependencies in drug effects, i.e. chronopharma-
cology, and the main mechanisms that determine chronophar-
macokinetics and chronopharmacodynamics [38, 44, 56-59]. Drug
exposure is moderated by the circadian regulation of Absorption,
Distribution, Metabolism, Elimination and Toxicities (ADMET)
mechanisms at molecular, tissue and organ levels. Circadian
rhythms characterize most bioactivation, detoxification and
elimination processes at the transcription, protein and enzymatic
levels in the liver, the chief drug-metabolizing organ, as well as in
the intestine, kidney, lung, etc [60]. Recently, sex dimorphism has
emerged for circadian drug responses and their molecular
mechanisms, thus supporting sex-specificities in optimal
circadian-based treatments, i.e. chronotherapy [61, 62].

Circadian rhythms in cancer biology

The occurrence of circadian patterns in clock gene expressions has
been shown for several but not all rodent or human cancer cell
lines in synchronized cell culture studies [63-66]. Large between-
tumor variations characterize both the extent of clock gene
expressions and their circadian patterns in cancer tissues from
rodents or humans. A metric for molecular circadian clock
functionality and timing has recently been developed using Time
Teller, an artificial intelligence algorithm, that proved able to
model the molecular clock from a single tissue biopsy transcrip-
tome or RNAseq [67]. Time Teller application to human oral
mucosa and breast cancer omics data reveal a molecular clock
disruption in nearly half of the patients’ tumors. TimeTeller has
further revealed that the survival of 209 patients with primary
breast cancer treated with neoadjuvant chemotherapy was
significantly less when circadian molecular clocks in cancer tissue
were functional, probably due to the reduced effectiveness of
chemotherapy on cancer cells with functional clocks [67].
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Interestingly, the expressions of common oncogenic drivers or
inhibitors such as RAS, c-MYC, NOTCH and TP53 are rhythmically
controlled by the circadian clock, and also interact with it, thus
supporting an overarching regulatory role of the circadian clock in
cancer processes and precision cancer treatments.

Other algorithms that estimate molecular circadian clock
functionality and timing have been developed such as Time-
Signature [68], ZeitZeiger [69], and CYCLOPS [70]. However, the
key point differentiating TimeTeller from the other algorithms is
that, apart from identifying timing deviations, these do not
provide any other assessments of clock functionality or other
quality controls on the individual timing assessments [67].

Cancer chronotherapy

Cancer chronotherapy aims at the delivery of anticancer agents at
a time (on the 24-h scale) when efficacy can be maximized and/or
toxicity can be minimized. As a result, the circadian dosing time
can improve or increase the extent of treatment toxicities by up to
fivefold, as shown for more than 50 agents in experimental
models, and 12 of them in cancer patients [62]. Most importantly,
the dosing time associated with least toxicity has achieved similar
or improved efficacy both in rodents and in patients [71, 72].
Clinical trials have been conducted from the evidence provided by
experimental studies in nocturnal rodents, and more recently in
synchronized cell cultures as well [38, 56, 65]. Overall, the clinical
relevance of daily timing has been investigated for anticancer
agents in human colorectal, lung, breast, pancreas, kidney,
bladder, endometrium, ovary, head and neck or hematologic
cancers [62]. The discovery of oxaliplatin efficacy in colorectal
cancers resulted from its chronopharmacologic administration,
from Phase | to large international Phase Ill trials [73-75]. An
individual patient-level meta-analysis involving data from 345
females and 497 males with metastatic colorectal cancer revealed
that males lived significantly longer on chronomodulated
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oxaliplatin-5-fluouracil-leucovorin rather than on conventional
chemotherapy, whilst the opposite was observed for women
[76]. Further experimental and clinical data support an about 6-h
delay in the optimal timing of oxaliplatin, 5-fluorouracil and
irinotecan, both in mice and in cancer patients [62]. Altogether, a
recent systematic review involving 18 randomized, controlled
studies including a total of 2547 patients concluded that most
studies provided evidence of the reduction of toxicity resulting
from chronomodulated chemotherapy, while efficacy was main-
tained or improved [77].

MECHANISMS AT WORK FOR CANCER
CHRONOIMMUNOTHERAPY

The circadian immune system

Oscillating molecular circadian clocks have been identified in all
the cells that participate in immune system functions [78-80].
Immune cells express circadian clock genes and display 24-h
mRNA and/or protein rhythms for a wide array of functional

genes. As a result, circadian rhythms characterize (i) the synthesis
and release of cytokines, chemokines and cytolytic factors, (ii) the
daily gating of the immune response occurring through pattern
recognition receptors, (iii) phagocytosis, (iv) migration to inflamed
or infected tissue and immune cells trafficking, (v) cytolytic
activity, and (vi) proliferative response to antigens [81]. Conse-
quently, alterations of circadian rhythms can lead to profound
disturbances in immune responses.

In experimental models, the encounter of an immune challenge
given during the middle of the light span, i.e. at Zeitgeber 7 (ZT7)
7 h after light onset, when mice are resting, has been associated
with an enhancement of immune responses compared to
exposure in the middle of the night (ZT19) when mice are most
active [41, 82, 83]. Thus, an immune stimulus caused more
dendritic cells to migrate faster from the skin to the lymph nodes
following its application at daytime, as compared to night-time.
The number of T-cells in lymph nodes was higher during the day,
and T-cell movement from blood to lymph nodes was controlled
by the circadian expression of the homing molecule Intercellular
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Adhesion Molecule 1 (ICAM-1) [82]. Mathematical modeling
revealed that the presence of dendritic cells and T-cells in the
lymph node at daytime, during the rest span of mice, increased
the probability of immune interactions between antigen-
presenting dendritic cells and antigen-recognizing T-cells [78].
Circadian rhythms also moderated the proliferation of T-cells in
the lymph nodes at a later stage of an adaptive immune response.
One week after an immune stimulus consisting of OVA peptide-
loaded dendritic cells, T-cells proliferated more at daytime
compared to nighttime, with largest daytime expression of
proteins involved in immune regulation [84]. These rhythmic
patterns were suppressed in mice lacking clock gene Bmall
expression in T-cells [85] or in those with constitutive CLOCK gene
mutation [84].

The timing when the immune challenge was given also affected
the later stages of the adaptative response. The B-cells from mice
vaccinated in the daytime produced more antibodies at 14 days
and more antigen-specific antibodies at 28 days, compared to
mice vaccinated at night [86, 87]. Day-vaccinated mice also had a
stronger virus-specific T-cell response at 28 days. This effect was
not seen in mice lacking Bmal1 in T-cells [86, 87].

Experimental results combined with mathematical modeling,
revealed that the oscillating nature of one stage of the immune
response, such as T-cell trafficking, feeds into and is necessary for
the next stage such as T-cell proliferation, which is also rhythmic.
This mechanism enables the immune response to remain
rhythmic for several weeks after an initial challenge [87]. Figure 3
provides an overview of the peak times of relevant cellular,
humoral and molecular immune parameters in the circulating
blood, the draining lymph nodes and the tumour immune
microenvironment in nocturnal rodent models [87-91].

In healthy humans, circadian variations with large amplitudes
characterize the circulating counts of most blood cells, including
total lymphocytes and their subsets. Total lymphocytes and
mononuclear cell counts reach a low point in the morning hours,
i.e. between 08:00 and 10:00 then gradually increase with a daily
maximum between midnight and 02:00 at night [92]. All
subpopulations of interest of T(CD4*") and T(CD8™) cells including
naive, central memory, effector memory, and effector T cells
display distinct and significant circadian rhythms in absolute cell
counts, except for effector T(CD4) cells. Most lymphocyte subset
counts nearly double over the 24-h time scale. Acrophases also
clump in the early night span, thus ranging from 01:31 to 02:41 for
naive, central memory, and effector memory T(CD4) and T(CD8)
cells. In contrast, circulating counts in both effector T(CD8) cells
and natural killer cells peak in the morning or early afternoon
hours [83]. Immune cell trafficking and functions are regulated in
part by hormonal secretions. For instance, cortisol [93] is
rhythmically secreted by the adrenal cortex in the early morning
hours with reduced levels at night. Cortisol, increases the
expression of CXCR4 to mediate bone marrow homing with a
3-h delay, thereby negatively regulating the counts in naive and
memory T-cells [83]. Epinephrine is secreted by the adrenal
medulla primarily in the afternoon hours [94]. It recruits natural
killer cells and effector T cells from the marginal pool to the
circulation by increasing the expression of $-adrenergic receptors
and the chemokine receptor CX3CR1 and reducing the expression
of adhesion molecules [83]. Adrenergic signaling also regulates
the expression of vascular cell adhesion molecule-1 [95] in the
bone marrow microenvironment to induce homing of leucocytes
to the bone marrow and in muscles late in the activity phase [95].
Hence, trafficking to peripheral sites occurs simultaneously,
thereby resulting in anti-phasic abundance in the bloodstream.

Circadian rhythms regulate macrophage-mediated immune
responses through time-of-day-dependent regulation of macro-
phage function [96]. Circadian disruption induced the loss or
inversion of daily patterns of M1 (proinflammatory) and M2 (anti-
inflammatory) macrophages in the spleen [97]. The immune time-
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of-day variation has also been shown in the magnitude of the
response to vaccination. Thus, preclinical and clinical studies have
shown that a weaker adaptive immune response is induced when
vaccinations are given in the evening than when given earlier in
the day [98-102]. Figure 4 critically summarises a snapshot of
pertinent available data on the 24-h rhythms in immune functions
in peripheral blood demonstrated in humans using repeated
measures. These results support strategies for optimizing ther-
apeutic options through treatment timing of administration in a
personalized and precise fashion.

Experimental cancer chronoimmunopharmacotherapy

Improved treatment responses have resulted from circadian-timed
delivery of interleukin-2 and interferons in laboratory rodents. In
B16 melanoma-bearing mice, maximum antitumor activity was
achieved following dosing at ZT4, during the early stage of the
diurnal rest span of mice, for recombinant human interferon (IFN)a
A/D and at ZT16 for recombinant murine IFN-y, i.e. shortly before
the middle of the nocturnal activity span [103]. The mRNA
expression of IFN receptor was rhythmic in tumor cells, and
peaked synchronously with the proportion of S-phase cells, thus
supporting a link between the cell cycle and immunologic tumor
responses potential. Highest interferon receptor expression
occurred near the middle of the rest phase of mice [104].

The administration of IFN-a or IFN-y disrupted circadian gene
Per2 mRNA expression, both in the SCN and in peripheral organs,
as well as the circadian rhythm in rest-activity and body
temperature, following daily dosing at ZT12 but not at ZT0. The
study further revealed the ability of IFNs to disrupt both the
central circadian pacemaker and peripheral clocks following
dosing around the beginning of the activity span (ZT12) [104].
The circadian disruption potential of IFN was further shown
through the continuous administration of IFN-a to mice using a
subcutaneous implanted pump. Constant rate IFN-a infusion
decreased the rhythm amplitude of locomotor activity, body
temperature, leukocyte counts, and plasma corticosterone levels
and suppressed the oscillation in the expression of clock genes in
the liver compared to repeat daily administrations at ZT2 [105].
The chronopharmacology of interleukin-2 (IL-2) was shown in
tumor-bearing rats, where constant rate infusions of IL-2 induced
a 37.5% mortality rate and a 25% objective tumor response rate,
whereas animals receiving a “day cycle” of IL-2 had no mortality
and a 100% objective response rate [106]. Clinical Phase 1 and 2
studies have shown good tolerance despite a significant increase
in dose intensity with a circadian infusion schedule compared to
standard or flat continuous infusion schedules of recombinant
alpha-interferon-2b in melanoma or renal cell cancer patients
[107, 108]. IL-2 chronotherapy also proved to be safe, moderately
toxic and active in metastatic RCC patients [109].

Circadian rhythms in key mechanisms of ICl's efficacy were
recently demonstrated in mice. Circadian Pdcd-1 mRNA expression
was found in tumor-associated macrophage (TAMs), whilst PD-1-
positive TAMs count also displayed a significant circadian rhythm
in B16/BL6 melanoma transplanted into C57BL/6J mice [88]. Pdcd-
1 was further characterized as a clock-controlled gene [88]. In this
mouse model, BMS-1, a small molecule inhibitor of PD-1/PD-L1,
was significantly more effective following its administration at
ZT18, near the middle of the activity span, in comparison with ZT6.
Both circadian times, respectively correspond to the rise and
decrease in PD-1 expression on TAMs. Although a two-timepoints
comparison cannot identify the optimal time of administration of
BMS-1, the findings suggest that the circadian expression of PD-1
on TAMs, but not in circulating monocytes, could help select the
most appropriate time of day to administer PD-1/PD-L1 inhibitors.
Wang et al. [89] further demonstrated that the anti-tumor immune
responses were ToD-dependent. Fourteen days after the sub-
cutaneous engraftment of a fixed melanoma cells load, tumor
volumes were significantly larger in those mice engrafted ZT21
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(in the mid-to-late activity span of mice) as compared to ZT9 (in
the mid-to-late rest span). This difference was abrogated in mice
lacking both adaptive and innate immune cells. Interestingly, T
(CD8) cells, the main target cells of ICls were significantly more
numerous in the tumors at ZT9 compared to ZT21. This difference
was abrogated in mice whose Bmal1 expression was specifically
suppressed in dendritic cells. Thus both above reports identify a
9-h long time span, ranging from ZT9 to ZT18, within which ICls
might be most effective. Further studies are yet mandatory to
identify the optimal circadian times of ICls, and the circadian
biomarkers that will help the personalization of the chronoimmu-
notherapy schedules.

Chronopharmacokinetics
In humans, ICls have an elimination half-life that ranges between
14 and 27 days, and a mean clearance of about 0.36 L/day
[18, 110, 111]. As a result, the steady state is usually reached after
2-4 months [112]. Additionally, it takes 32.4 weeks to reduce T-cell
PD-1 occupancy by 50%, after nivolumab discontinuation [113].
These data reveal that ICls timing might only moderate their
pharmacokinetics over the initial 2-4 months of treatment, i.e.
before the reach of the steady state of ICls blood concentrations.
Furthermore, the pharmacokinetics of monoclonal antibodies
have peculiar aspects and are influenced by target-mediated
drug disposition and drug clearance [114], which vary over time
[115, 116]. Preclinical studies have shown that pembrolizumab
biodistribution depends on PD-1-mediated uptake into lymphoid
organs, which oscillates with a circadian rhythm. Thus, there might
be circadian changes in the clearance of monoclonal antibodies
from tissues with a crucial impact on T-cell antitumor function
[117].

These observations call for careful investigations of ICl
chronopharmacokinetics, as potential mechanisms for the dosing
time dependencies in ICl efficacy over the initial treatment cycles.

CIRCADIAN BIOMARKERS TOWARDS PERSONALIZED
CHRONOIMMUNOTHERAPY

The main physiological host biomarkers that inform CTS function
and timing include the 24-h patterns in rest-activity, body
temperature, and heart rate, as well as cortisol and melatonin
secretions. These rhythms help coordinate peripheral clocks over
the 24 h. They can be moderated by sex, age, as well as cancer
type and stage [49, 118, 119]. In metastatic cancer patients, such
circadian biomarkers either remain similar to those in healthy
people, or be shifted, damped, or altogether suppressed.
Predictable  chronopharmacologic  effects  require  well-
coordinated and functional circadian clocks [38, 56]. Between-
patient differences have been identified for numerous host
circadian biomarkers [57, 120, 121]. Furthermore, robust, altered
or suppressed clock gene expressions and circadian clock
functionality have been found in the tumors from cancer patients
[67, 122]. It can thus be hypothesized that the patients with
rhythmic biomarkers could benefit the most from chrono-
immunotherapy.

Circadian patterns in rest-activity

In mammals, the circadian rhythm in rest activity and that in body
temperature are generated by the SCN [123], thus representing
biomarkers of the coordination activity of the central circadian
pacemaker [123]. In humans, the dampening of the circadian
amplitude in rest-activity rhythm, measured with wrist actimetry
for a week, has been associated with a significant increase in both
the incidence of cancer and other diseases and all causes of
mortality among the 92614 participants in the UK Biobank study
[124]. In cancer patients, the most clinically relevant metric of the
rest-activity rhythm is the dichotomy index (I < O), a measure of

the percentage of in-bed activity counts that are less than the
median of out-of-bed counts. Nearly half of 436 patients with
metastatic colorectal cancer patients had robust rest-activity
rhythm, with an <O of 97.5% or more, i.e. similar to healthy
subjects [125], whilst 25% had damped rhythms, and a further
25% had severe circadian disruption with an 1<O below 96%
[126]. Low I < O values consistently predicted for both poor PFS
and OS in a pooled analysis involving these 436 patients [126],
and for OS in an independent meta-analysis of 6 studies in a total
of 659 cancer patient [127]. Large between patients differences
have been reported for the rest-activity circadian pattern in
several studies Involving patients with advanced or metastatic
lung or esophagus cancer or melanoma, i.e. populations similar to
those where early ToD ICIs improved outcomes. The clinical
relevance of rest-activity circadian disruption has also been
shown especially in lung cancer patients [128-131]. Walking
exercise improved sleep quality, as assessed with the Pittsburgh
Sleep Index questionnaire, and the rest-activity dichotomy index
1<O, only in the lower 1<O group, while no effect of the
intervention was found in the good | <O group or in the whole
population [132]. The restoration of a near-normal rest-activity
rhythm with gefitinib was associated with decreased symptom
severity and improved quality of life in a pilot study involving 10
NSCLC patients [133]. In such patients, rest-activity rhythm
disturbances have been frequently associated with alterations
in cortisol and melatonin secretions, core body temperature, and/
or circulating immune cell subset counts [134].

Circadian patterns in cortisol or melatonin secretions
Disrupted circadian patterns have been identified for cortisol
secretion in individual patients with advanced or metastatic breast
or ovarian cancer [135]. Such disruption was further shown as an
independent prognostic factor of survival in metastatic breast
cancer patients [136], as well as for advanced or metastatic
patients with NSCLC [137] or RCC [138], but not for those with
metastatic colorectal cancer [139].

In NSCLC patients, Sephton et al. [137] observed a significant
increase in early mortality among the 29 patients with flattened
diurnal salivary cortisol slope compared with the 32 patients with
steep slopes that suggested a near normal circadian pattern. She
found that disrupted circadian cortisol profiles were associated
with both low circulating total and cytotoxic T-cell lymphocyte
counts and male sex. These data were further supported by the
documentation of large between-patient differences in 24-h mean
level, peak-trough difference and peak time of plasma cortisol in
lung cancer patients [140]. In 161 patients with advanced lung
cancer, diurnal salivary cortisol slope was identified as the most
critical factor influencing the psychoneurological symptom cluster
in multiple linear regression models after adjusting for physical
performance status and number of comorbidities [141]. The
diurnal slope of salivary cortisol also proved clinically relevant in
202 renal cell cancer patients [138]. Indeed, flatter cortisol slopes
were significantly associated with decreased patient survival, a
finding similar to that found for this endpoint in lung cancer
patients [137].

In contrast, plasma melatonin 24-h patterns appeared quite
similar, with a nocturnal peak occurring at 02:00 in each healthy
subject, as well as in each early or late-stage lung cancer patient.
The relation between the circadian patterns in salivary melatonin
and cortisol was further investigated in a case control study
involving 40 patients with newly-diagnosed lung cancer and 40
healthy adults [142]. The authors reported that the group of
patients had lower salivary melatonin levels and higher salivary
cortisol levels with flatter slopes for both hormonal concentrations
The multivariate linear regression analysis indicated that the
cortisol slope and fatigue score significantly predicted the sleep
quality score.
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Relations between immune functions and circadian host or
tumor biomarkers

Scarce studies have examined the relationship between host
circadian biomarkers and immune functions in patients with lung,
kidney, bladder, or esophageal cancer or melanoma. Mazzocoli
et al. [140] compared circadian rhythms in circulating Natural Killer
(NK), T and B lymphocyte subsets in a group of nine NSCLC
patients versus a group of 11 controls. They confirmed the well-
known circadian rhythms in circulating immune cell counts in
healthy controls, with maxima at daytime for T(CD8), NK-cell
subset (CD8dim and CD16+), V62TCR, and at night for T(CD3),
T(CD4), and B cells (CD20). In a group of nine stage I-IV NSCLC
patients, between-patient differences characterized the 24-h
patterns in circulating T(CD3), T(CD8), and B cells. The circadian
rhythmicity in circulating NK-cell counts and phagocyte activity
were also disrupted in five patients with stage I-Il malignant
melanoma, compared to 12 healthy controls [143]. The most
typical alterations were discoordination between the cytotoxicity
rhythms of NK-cells and phagocytes.

The downregulation of clock gene expressions in some human
cancers has been associated with altered circadian patterns in the
tumor microenvironment, with a possible impact on survival or
immunotherapy efficacy. In human malignant melanomas, as well
as in human RCCs, the mRNA expression of most clock genes was
reduced, whilst displaying disrupted circadian patterns indicative
of molecular clock dysfunction, compared to corresponding
nonmalignant tissue [144, 145]. Those few melanoma patients
whose tumor was characterized with high BMAL1T mRNA
expression had prolonged survival, possibly as a result of reduced
key DNA-repair enzyme expressions, increased mutational/neoan-
tigen load, and strong intratumoral T-cell infiltration and activation
[144]. Moreover, the patients with high BMAL1 tumor expression
also achieved significant clinical benefits from immune checkpoint
inhibitors [144, 146]. In 11 primary RCC compared to matched
healthy tissues, the mRNA expression of clock genes PER2,
TIMELESS, and TIPIN was downregulated, whilst that of clock-
controlled gene SERPINE1 was upregulated in the tumor cells
[147]. In contrast, in the microenvironment of these tumors, the
mMRNA expression of clock genes BMAL1, REV-ERBa, PER1, PER2,
and RORA was upregulated, whilst those of CLOCK, CRY1, and
CRY2 declined [148].

The overexpression of PER 2/3, CRY2, and RORa (among other
clock genes) in RCC tissues was correlated with longer OS in
patients with RCC [149-151]. The survival improvement was
associated with the extent of tumor infiltration with T(CD4) and
T(CD8) lymphocytes [151], thus highlighting the important role of
the interactions between the circadian and the immune systems.

NSCLC patients with high expression of TIMELESS or low
expression of RORA, PER1, PER2, or CRY2 had a significantly worse
survival prognosis [152]. TIMELESS and RORA are also significantly
correlated with immune checkpoint and immune infiltration levels
in NSCLC [152]. Clock-related genes were reportedly repressed in
human esophageal squamous cell carcinoma samples [153, 154].
In spite of these alterations, PER2 oscillations still occurred in some
human esophageal cancer cell lines [154] suggesting that the
response to therapy might be enhanced by linking chronotherapy
to PER2 expression pattern as a circadian biomarker of interest for
personalized chronotherapy.

DISCUSSION

Here, we discuss how the circadian system can influence the
efficacy of ICls and how the use of circadian biomarkers can help
optimize ICl-based treatments in cancer patients.

17 of 18 reported retrospective studies that have examined the
influence of ToD administration of ICls have concluded that
predominantly morning or early afternoon infusions significantly
improved PFS and/or OS compared with later ToD infusions. These
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results are consistent with those reported for different vaccines,
whose efficacy was usually enhanced following morning (between
9:00 and 11:00) rather than afternoon between 15:00 and 17:00)
administration [98, 100]. However, several questions remain
unanswered.

When is the optimal circadian rather than daily time of best
efficacy and tolerance of ICls? Despite the consistent finding that
early ToD is more effective compared to late ToD, none of the
studies reported thus far, have addressed this question. Two main
daily cut-off times have been used to differentiate early vs late ToD
groups: 12:00-14:00 and 16:00-16:30. Morning dosing might be
more advantageous compared to afternoon dosing [32]. Only one-
third of the 24-h span has been explored in the 18 studies, thus,
questioning whether optimal ICI timing could be located between
18:00 and 9:00. The number of initial IClI infusions to be
administered in the morning toward improved efficacy needs to
be determined. Thus, four studies highlighted the critical relevance
of early ToD administration among the initial four courses. The half-
life of ICIs ranges from 14 to 21 days. Thus the circulating steady
state is usually reached after 2-4 months [112]. About 8 months are
needed to decrease T-cell PD-1 occupancy by 50% after ICls [113].
The proportion of late ToD courses associated with worse survival
also needs to be specified, as it currently ranges from >20 to 67%.

Besides the circadian control of immune functions, other
possible explanations have been hypothesized to account for
the observed consistency in ICl timing effects.Thus, the ToD of ICl
administration could represent a surrogate of socioeconomic
status or performance status. Also, imbalances in the total number
of ICl administrations between groups of patients treated early or
late in the day could moderate treatment efficacy [17]. However,
improved efficacy of immunotherapy in randomized trials has
been consistently associated with more treatment courses, due to
PFS prolongation. Yet, in order to eliminate potential hidden
biases, randomized clinical trials are needed. Prospective compar-
isons should be made between different times of ICI administra-
tion to fully appraise the dosing time-related differences in ICl
efficacy, which currently appear of the size of a very active
new drug.

A possibly overlooked aspect of these studies is the potential
impact of sleep, tightly linked to CTS function, on ICI efficacy and
optimal ToD administration. Indeed, sleep and immunity are
known to be bidirectionally linked, with relevant impact in disease
response and health promotion [155]. For instance, in breast
cancer patients, aberrant circadian cortisol rhythm was found to
be associated with both sleep disruption and suppressed activity
of NK cells, ultimately concurring to poorer overall survival
[136, 156]. Modern wearable biosensors allow for unintrusive
assessment of circadian and sleep cycles, whose alterations have
also been associated with immune disruption in night workers
[157, 158]. Thus, digital solutions are allegedly going to be
paramount in optimization of ICI ToD administration.

Given both the impact of circadian function on outcomes on
cytotoxic chemotherapy [62], and the potential for non-
pharmacological modulation of ICI efficacy [159, 160], it stands
to reason to harness circadian-based behavioural factors to
maximize benefits from ICls.

The available literature suggests that about one-third of the
patients with advanced or metastatic cancer display circadian
disruption, based upon the suppression or severe dampening of
circadian rhythms in rest-activity, cortisol or melatonin secretions
or body temperature. These rhythms are critical biomarkers of the
circadian coordination system. However, macrophages and other
immune cells are endowed with an autonomous molecular clock
thus can display rhythmic function and proliferation in vitro, in the
absence of endogenous rhythmic signals [161]. Preclinical studies
have highlighted the ability of immunologic rhythms to persist
despite the complete suppression of the rest-activity and body
temperature rhythms [162], whilst altered yet present circadian
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rhythms in circulating lymphocytes were identified both in tumor-
bearing mice with suprachiasmatic nucleus ablation [48], and in
cancer patients with suppressed rest-activity or cortisol rhythms
[139]. These results highlight the need for specific studies aiming
to determine the relations between circadian coordination
biomarkers and immunologic rhythms in patients with various
malignancies whose response to immunotherapy vary according
to dosing time.

Sex-specific differences in the efficacy or tolerability of cancer
chronochemotherapy have been reported, as a result of differences
in circadian rhythms between male and female patients. An
individual patient-level meta-analysis involving data from 345
females and 497 males with metastatic colorectal cancer revealed
that males lived significantly longer on chronomodulated oxaliplatin-
5-fluouracil-leucovorin compared to conventional chemotherapy.
The opposite was observed for women [76]. Experimental and clinical
data support an about 6-h delay in the optimal timing of oxaliplatin,
5-fluorouracil and irinotecan, both in mice and in cancer patients
[163]. Indeed, many circadian rhythms in hormonal secretions, as well
as gene expressions in several tissues display larger amplitudes in
females as compared to males, thus highlighting the relevance of sex
for circadian drug responses [163, 164]. Regarding chronoimmu-
notherapy, four of the 18 studies cited here found a trend toward a
larger reduction of the relative risk of an earlier death through Early
ToD dosing of ICls in women, as compared to men [11, 12, 21, 29].
Such finding is consistent with larger amplitude rhythms reported in
women compared to men [165], although discrepant results have
been published on these topics. Also, no ICI timing effects were
reported for sex in the 14 other studies. Large meta-analyses have
examined whether sex was influential on immunotherapy efficacy
irrespective of timing, with two positive and two negative
conclusions [166-169]. Thus, prospective studies are needed to
establish possible sex-related differences in immunotherapy efficacy,
and to link them to circadian and immunologic biomarkers.

Indeed, the main driving mechanisms for ICI chronoefficacy
relate to the robust circadian control of immune function,
trafficking and ICI responses, that have been shown in experi-
mental models so far. Similar data are expected in cancer patients
in order to account for the dosing time-dependent efficacy of ICls
as well as between-patient variations.

The impact of the time of administration for efficacy and
tolerability of chemotherapy followed a similar circadian pattern in
preclinical models and in cancer patients, resulting in the same
timing corresponding to best efficacy and best tolerability [38, 77].
Regarding immunotherapy, an association between the occurrence
of adverse events and improved prognosis has been suggested
[170, 171]. Consistently with these observations, Karaboué et al.
[11] found significantly more skin reactions in patients who
received most nivolumab infusions in the morning as compared to
afternoon administration. However, morning treatment was both
most effective, and associated with significantly less fatigue. Other
reports regarding possible time-dependencies in ICls adverse
events are inconclusive [12, 21]. Thus, despite time-dependencies
in ICls-related toxicities deserve careful investigations.

Randomized trials and concomitant translational studies are
mandatory for establishing dosing-time dependences of ICl
efficacy and tolerability as well as for identifying circadian
biomarkers toward the personalization of cancer chronoimmu-
notherapy. Indeed, it will be important to take into account
patients’ robustness and timing or disruption of host circadian
rhythms, and sleep disorders, as well as tumor molecular clock
functions and genetic mutations.
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