
ARTICLE OPEN

Cellular and Molecular Biology

Quiescent cancer cells induced by high-density cultivation
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BACKGROUND: The metastatic cascade, a multifaceted and highly aggressive process, is the primary cause of mortality. The
survival of quiescent cancer cells in circulatory system during metastasis is crucial, yet our comprehension is constrained by the
absence of universally accepted quiescent cancer models.
METHOD: We developed a quiescent cancer cell model using high-density cultivation. Based on the scRNA-seq analysis, IP-MS,
metabolomics, mouse lung metastasis models, cholesterol assay, PLA and other molecular experiments, we explored the molecular
mechanism. Immunofluorescence, atomic force microscope, FluidFM, and shear stress stimulation were used to analyze the
cytoskeleton and membrane properties contributing to mechanical force resistance.
RESULT:We established a quiescent cancer cell model induced by high-density cultivation. Single-cell RNA sequencing (scRNA-seq)
analysis reveals that CDC25A plays a crucial role in the transition to quiescence, with its expression significantly elevated in the
quiescent state. Depletion of CDC25A leads to an increased proliferative capacity, and reduced metastasis under high-density
conditions. Mechanistically, upregulated CDC25A in quiescent cells enhances cholesterol metabolism via endosome pathways,
leading to cell cycle arrest. This increase in cholesterol reinforces the cytoskeleton, alters membrane properties, and improves
resistance to mechanical forces in circulatory system.
CONCLUSION: CDC25A significantly increased the cholesterol metabolism through endosome pathway in quiescent cancer cells,
leading to the significant changes in cytoskeleton and membrane properties so as to enhance the resistance of mechanical force in
circulatory system, facilitating lung metastasis.

British Journal of Cancer (2024) 131:1591–1604; https://doi.org/10.1038/s41416-024-02861-x

INTRODUCTION
Metastasis, rather than the primary tumor growth, represents the
most lethal outcome of cancer-related deaths [1]. The metastatic
cascade which includes three main stages—local invasion, survival
in the circulatory system, and distal colonization [1, 2]—are closely
associated with the quiescent state. With the proliferation of cancer
cells at the primary site, the crowded and confined environment
induces the epithelial-mesenchymal transition, a quiescent state,
leading to the acquisition of an invasive phenotype and the
detachment from neighboring cell-cell contacts [3–5]. Dissemi-
nated cells in the circulatory system survive by maintaining
quiescence under extensive stress of physical stress [6], chemother-
apy, and other stress [7–9]. These biological processes show that
the quiescent state of cancer cells participates in various metastatic
steps [2, 10–14], and its regulation requires further investigation.

Numerous studies spanning several decades have provided
evidence that the normal cells in the quiescent state can be driven
during high-density cultivation [15, 16]. In contrast to normal cells,
the quiescent cancer cells disseminated from primary solid tumor
overcome contact inhibition. However, the lack of established
models and markers hinders our understanding of the unique
characteristics of quiescent cancer cells and their ability to survive
in the circulatory system under constrained conditions. Further
investigation is required to elucidate the distinct role of quiescent
cancer cells induced by confined environments. Indeed, cancer
cells in the circulatory system are in the quiescent state [17],
indicating that high-density cultivation can empower quiescent
cancer cells to resist environmental stress.
In our study, we induced the quiescent cancer cells using high-

density cultivation to mimic the crowded environment inducing
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disseminated cancer cells. We verified the model through
quiescent characteristics identified in stem cells and other
quiescent cells, including low RNA content, low transcription
due to inactive metabolism [15, 18], and decreased proliferative
markers [19, 20]. Surprisingly, our scRNA-seq analysis revealed
that a significant portion (approximately 60%) of cancer cells
were capable of entering a quiescent state, and we filtered
CDC25A, a member of the dual-specificity phosphatase family
known as cell division cycle-25 (CDC25) [21, 22], role in entering
quiescent state by increasing resistance of mechanical strength in
the circulatory system through upregulating cholesterol levels. In
summary, we established a quiescent model and demonstrated
that whether CDC25A regulates cholesterol levels in quiescent
cancer cells, thereby augmenting their resistance to chemother-
apy and mechanical forces and facilitation of their metastatic
potential.

RESULTS
Establishment of quiescent cell model by high-density
cultivation
To mimic the confined and densely populated conditions inducing
disseminated cancer cells from solid tumors, multiple gradients of
cell density were selected. Building on current methods employed
in various fields identifying quiescent cells [23–27], we verified our
high-density quiescent cancer cell models. Our observations
revealed significant changes in cell morphology (Fig. 1a) and a
decrease in cell size in the 100%+2Days group when compared to
the 30% and 100% density groups, both in HeLa and the normal
cell line MEF cells (Fig. 1a, b). Additionally, the high-density culture
did not induce excessive apoptosis (Supplementary Fig. 1a, b). The
expression of YAP, a critical regulator of the Hippo pathway
[27, 28], decreased as the cultivation density increasing (Fig. 1c).
As previously reported, the Hippo pathway can be activated in
high-density cultivation through cell polarity and junctional
complexes, leading to induction of quiescence [23, 29–31].
Likewise, the levels of G1 phase-related proteins in the cell cycle,
such as pRb and CDK4/6, decreased with increasing density
(Fig. 1d, e). Additionally, the 100%+2Days group exhibited a
noticeable decline in the cytoplasmic-to-nuclear area ratio of cells
(Fig. 1f), and in the proliferative signal (5-ethynyl-2’-deoxyuridine
(EdU) and Ki-67 antibody) compared with 50% density group
(Fig. 1g, h). In addition, the RNA content assay showed that the
RNA content in the 100%+2Days group was lower than that in the
sparse groups following Pyronin Y staining (Fig. 1i). These results
are consistent with the quiescent cells characteristics previously
described, indicating that a substantial proportion of cancer cells
in the high-density model entered the quiescent state. Therefore,
the quiescent model induced by high-density cultivation was
deemed suitable for further investigation.

scRNA-seq analysis of the quiescent model reveals the
regulation of quiescent entrance by CDC25A
To dissect quiescent cells under conditions of high heterogeneity in
cancer cells, we clustered them and analyzed the highly differential
genes induced by high-density cultivation at single-cell resolution.
We obtained 18,386 high-quality HeLa cells, including 8312 cells
from the HeLa 50% group and 10,074 cells from the HeLa 100%
+2Days group. We then performed unsupervised clustering (Fig. 1j),
distinguishing six clusters in different phases of cell cycle based on
cell-cycle markers [32, 33]. The G1 phase compartment was
bifurcated based on the G1 phase checkpoint, known as the
“restriction point (R point) “, determining the trajectory of entrance
into the quiescent state or irreversibly proceed with DNA replication
and cell division (referred to as cluster “G1 early” or “G1 late”) (Fig. 1j)
[34, 35]. The proportion of quiescent cells (“cluster G0”) is
prominently increased as the major group after high-density
culturing (Fig. 1k). After pseudotime inference analysis of quiescent

induction, two trajectories of cell cycle were revealed, rooted by “G1
early”, of which “G1 early” enter into “G0” phase or irreversibly
proceed with following cell cycle phases (Fig. 1l). To explore the
molecular mechanisms of entering into quiescent state from cell
cycle, the highly differential genes of cluster “G1 early” specifically
enriched in “cell cycle” pathway (Fig. 2a). Then, the genes related to
cell-cycle phase transition, enriched in “cell cycle” were analyzed
(Fig. 2b). Notably, we observed that CDC25A was involved in most
pathways of cell-cycle phase transition (Fig. 2c). Accordingly,
CDC25A expression was highly induced in “G1 early” cluster (Fig. 2d).
These findings suggested that a large proportion of cells could be
induced into the quiescent state by high-density cultivation, with
CDC25A potentially playing an important role in entering the
quiescent state.

CDC25A role in the determination of cellular entry into
quiescent state
We next measured CDC25A expression increased at both protein
(Fig. 2e, g) and transcriptional levels (Fig. 2f) in quiescent model,
compared with the proliferative cell groups (30% and 50%).
Previous research reported CDC25A role in the cell-cycle transition
from G2 to M phase, thus, we examined the expression level of
CDC25A throughout consecutive cell cycles until in the quiescent
state. Our findings revealed oscillations of CDC25A expression
during cell cycle transitions (Fig. 2c, d, h); however, a sustained
high level was observed during prolonged high-density cultivation
(after 100%+ 24 h, Fig. 2h). These results suggest that CDC25A
might plays a crucial role in the cell quiescent state.
To investigate the function of CDC25A in the quiescent state,

we knocked out CDC25A in HeLa cell line using CRISPR/Cas9
(Fig. 2i). The proliferative capacity and RNA content of the
CDC25A-sgRNA 100%+2Days group was greater than that of the
CDC25A-WT cells (Fig. 2j-l). Together, the integrative analysis
further supported the hypothesis that CDC25A played a crucial
role in inducing the quiescent state. To validate the role of
CDC25A, we established another quiescent model using starvation
treatments and assessed several quiescent characteristics. Simi-
larly, the expression levels of p-Rb and CDK4/6 decreased after
72 h and 96 h of starvation (Supplementary Fig. 2a, b). The cell size
(Supplementary Fig. 2c) and proliferative capacity (Supplementary
Fig. 2d, e) also decreased. Consequently, a significant number of
cells entered the quiescent state following starvation. Consistent
with the high-density model, we also observed an increase in
CDC25A expression (Supplementary Fig. 2f), further confirming
the function of CDC25A in quiescent state.

CDC25A promotion of the malignant progression in quiescent
tumor cells
In order to ascertain the oncogenic role of CDC25A, we conducted a
survival analysis using the GEPIA database. The analysis revealed a
statistically significant decrease in disease free survival (DFS) among
individuals in the high-CDC25A group (log rank p= 0). Furthermore,
CDC25A upregulation has been consistently associated with
unfavorable prognoses across various cancer types [36, 37]. Subse-
quently, we assessed the malignant characteristics of the CDC25A-
sgRNA 100%+2Days and CDC25A-WT 100%+2Days group, both
in vitro and in vivo. We observed that the migratory ability of
CDC25A-sgRNA cells was weaker than that of CDC25A-WT cells in the
transwell system (Fig. 3a). Furthermore, the colony formation assay
revealed a decrease in the capacity for colony formation and
proliferation following CDC25A downregulation (Fig. 3b), consistent
with the results of sphere formation assay (Fig. 3c). Additionally,
CDC25A depletion inhibited the growth of xenografts (Fig. 3d) and
the capacity of lung metastasis (Fig. 3e) in BALB/c-nu mice. Notably,
the proliferative ability was enhanced following the deletion of
CDC25A (Fig. 2k, l), thereby excluding the influence of the cell-cycle-
promoting function of CDC25A on xenografts and lung metastasis
(Fig. 3d, e). The quiescent CDC25A-WT cells injected into circulatory
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system through tail vein could be exposed to mechanical force
stress directly in circulatory system, revealing a higher survival rate
and a greater potential for lung metastasis compared with CDC25A-
sgRNA cells. In addition, Circulating Tumor Cells (CTCs) isolated from
metastatic pancreatic ductal adenocarcinoma (PDAC) patients
showed significantly increased CDC25A expression compared to
untreated localized PDAC patients (n= 17) (Fig. 3f), suggesting that
upregulated CDC25A in CTCs may promote tumor metastasis
in vivo. Collectively, it is suggested that the additional function of
CDC25A in the quiescent state can contribute to the malignant
progression by enhancing the resistance of mechanical force in the
circulatory system.

Up-regulation of cholesterol metabolism by CDC25A in
quiescent state
To investigate the molecular regulation of CDC25A during the
quiescent state, we used IP-MS to identify molecules interacting
with CDC25A. We found that many metabolic pathways were
enriched in quiescent state regulated by CDC25A, which is
different from the quiescent stem cells with low metabolism
and classical function of CDC25A (Fig. 4a, red). Given the
importance of lipid metabolism in malignant progression and
limited research in quiescent cancer cells, we conducted experi-
ments to explore phenotypic differences in lipid metabolism,
including non-esterified free fatty acid, triglyceride, and total
cholesterol assays (Supplementary Fig. 3a, b). However, only the
total cholesterol level in the CDC25A-WT HeLa 100%+2Days group
was consistently higher than those in the HeLa 50% group and
CDC25A-sgRNA HeLa 100%+2Days group (Fig. 4b, d). Similarly, the
cholesterol level in the MEF 100%+2Days group was significantly
higher than proliferative groups (Supplementary Fig. 3c). The
cholesterol levels in the medium are contrary, (Fig. 4c), suggesting
cellular cholesterol levels and the capacity of absorbing choles-
terol in the quiescent state was elevated compared to the
proliferative state. For rescue, we added 200 µM cholesterol in the
medium with no extra apoptosis (Supplementary Fig. 3d), the
intracellular cholesterol level of the HeLa CDC25A-WT 50% group
and HeLa CDC25A-sgRNA 100%+2Days group prominently
increased (Fig. 4d), and the proliferation of the HeLa CDC25A-WT
50% group significantly decreased, rather than the CDC25A-
sgRNA 50% group (Fig. 4e). The higher proliferative rate of

CDC25A-sgRNA cells (Fig. 2k, l) requires cholesterol for membrane
biogenesis during mitosis [38, 39]. These results suggest that
CDC25A might play a role in regulating the homeostasis and
transportation of cholesterol in the quiescent state.
Cholesterol contributes substantially to the proliferation,

migration, and invasion of cancer [40], existence as free
cholesterol(FC) mainly at the plasma membrane impacting the
biophysical properties and cholesteryl ester(CE) stored in lipid
droplets which can timely converted [40–43]. Therefore, we
measured the intracellular levels of FC and CE, respectively. The
total FC of the HeLa CDC25A-WT 100%+2Days group was
significantly higher than that of the HeLa CDC25A-WT 50% group,
but no obvious changes were observed compared with the HeLa
CDC25A-sgRNA 100%+2Days group (Fig. 4f). However, after high-
density cultivation, FC on the plasma membrane was richer,
especially at the cell-cell junction and contact edge (Fig. 4g, white
arrows) and obviously decreased after CDC25A deficient (Fig. 4g).
Furthermore, most of the detected CE in the HeLa CDC25A-WT
100%+2Days group were higher than those in the HeLa CDC25A-
sgRNA 100%+2Days group (Fig. 4i); however, there was no
obvious difference between 50% groups (Fig. 4h). Hence, our data
suggested that in the quiescent state, CDC25A could upregulate
both FC and CE but was more important in the regulation of free
cholesterol on the membrane.

Elevated cholesterol in quiescent cells enhances mechanical
resistance and malignant survival
In order to investigate the meaning of enhanced cholesterol in
quiescent cells for lung metastasis, we noticed that mechanical
force emerged as a significant stressor in high-density cultivation
model and metastasis in circulatory system. The tremendous
changes of cell shape and resistance of shear stress in circulatory
system necessitated the coordination of cell membrane and
cytoskeletal changes. Next, we explored the contribution of
membrane cholesterol increased by CDC25A to cell membrane
and cytoskeletal changes, thereby enhance resistance to mechan-
ical force from crowded environment and circulatory system.
The cytoskeleton was significantly stronger in the HeLa CDC25A-

WT 100%+2Days group compared to the proliferative state and
CDC25A-sgRNA cells, both at the membrane and in the cytoplasm
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(Fig. 5a). Importantly, the cytoskeleton was significantly decreased
after treatment with MβCD, a cholesterol-depleting reagent
(Supplementary Fig. 4a and Fig. 5b). Furthermore, the proliferative
capacity was significantly increased by treatment with CK-869, a
cytoskeleton inhibitor, in the HeLa CDC25A-WT 100%+2Days

group (Fig. 5c). Together, these data demonstrate that cholesterol
upregulated by CDC25A reinforces the cytoskeleton in the
quiescent state.
To explore the functional link between upregulated cholesterol

and membrane properties, we first examined membrane rigidity
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using atomic force microscopy (AFM) [44]. The membrane rigidity
of the HeLa CDC25A-WT 100%+2Days group was significantly
lower than that of the CDC25A-WT 50% and CDC25A-sgRNA 100%
+2Days groups (Fig. 5d). The addition of extra cholesterol in the
medium (Supplementary Fig. 4a), significantly decreased mem-
brane rigidity in the HeLa CDC25A-WT 50% group (Fig. 5f). The
reduction in membrane rigidity due to the additional cholesterol
in quiescent state was nullified in the absence of CDC25A (Fig. 5e),
and was also largely reversed by the cytoskeleton inhibitor CK-869
(Fig. 5f). Moreover, we detected the expression of MYH9, encoding
the actomyosin cortex under the cell membrane as a determinant
of the membrane rigidity [44, 45], was reduced as the cell density
increased (Supplementary Fig. 4b, c), and conversely, MYH9
expression became stronger after treatment with MβCD (Supple-
mentary Fig. 4c, d). Similarly, excess cholesterol inhibited the
expression of MYH9 (Supplementary Fig. 4e), indicating mem-
brane rigidity reduction in quiescent state due to high cholesterol
levels. Besides, cholesterol emerged as a key element of
membrane fluidity. Thus we examined the fluidity of membrane
by 1-[4 (trimethylamino) phenyl]-6-phenyl-1,3,5-hexatriene (TMA-
DPH) [46], which was significantly higher in quiescent state(-
Fig. 5g). Altogether, the up-regulated cholesterol by CDC25A
decrease the rigidity and increase the fluidity of membrane in
quiescent state.
Next, we explored the role of cholesterol in the shear stress

resistance of the circulatory system. Firstly, previous studies have
observed that circulating tumor cells are also multicellular
clusters and result in greater capacity of survival in the patient’s
circulatory system and chemotherapy evasion [17, 47]. Thus, we
measured the adhesion force between living single cells using
fluidic force microscopy (FluidFM) and found that the adhesion
force in quiescent state was significantly stronger than in the
proliferative state, and after cholesterol rescue, the intercellular
adhesion force of proliferative state was increased to levels
nearly equivalent to those in the quiescent state (Fig. 5h).
Secondly, to directly confirm the shear stress resistance, we
applied fluid shear stress into floating cells mimicking the
circulatory system. After floating, the cells in the 100%+2Days
group remained quiescence for about extra 6-8 h without
obvious proliferation (Supplementary Fig. 4f, g). Under fluid
shear stress, the percentage of dead and apoptotic cells in the
CDC25A-WT 100%+2Days group was obviously lower than that
in the CDC25A-WT 50% group (Fig. 5i). The percentage of dead
and apoptotic cells was tremendously increased in CDC25A-
sgRNA HeLa cell lines (Fig. 5i). Following MβCD treatment, the
percentage of dead and apoptotic cells in the CDC25A-WT 100%
+2Days group significantly increased (Fig. 5j). These findings
confirm that CDC25A-induced cholesterol elevation enhances
resistance to shear stress, supporting the survivability and
metastatic potential of the malignant process.
In addition, chemotherapy resistance may be influenced by the

changed membrane properties. We treated the cell with paclitaxel,
a microtubule-stabilizing agent inducing apoptosis [48], and HeLa
CDC25A-WT 100%+2Days group exhibited stronger chemoresis-
tance compared to HeLa CDC25A-sgRNA cells (Supplementary
Fig. 4h). To better understand the relationship between the up-

regulated cholesterol and chemotherapy resistance, we treated
the cells with a low concentration of paclitaxel for 2 months to
enhance the chemoresistance (Supplementary Fig. 4i). The
chemoresistance was prominently decreased after incubation
with MβCD (Supplementary Fig. 4i). Thus, chemotherapy resis-
tance is also promoted by the accumulation of cholesterol due to
increased CDC25A in quiescent cells. Along this line, we observed
the expression of the metastatic marker N-cadherin in quiescent
cells was higher than that in proliferative cells, and decreased after
cholesterol depletion (Fig. 5k). In summary, the upregulation of
cholesterol by CDC25A in quiescent state may reinforce the
cytoskeleton and adhesion force of cells, while softening the
membrane to resist the mechanical force and chemotherapy,
thereby promoting the metastasis.

Correlation Annexin A1 with CDC25A to maintain cholesterol
homeostasis by regulating the endosome pathway in
quiescent state
Next, we sought to elucidate the molecular mechanisms under-
lying the interaction between CDC25A and cholesterol on the
membrane to enhance the mechanical resistance. We identified
differentially abundant proteins correlated with CDC25A through
IP-MS by comparing the HeLa 100%+2Days group with the HeLa
50% group. Consequently, Annexin A1 was identified for its
prominent expression in the HeLa 100%+2Days group (Fig. 6a).
KEGG enrichment analysis of the highly expressed proteins in the
HeLa 100%+2Days group correlated with CDC25A and were
mainly enriched in metabolic pathways(green), cell cycle block-
ing(orange) and mechanical force regulation(blue) (Supplemen-
tary Fig. 5a), indicating the regulation and function of cholesterol
in quiescent state.
Additionally, another member of the Annexins family-Annexin

A2 was also detected through IP-MS, both the gene transcrip-
tional (Fig. 6b) and protein level (Fig. 6c) of Annexin A1 and A2
were significantly increased in HeLa CDC25A-WT cells as cell
density increased, and conversely, decreased in HeLa CDC25A-
sgRNA groups, suggesting that CDC25A induced the expression
of Annexin A1 and A2. Notably, we validated the correlation
between Annexin A1 and CDC25A (Supplementary Fig. 5b), and
despite the enhanced expression, the correlation declined in the
HeLa 100%+2Days group (Fig. 6d). Further, the expression of
Annexins was induced in the presence of CDC25A with extra
cholesterol treatment (Fig. 6e) and decreased with cholesterol
reduction by MβCD treatments (Fig. 6f). Moreover, in the ANXA1
knockdown cell line (Supplementary Fig. 5c), total cholesterol
was declined in the HeLa CDC25A-WT 100%+2Days group
(Fig. 6g), as did the membrane cholesterol (Fig. 6h), however,
total cholesterol did not exhibit obvious changes when CDC25A
was also deficient. These results indicate that Annexin A1,
induced by CDC25A but not in combination, plays a vital role
in upregulating cholesterol metabolism and maintaining
homeostasis.
We next explored the regulation of the Annexins and

cholesterol metabolism. As previously reported, Annexins are
associated with a membrane structure in endocytic pathways,
which is a cholesterol-sensitive process [49]. Cholesterol promotes

Fig. 2 CDC25A plays a crucial role in entrance of cell quiescent state screened out by scRNA-seq analysis. a Gene expression of “cell cycle”
pathways adjusted p-value of 0.02, enriched by KEGG in “G1 early”cluster. b Pathways related to cell cycle phases transition enriched by
GO_BP analysis. c, UpSet plot of pathways in b. d The pattern of CDC25A expression in all clusters of single-cell UMAP plots. e Western Blot
analysis of CDC25A expression in different cell densities. f RT-qPCR analysis of CDC25A expression in different cell densities. *p < 0.05,
**p < 0.01. g Immunofluorescence analysis of CDC25A in different densities of tumor cells. h Western Blot analysis of CDC25A expression and
cell-cycle-related markers after release from 2mM double thymidine blocking cell cycle and releasing into mitosis. The cell density reached
approximately 100% at 50 h after release. Red arrow: Time of release corresponding to the density reached at that point. i Western Blot
analysis of the HeLa CDC25A-sgRNA cell line (knocked out CDC25A) after transfecting CDC25A sgRNA. j, RNA content assay by flow cytometry.
Quantification by the mean fluorescent intensity (MFI). *p < 0.05. k Flow cytometry plots of proliferative (EdU positive) cells. *p < 0.05,
**p < 0.01. l, Flow cytometry plots of proliferative (Ki-67 positive) cells. *p < 0.05.
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the phosphorylation of Annexins association with endosome
membranes and can be transferred through directly binding.
Intriguingly, CDC25A is a dual-specificity phosphatase, and the
endocytosis pathway has been enriched by KEGG (Supplementary
Fig. 5a). Thus, we hypothesized that the reduced interaction
between CDC25A and Annexins (Fig. 6d) in the HeLa 100%+2Days

group enhanced the phosphorylation of Annexin A1 and A2 to
facilitate transferring membrane cholesterol through endocytic
pathways. To test this hypothesis, we performed a phosphoryla-
tion site assay using IP-MS. No phosphorylation sites of Annexin
A1 and A2 were detected after immunoprecipitation with CDC25A,
although they were present in the total Annexin A1 and A2.
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Consistently, the phosphorylation sites increased in the 100%
+2Days group, where the interaction between Annexins and
CDC25A was diminished (Fig. 6i). Moreover, the levels of
endosome and MVB-related proteins (EEA1, Rab7A, and CD73)

were altered due to CDC25A and ANXA1 deficiency (Fig. 6j, k).
Evidently, membrane cholesterol is regulated by the phosphoryla-
tion of Annexins through the endosome pathway dependent on
CDC25A.
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The lipid changes in the quiescent state are related to the cell
membrane properties
To further elucidate the function of increased cholesterol in
quiescent cells, we performed an untargeted metabolomic assay

and lipidomic assay using HPLC-MS/MS to assess the global
metabolic and lipid landscape.
Compared with proliferative cells, the up-regulated metabolites

in quiescent cells were predominantly rich in some energy
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metabolism (Supplementary Fig. 6a). As anaerobic glycolysis and
aerobic mitochondrial respiration were the two main ways of
supplying cellular energy, we assessed the changes in the
extracellular media acidification rate (ECAR) and oxygen con-
sumption rate (OCR), between the proliferative and quiescent
groups. We consistently observed an increase in glycolysis in the
HeLa CDC25A-WT 100%+2Days group and starvation for 3 days
(Supplementary Fig. 6b, c). The capacity for glucose uptake,
accumulation of lactic acid in HeLa CDC25A-WT 100%+2Days
group (Supplementary Fig. 6d, e) and the expression of pAMPK
were elevated (Supplementary Fig. 6f). In addition, we performed
an OCR assay and found that the HeLa CDC25A-WT 100%+2Days
group and starvation treatment was lower (Supplementary
Fig. 6g, h). Similarly, the activity of the pyruvate dehydrogenase
complex (PDH) decreased (Supplementary Fig. 6i, j). These results
demonstrate the energy production and survival in quiescent cells
could depend on glycolysis rather than oxidative phosphorylation
within the crowded and nutrient-starvation environments.
According to the untargeted lipidomic analysis, we observed that

the significantly up-regulated lipids in the HeLa CDC25A-WT 100%
+2Days group were mainly related to the structure and fluidity of
the plasma membrane, cell adhesion, substance transport, and
signal transduction (Supplementary Fig. 6k). These data demon-
strate that the metabolism of quiescent state is characterized by
elevated glycolysis but reduced oxidative phosphorylation. This
metabolic profile, adaptive to the less active state, significantly
differs from the proliferative state. These observations prompt us to
investigate the biological significance of lipid changes related to the
cell membrane properties in the quiescent state.

Metabolism regulated by CDC25A in quiescent state is not
related to the energy supply
In order to further understand the metabolic regulation of
quiescent cells by CDC25A, we also tested the ECAR and OCR of
HeLa CDC25A-sgRNA cells at the same time. No obvious change in
the ECAR of the HeLa CDC25A-sgRNA 50% group compared to that
of the CDC25A-WT 50% group was observed. However, the
glycolytic capacity was decreased and OCR was increased in the
HeLa CDC25A-sgRNA 100%+2Days group compared with CDC25A-
WT counterpart (Supplementary Fig. 7a, b), in consistent with the
stronger proliferation of the HeLa CDC25A-sgRNA cell line
(Fig. 2j–l). As for energy, the total ATP content was significantly
decreased in the HeLa CDC25A-sgRNA 50% group and HeLa 100%
+2Days groups compared with CDC25A-WT counterpart (Supple-
mentary Fig. 7c). These carbohydrate metabolism and energy
changes excluded the possibility that the cholesterol regulated by
CDC25A was involved in the energy supply in the quiescent state.
Further, we integrated untargeted metabolomics and lipidomic
analysis of the difference between the CDC25A-WT and CDC25A-
sgRNA groups. Metabolites that were significantly decreased in
the CDC25A-sgRNA group were mainly enriched in pathways
related to cholesterol, such as nicotinamide metabolism (Supple-
mentary Fig. 7d, red point). And the main increased proportion of
changed lipids in the 100%+2Days groups were related to cell

membrane function, cell shape, metabolism and so on, compared
with the 50% groups by lipidomic assay (Supplementary Fig. 7e, f).
The metabolic landscape, integrated with the cholesterol assay

(Fig. 4) and cellular morphology changes (Fig. 1a, b), suggested
that the CDC25A-induced cholesterol metabolism increased was
not related to the energy supply, but to physical properties of
membrane changes.

DISCUSSION
Quiescence is a reversibly and non-proliferatively poised state
orchestrated by precisely intrinsic and extrinsic mechanisms
[50, 51]. It encompasses various fundamental physiological
processes, including cancer stem cell maintenance, the differ-
entiation of nerve cells [33], oocyte maturation [52], and the
creation of immune resistance niches [15, 53, 54]. Regrettably, due
to the absence of well-defined models and markers for quiescent
cells, the current understanding of these cells and their involve-
ment in metastatic cascades remains limited. In this study, we
have established a high-density cultivation quiescent model to
mimic the crowded conditions experienced by disseminated
cancer cells originating from solid tumors. Our findings provide
mechanistic insights into quiescence and malignant progression,
enlightening us a new perspective and clinical translational target
for metastasis and chemotherapy resistance.
Accordingly, the lipidomic analyses suggest that phospholipid

and sphingolipid in the quiescent state also participating in
adapting to various environments [55–58]. The non-classical
function of CDC25A increasing cholesterol also have other signal
pathways, not only the Annexins family, and every phosphorylation
site of Annexins, related to the interaction with CDC25A, still have
exploration potential. As for mechanical force delivery, the
cytoskeleton linking to the nucleus through the nucleoskeleton
and cytoskeleton (LINC) complex could regulate nuclear function
[59], acting as a potential sensor in response to spatial constraints
and regulator of the quiescent. Importantly, the scRNA-seq analysis
revealed that a significant portion of cancer cells were capable of
entering a quiescent state, different from the previous study
identified only a small fraction of quiescent cells such as cancer
stem cells, disseminated cells and drug tolerant persister cells. These
findings suggest that cancer cells possess remarkable plasticity to
adapt and withstand survival pressures in crowded environments in
quiescence state, and CDC25A is the potential marker of quiescent
state. From a clinical perspective, targeting CDC25A-regulated
cholesterol may represent a promising therapeutic approach for
addressing circulatory tumor cell dissemination. In future, we can
integrate spatial transcriptomics to enhance the diagnostic
sensitivity and accuracy of pre-metastasis and metastasis-stages.

METHOD DETAILS
Western blot
The indicated cells were lysed by RIPA lysis buffer (Beyotime, #
P0013B) on ice for 30 min. After centrifugation at 12000 rpm for

Fig. 5 Elevated cholesterol in quiescent cells enhances mechanical resistance and malignant survival. Cytoskeleton on membrane and in
plasm were stained by phalloidin in a, and with 2mM MβCD treatment for 16 h in b, Quantification of the fluorescent intensity of phalloidin
was normalized by area. **p < 0.01, ***p < 0.001, ****p < 0.0001. c Flow cytometry plots of proliferative (EdU positive) cells cultured with
additional 200 μM CK-869 for 16 h, in different cell densities. **p < 0.01, NS no significance. Rigidity detection of cell membrane expressed as
the elastic modulus by AFM in d, cells cultured with additional 200 μM cholesterol in e, mix of 200 μM cholesterol and CK-869 in f, *p < 0.05,
***p < 0.001, ****p < 0.0001. g Cell membrane fluidity assay with TMA-DPH. *p < 0.05. h Cell-cell adhesion force detection by FluidFM cultured
with additional 200 μM cholesterol or CK-869. *p < 0.05, **p < 0.01. i Flow cytometry plots of apoptosis assay after shear stress treatment (0 and
20 Dyne/cm2) of suspended HeLa CDC25A-WT cells and HeLa CDC25A-sgRNA cells in different cell densities. 100%+2Days load after 2 h: shear
stress was applied on the suspended 100%+2Days cells after 2 h from digestion. *p < 0.05, NS: no significance. j Assay like i, cultured with
additional 2 mM MβCD incubation for 16 h. *p < 0.05, NS no significance. k Immunofluorescence analysis of N-cadherin on membrane,
cultured with extra 2mM MβCD for 16 h. Quantification of the fluorescent intensity was normalized by membrane area. *p < 0.05, **p < 0.01.
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15min at 4 °C, the supernatant was collected and the protein
concentration was quantified by BCA assay (Beyotime, #P0011).
30 μg proteins were separated by SDS-PAGE and transferred onto
polyvinylidene fluoride. The membranes were incubated with anti-

CDK4 antibody (Cell Signaling Technology,#12790), anti-pRb
antibody (Cell Signaling Technology, #8516),anti-CDK6 antibody
(Cell Signaling Technology, #13331), anti-β-actin antibody (pro-
teintech, #81115-1-RR), anti-CDC25A antibody (proteintech,
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#55031-1-AP), anti-cas9 antibody (Abclonal, A23005), anti-m-TOR
antibody (Cell Signaling Technology, #5536), anti-Phospho-AMPKα
(Cell Signaling Technology, #2535),anti-Annexin A1 antibody (Cell
Signaling Technology, #32934), Annexin A2 antibody (proteintech,
#66035-1-Ig), anti-EEA1 antibody (abcam, #ab109110), anti-Rab7
antibody (Biotechnology, # 55469-1-AP), or anti-MYH9
antibody(abcam,#ab138498).

Real-time quantitative PCR (RT-qPCR)
Total RNAs were isolated from the cells or mouse tissues using a TRIzol
reagent. The cDNA was synthesized from 2 µg of total RNA using the
PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, #6210A) and
subjected to RT-qPCR with TB Green® Premix Ex Taq™ (Tli RNaseH Plus)
Kit (Takara, #RR420A). Primary sequence: CDC25A: F-TTCCTCTTTTTAC
ACCCCAGTCA, R-TCGGTTGTCAAGGTTTGTAGTTC; β-actin: F-CATGTACG
TTGCTATCCAGGC, R-CTCCTTAATGTCACGCACGAT; Annexin A1: F-CT
AAGCGAAACAATGCACAGC, R-CCTCCTCAAGGTGACCTGTAA; Annexin
A2: F-GAGCGGGATGCTTTGAACATT, R-TAGGCGAAGGCAATATCCTGT.
The relative expression of the target genes was normalized to β-
actin mRNA.

Spheroid formation
HeLa and HeLa CDC25A-sgRNA cell line were transfected with U6-
MCS-Ubiquitin-Cherry-IRES-Blasticidin lentivirus, seeded into Corn-
ing® 96-well Spheroid Microplates (#4520, 150 cells/well). After
2 weeks incubation with 1% methylcellulose completed DMEM,
the images were captured by Cell Voyager CV800(20x Water,
YOKOGAWA, Japan).

Fluidic force microscopy (FluidFM) Assay
The adhesion force between living single cells was detected using
fluidic force microscopy (FluidFM, OMNIUM, Quantum Design
China). A FluidFM system composed of force-controlled cantile-
vers with an incorporated microfluidic channel and connected to a
digital pressure controller using the EasyScan2 software. A 4 μM
micropipette probe with microfluidic channels (Cytosurge AG,
Swizterland, #14363) was used, and the nominal spring constant
was 0.3 N/m. The cells were seeded in a 12 well plate (Costar,
#3513) and co-incubated with the another just digested cell at
37 °C for 15 min. The medium was gently removed, and the non-
adherent cells were washed with PBS 2-3 times. The just adherent
cells were absorbed by the micropipette probe, and the adherent
force between single cells was detected. Some parameter settings
were based on previously published studies [60]. All groups were
measured at 37 °C within 1.5 h.

Cell membrane fluidity by TMA-DPH
Membranes could be labeled with TMA-DPH (1-(4-trimethylam-
moniumphenyl)-6- phenyl-1,3,5-hexatriene p-toluenesulphonate)
according to BBcellProbe® TMA-DPH Kit (Bestbio BB-48118). Dilute
the TMA-DPH probe 1000 times with diluent to prepare the TMA-
DPH staining working solution. Digested and resuspended cells
with staining solution and incubated at 37 °C for 15-30 min.
Washed cells once with PBS and resuspended cells into black

96-plate (105 cells/100ul/well). The change of fluorescence
polarization was detected by microplate reader.

Cell exposure to shear stress
HeLa CDC25A-WT and HeLa CDC25A-sgRNA cells were digested by
0.5% trypsin and resuspend with 2 ml completed DMEM,
transferred to a new 6-cm Corning plate. The plate was placed
in a cone-plate shearing system immediately (unless otherwise
specified) and the cells will be subjected to shear stress during the
cone spinning. The shear stress was set to 20 dyn/cm2 [61].
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