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BACKGROUND: Advanced epithelial ovarian cancer (EOC) has high recurrence rates due to disseminated initial disease
presentation. Cytotoxic phototherapies, such as photodynamic therapy (PDT) and photoimmunotherapy (PIT, cell-targeted PDT),
have the potential to treat disseminated malignancies due to safe intraperitoneal delivery.
METHODS: We use in vitro measurements of EOC tumour cell and T cell responses to chemotherapy, PDT, and epidermal growth
factor receptor targeted PIT as inputs to a mathematical model of non-linear tumour and immune effector cell interaction. The
model outputs were used to calculate how photoimmunotherapy could be utilised for tumour control.
RESULTS: In vitro measurements of PIT dose responses revealed that although low light doses (<10 J/cm2) lead to limited tumour
cell killing they also increased proliferation of anti-tumour immune effector cells. Model simulations demonstrated that breaking up
a larger light dose into multiple lower dose fractions (vis-à-vis fractionated radiotherapy) could be utilised to effect tumour control
via stimulation of an anti-tumour immune response.
CONCLUSIONS: There is promise for applying fractionated PIT in the setting of EOC. However, recommending specific fractionated
PIT dosimetry and timing will require appropriate model calibration on tumour-immune interaction data in human patients and
subsequent validation of model predictions in prospective clinical trials.
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BACKGROUND
Advanced and recurrent epithelial ovarian cancer (EOC) has poor
outcomes, despite first-line treatments that result in greater than
75% disease remission [1, 2]. This may be due to the fact that
advanced and recurrent EOC typically presents as disseminated
peritoneal disease that may have significant occult micrometas-
tases [1]. Even though immunotherapies have offered hope for
controlling disseminated disease in other settings, immunother-
apy has proven ineffective against EOC in clinical trials [3–7]. For
example, a recent phase III trial combining immune checkpoint
inhibitors and chemotherapy in EOC (JAVELIN Ovarian 200) was
unsuccessful in improving progression free survival or overall
survival [8]. This may have been due to an unfavourable tumour-
immune microenvironment in EOC, which is typically considered
immunologically cold in addition to the immune cytotoxicity of
high-dose intensity chemotherapy.

A potential strategy to treat such disseminated disease is
photodynamic therapy (PDT). PDT is a photochemistry-based
therapeutic modality in which a non-toxic photosensitizer is
locally injected or applied topically and then excited by red-near
infra-red light in the 600–800 nm wavelength range to produce
cytotoxic molecular species known as photodynamic action [9].
The anticancer action of PDT includes immunogenic cell death
[10–17]. Bowel phototoxicity has proven limiting for safe PDT in
the peritoneal cavity [18–20]. Cell-activatable antibody-photosen-
sitizer conjugates, termed photoimmunotherapy (PIT), are selec-
tively taken up by tumour cells to enable microscale tumour
selectivity. EGFR-targeted PIT facilitates safe peritoneal PDT that
spares normal tissue, including immune cells [18]. EGFR is an
important molecule for targeting cancer cells and it is frequently
overexpressed by human ovarian cancers [21, 22] and in many
other carcinomas [23]. Additionally, it has been shown that low-
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irradiance and low-dose, non-ablative PDT promotes an anti-
tumour immune response, whereas ablative dose regimens do not
stimulate the immune system [24]. These observed effects for PDT
may potentially be useful therapeutic approaches for manipulat-
ing the tumour-immune microenvironment and potentiating an
anti-tumour immune response. However, the effects of these
therapies are highly dependent on the design of the treatment
regimen—including the photosensitizer dose, the irradiance (light
dose-rate), and the total light dose—which makes the rational
design of treatment regimens critical [24–27]. The low-dose,
immune stimulating PDT regimens conserve molecular oxygen,
induce inflammatory cytokines and neutrophil infiltration in the
tumour required for and adaptive immune response [15]. The
dose-dependent interactions of PIT with the immune system are
less well-studied and motivate the present work.
To investigate the many possible combinations of treatment

strategies, dosing and sequencing experimentally in both in vitro
and in vivo settings and to decipher the complicated tumour-
immune dynamics may be unfeasible [28]. Additionally, with such
a non-linear dynamical system, simple linear extrapolations are
likely insufficient to predict the immunological consequences of a
cancer therapy that is meant to perturb this system. Mathematical
oncology is an emerging field that aims to model the complex,
heterogeneous, non-linear dynamics that underly cancer devel-
opment and response to therapy [29, 30]. There has been much
work in modelling cancer-immune interactions and how different
cancer therapies perturb these dynamics [31–35]. These
approaches may be useful in identifying how to best use
phototherapy to elicit immune-mediated tumour control.
Here we integrate in vitro measurements of EOC tumour cell

and T cell responses to chemotherapy and phototherapy (both
PDT and PIT) into an ordinary differential equation model for
tumour and immune effector cell interaction. This model is then
used to explore how repeated administration of low light dose for
PIT could be utilised to effect tumour control via cumulative
stimulation of an anti-tumour immune response.

METHODS
Cell lines
The human EOC cell lines NIH:Ovcar3 (Ovcar3) and the NIH:Ovcar5 (Ovcar5)
were obtained from ATCC (HTB-161) and from Fox Chase Cancer Center
(Philadelphia, PA) under a Material Transfer Agreement (MTA), respectively.
Derivatives of Ovcar3 and Ovcar5 cells, mCherry–Ovcar3 and EGFP–Ovcar5,
that stably express mCherry fluorescent protein and EGFP (enhanced
green fluorescent protein), respectively, were created in this study to
monitor 3D spheroid growth and PDT treatment response following a
previously published protocol [36]. The DsRed-expressing mouse T cells
from OT–1 mice (C57BL/6–TgTcra/Tcrb homozygous, 1100 Mjb/J) were a
generous gift from Professor Mei Wu (Wellman Center for Photomedicine,
Massachusetts General Hospital and Harvard Medical School, Boston), and
isolated from splenocytes following a published protocol [37, 38]. The
Jurkat–GFP cell line was purchased from Fisher Scientific. Cultures were
discarded after 28 passages or less and new vials were thawed as needed.
All cell lines used in this study tested negative for Mycoplasma
contamination (MycoAlert mycoplasma detection kit, Lonza). The cell lines
did not undergo authentication after receipt from the vendors or after
isolation from splenocytes.

In vitro measurements of PDT, PIT and chemotherapy
response
For PDT and PIT experiments, EGFP-Ovcar5 human cancer cells and dsRed
expressing OT-1 mouse T cells were co-cultured in 3D using previously
described methods [39]. This is a non-syngeneic model without a cognate
antigen to facilitate specific T cell-mediated cytotoxicity. These were plated
on to black walled, glass bottom 24 well-plates (Greiner Bio-One, 662892)
for both PDT and PIT treatment arms. Conventional PDT used unconju-
gated benzoporphyrin derivative (BPD) given in 1 µM concentrations per
well. PIT used cetuximab conjugated to BPD where concentrations were
measured using BCA protein assay to provide a 1 µM equivalent BPD dose.

Photosensitizer administration was followed by a 90 min (PDT) or 24 h (PIT)
incubation time and a subsequent media refresh. A 690 nm diode laser at
150mW/cm2 irradiance provided light activation of the photosensitizer.
Energy doses were given at 60, 30, 10, 3, 1 and 0 J/cm2 with 3 biological
replicates per group along with monoculture controls of each cell line
(Fig. 1b). Here, a standard irradiance was used to test how PIT affects T cells
at cytotoxic doses versus PDT and chemotherapy also administered at
cytotoxic, lethal doses.
For chemotherapy, mCherry-Ovcar3 human cancer cells and EGFP-Jurkat

human T cells were co-cultured in 3D. Jurkat cells are helper T cells that
express CD4 but do not express CD8. Ovcar3 cells were used in this
experiment to test a second EOC cell line and Jurkat T cells were used
because the OT-T1 cell line was no longer available to us. Cisplatin doses of
300, 100, 30, 10, 3 and 1 µM were administered following the same plate
pattern as the PDT and PIT plates of 3 replicates per dosage.
Ovcar3 and Ovcar5 cells express moderate levels of EGFR (27.9 and 111.1

normalised transcript expression values, nTPM, respectively; The Human
Protein Atlas) compared to A431 (2978 nTPM, very high EGFR expression)
and T47D (3.4 nTPM, low EGFR expression) cell lines.
After treatment each plate was incubated for 3 days and then imaged

with an Operetta CLS high-content analysis system (Perkin Elmer, LIVE
configuration) using LED excitation to collect z-stacks of both fluorescence
channels and brightfield. A custom MATLAB code was used to reduce the
images into a maximum intensity projection to produce a fluorescence-
based histogram then following subtraction of the background signal the
mean fluorescent protein fluorescence of corrected histograms were used
to assess cell viabilities across each treatment modality.

Calibrating dose response curves
Cell survival data for both tumour cells and T cells for each treatment were
fit using least squares regression to the following equation,

S dð Þ ¼ S0 þ S1 � S0
1þ expðmIC50log d � logðIC50ÞÞ (1)

where S dð Þ is the fraction of surviving cells at dose d; S0 is the untreated
control survival fraction as treatment goes to zero; S1 is the survival
fraction as treatment goes to infinity; mIC50 is the slope of the dose
response curve at the IC50 value; and IC50 is the treatment dose at 50% of
the maximum treatment efficacy.

Mathematical model of cancer-immune dynamics
Our analysis is built on an established ordinary differential equation model
of the interaction of tumour cells and immune effector cells, originally
presented by Kuznetsov and colleagues [40]. This model assumes that
when an immune effector cell (E) and a tumour cell (C) interact, then they
form a complex, which can result in either the complex separating, via the
reverse reaction, immune cell exhaustion, or tumour cell death (Fig. 2a).
Additionally, the model assumes logistic tumour growth, a constant influx
of E cells, autocatalytic recruitment of E cells by C-E conjugates in response
to immunogenic cell death, and an exponential clearance of E cells. These
dynamics are represented by a system of coupled ODEs shown in Fig. 2b.
The non-dimensional unitless model parameters were set to the nearly the
same values used in the original presentation of the model (α=1.636,
β=0.002, γ=1, σ=0.118, ρ=0.95, η=20.19, δ=0.374, μ=0.00311) [40]. The
model was solved numerically in MATLAB, using the ODE solver ode45. The
numerical solutions were evaluated with E over the interval of (0, 3.5) × 106

cells at a resolution of 1.2 × 105 cells, C over the interval of (0,450) × 106

cells at a resolution 15.5 × 106 cells, and a time resolution of 30 days per
time step.

Mapping dose response curves in the C-E phase plane
For demonstration purposes, dose response curves were generated in the
phase plane (i.e. the mathematical analysis that plots the velocity of both
time dependent variables against each other, c.f. Fig. 3c) by starting with
initial values of C0= 29 × 106 cells and E0= 4.1 × 106 cells. However, later in
the manuscript we will evaluate treatment response dynamics for all initial
conditions (C0,E0) for which the untreated tumour escapes immune
surveillance. Survival fraction (S) values were calculated for both T and E
between 1 and 60 J/cm2 with a spacing of 1 J/cm2 for PDT (Verteporfin+
light) and PIT (Verteporfin-Cetuximab+ light) and between 1 and 100 μΜ
with a spacing of 1 μM for chemotherapy (cisplatin). These SF values were
applied to the initial C and E values to calculate the post-treatment cell
numbers, which were then mapped onto the phase plane.
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Fig. 1 In vitro system for comparing photodynamic therapy (PDT) and photoimmunotherapy (PIT). Schematic depiction comparing the
mechanisms of PDT (a) and PIT (b). In traditional PDT, unconjugated BPD is taken up indiscriminately by cells, resulting in cytotoxicity
regardless of cell type. In PIT, EGFR-targeting immunoconjugates are selectively taken up by EGFR+ cells, resulting in selective killing of EGFR+
cancer cells. c Experimental timeline depicting treatment and control groups for PDT and PIT studies.
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Simulating fractionated photoimmunotherapy (PIT)
The initial fractionated PIT simulations started with the initial conditions of
C0= 29 × 106 cells and E0= 4.1 × 106 cells. For each treatment schedule,
first a S(d) for the given dose fraction was used to calculate the post-
treatment (C, E) values, which are implemented as instantaneous changes
in C and E numbers because of separation of timescales between the
treatment effects (days-scale) and C-E population-level dynamics (months-
scale). Next, the ODE system was solved forward in time for two simulation
time steps (equivalent to 60 days). At this point, either the (C, E) value at
this time point were set to the new initial conditions and the process was
repeated for the remaining treatment fractions, or if this was the final
treatment fraction in the schedule, then the ODE was solved forward until
the system reached an equilibrium state.
The minimum number of PIT fractions required for tumour control was

calculated for a given dose/fraction value (e.g. 1, 3, 5, or 7 J/cm2). This was
done by simulating fractionated PIT, as described above and testing an
increasing number of fractions until the minimum number yielding tumour

control was found. This analysis was performed for every (C, E) initial
condition to the left of the separatrix.

RESULTS
Tumour-effector dynamics without treatment
The ODE system (Fig. 2b) results in two non-trivial equilibrium
outcomes (1) tumour escape or (2) immune-mediate tumour
control. In the case of tumour escape, immune effector cells are
outgrown by the tumour cells, which grow to their equilibrium
carrying capacity (Fig. 3a). In the case of immune-mediate tumour
control, C and E cells undergo predator-prey oscillations [41, 42]
resulting in an equilibrium state at low C numbers (Fig. 3b). We
can visualise these interactions for all possible initial conditions
(C0, E0) in the C-E phase plane (Fig. 3c), which visualises the two
basins of attraction for the two outcomes described above.

Treatment response evaluation
Chemotherapy resulted in lower T cell survival compared to
tumour cell survival for all doses (Fig. 4a). Consequently, for
chemotherapy to be successful in this simple in vitro model,
treatment must eradicate every last cancer cell and cannot
harness support from the immune system. Similarly, PDT resulted
in lower T cell survival relative to tumour cell survival at higher
doses, but the relative T cell survival fractions were comparable to
the tumour cell survival fractions for lower light doses (Fig. 4b). On
the other hand, PIT showed two distinct dose response regimes:
(1) at low light doses (d ≤ 10 J/cm2) there is no discernible effect
on tumour cells but the number of T cells significantly increased
compared to untreated control; and (2) at high light doses
(d > 10 J/cm2) both tumour cells and T cells experience cytotoxicity
with survival fractions <1 (Fig. 4c). However, even at high doses, T
cell survival fractions are greater than the tumour cell survival
fractions, which is the opposite of what is seen for the other two
treatment modalities.

Simulating impact of treatments on tumour-effector state
We bring together our model and the dose-response data by
mapping the dose responses of the different treatments onto the
tumour-effector phase plane. This mapping demonstrates the
effect of each treatment on the tumour-effector state over the
entire dose range for a given initial set of initial conditions.
Chemotherapy shows large reduction in effector cell number at
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Fig. 2 Mathematical model of tumour-immune effector dynamics.
a Schematic depiction of tumour-immune effector cell interaction
underpinning the model, which assumes that cancer (C) and
immune effector (E) cells reversibly form a complex that can result
in immune cell exhaustion or tumour cell death. b Coupled ODE
system of the complete C-E dynamics, including immune influx,
immune cell recruitment and clearance of immune cells, in addition
to the interactions described above.
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the lowest doses with tumour cell number reduction only
occurring with higher dose (Fig. 5a). In contrast, with PDT we
see comparable reductions in tumour and effector cell numbers
with increasing light dose, with greatest marginal reduction
towards the middle of the dose range (Fig. 5b). Finally for PIT,

there are two distinct behaviours: (1) in the d < 10 J/cm2 regime
effector cell number increases with minimal reduction in tumour
cell number and (2) in comparison to PDT and chemo, there is a
decreased leftward shift (towards low effector cell numbers) as
tumour cell number decreases with increasing dose (Fig. 5c). It
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Fig. 4 Cell survival data for chemotherapy and phototherapy. Dose response curves for tumour cells and T cells for chemotherapy (a),
photodynamic therapy (b) and photoimmunotherapy (b) from n= 3 biological replicates for each treatment and cell type combination. Fits
represent least-squares best fit to Eq. 1. Yellow background indicates regions where survival fraction (SF) < 1, tumour cell or T cell death; blue
background where SF > 1, immune stimulation. All error bars indicate s.e.m. Note that the measurements in (b) and (c) were published
previously [39]. Here, the data were re-analysed and normalised to the response to 1 J/cm2 to identify dose regimes of immune stimulation
and cytotoxicity.
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should be noted that for the specific set of initial conditions
shown here, all simulated treatments resulted in tumour escape
over the entire dose range.

Simulating fractionated photoimmunotherapy
In order to exploit the observed immunostimulatory effect of low-
dose PIT, we simulated the novel approach of delivering a large
total light dose that might otherwise not control a tumour in
smaller dose fractions. The simulations demonstrate that while a
single dose of 15 J/cm2 of PIT will yield an initial drop in tumour
cell number, the tumour will eventually escape due to the
unfavourable tumour-effector dynamics for the post-treatment (C,
E) conditions (Fig. 6a). However, if this same total PIT dose is
delivered in 5 fractions of 3 J/cm2, then the low-dose PIT will
increase effector cell number with each fraction, eventually
crossing the separatrix into a region of the state space that
results in immune-mediate tumour control (Fig. 6b). The inter-
fraction tumour cell number reductions are not a direct result of
the preceding PIT dose, but rather due to the local tumour-
effector dynamics.
There are similar results with a light dose of 60 J/cm2. When this

dose is delivered in 1 fraction of 60 J/cm2, although there is a large
initial drop in the tumour cell number, eventually the tumour

escapes the effector cells (Fig. 6c). When the 60 J/cm2 dose is
delivered in 10 fractions of 6 J/cm2, each fraction results in
increased effector cell number, eventually leading to immune-
mediated tumour control (Fig. 6d).
We tested the minimum number of PIT fractions required to

achieve tumour control (nfx,min) for all (C, E) initial conditions to the
left of the separatrix, across a range of fraction dose sizes. For all
fraction dose sizes, initial conditions close to the separatrix
needed a small nfx,min to achieve tumour control (Fig. 6e). Initial
conditions further from this boundary require larger nfx,min, and
this number increases with increasing fraction dose size, as the
immune stimulation decreases with larger dose (Fig. 4b).

DISCUSSION
We have demonstrated that by leveraging the immunostimulatory
properties of the low-light dose regime of PIT, it may be possible
to elicit immune-mediated tumour control in EOC using multiple
administrations of low-light dose PIT. Here, the 3D co-culture
models do not explicitly include specific T cell-mediated
cytotoxicity through a cognate antigen, however, bystander killing
by T cells is possible in these models and could conceivably
contribute to PIT-mediated cell death. Note that it is conceivable
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that the transfected fluorescent proteins (EGFP and mCherry) used
in these experiments could be exposed to immune cells following
PDT or PIT, and these foreign proteins could help to elicit immune
responses. Our modelling results suggest that even though a
single larger dose of light for PIT will not shift the disease out of
the tumour escape regime, fractionating the same total light dose
into multiple administrations may enable tumour control without
increasing the total light dose. Although repeated administration
of PDT has been tested in pilot trials for glioblastoma [43] and skin
cancer [44–46], to the best of our knowledge there has been no
exploration of fractionated PIT.
It is important to emphasise that the motivation for fractionated

(i.e., intermittent, low dose) PIT here is distinct from prior elegant
research exploring fractionated dose regimens for PDT. Prior
literature has explored fractionation in PDT as a means to improve
efficacy by pausing irradiation to enabling reoxygenation of the
tissue, thereby maximising the consumption of molecular oxygen
and reactive oxygen species during the treatment session [47–55].
Here, in contrast, the focus is on immune stimulation and we do
not model oxygen consumption. Given that low-irradiance,
oxygen-conserving PDT regimens stimulate an adaptive anti-
tumour immune response, future work could investigate similar
dose regimens for PIT to help optimise outcomes building on
elegant models of reactive oxygen species production and tissue
molecular oxygen consumption [56, 57].
These results show promise for applying fractionated PIT in

the setting of advanced and recurrent EOC where the disease is
multifocal and spread throughout the peritoneal cavity and it is
difficult to disentangle tumour from normal tissue. However,
despite experimental data to calibrate treatment response, the
underlying tumour-immune interaction model was calibrated on
a different murine experimental setup and not EOC and immune
cells in the treatment response experiments. Therefore, recom-
mending specific dosimetry and timing for this treatment
strategy will require appropriate model calibration and subse-
quent validation both in vitro and in vivo. Furthermore, in the
presented mathematical model the effect of the immune system
only includes immune effector cells. Future developments of this
research must account for both the influence of and the effect of
PIT on different immune cell types, especially immunosuppres-
sive cell types, which will increase both biological and
mathematical model complexity. It may be possible to do this
by adding a third equation to the ODE system for immune
suppressor cells. However, this will require the collection of
appropriate in vitro data for immune suppressor cells for careful
calibration of the new aspects of this future
mathematical model.
The observation of T cell stimulation following low dose PIT

(increased T cell fluorescent protein signal) above the no
treatment control is a novel observation to the best of our
knowledge. Future studies will test the mechanisms of T cell
stimulation observed here for low dose PIT. There are reports of
low-level light stimulation of cellular proliferation through
endogenous chromophores, also called biomodulation [58] and
activation of cell stress response activity to sub-lethal PDT [59].
Future work will also explore the role of T cell-mediated
cytotoxicity in these in vitro models, and in immunocompetent
in vivo syngeneic models and its interplay with PIT.
As mentioned already, EGFR is a promising target for PIT due to

frequent overexpression in ovarian cancers [21, 22]. Further, EGFR-
targeted PIT using IRDye700-cetuximab conjugates is in phase III
clinical trials for recurrent head and neck cancer patients
(NCT03769506, ASP-1929), with early conditional approval in
Japan. EGFR monotherapy’s limited efficacy, hindered by various
escape mechanisms [60], necessitates combination therapies. Our
study focuses on PIT, which synergises photodynamic sensitisation
with anti-EGFR agents [61–63]. PDT and PIT induce significant cell
death and survival signalling (e.g. EGFR activation, VEGF secretion

[64–66], priming cancer cells for concurrent molecular-targeted
therapy (e.g. cetuximab), resulting in synergistic tumour reduc-
tions [59, 61, 67]. However, it is unlikely that a single antigen
target or therapy will be sufficient to clear advanced and
heterogenous EOC and future work is needed to expand the
biomarker targets for PIT towards enable the targeting of multiple
tumour biomarkers simultaneously depending on patient-specific
tumour expression profiles.
If successful, many scenarios in which immune stimulation from

fractionated PIT may be applied in cancer treatment are
conceivable [68]. This could range from ‘mopping up’ residual
disease post-surgical resection to priming an immunologically
cold tumour for treatment with immune checkpoint inhibitors
[69]. The delivery of light at multiple times for fractionated therapy
will be a challenge for ovarian cancer and other internal
malignancies. It may be possible to overcome this hurdle by
using novel modes of low-irradiance and long-duration light
delivery—e.g. implantable wireless devices [70] or non-invasive
knitted light-emitting fabrics that can be wrapped around the
abdomen [71]. Such an approach would take advantage of the
fact that PIT is amenable to diffuse illumination due to the tumour
selectivity of the photosensitizer delivery.
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