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Loss of ARID1A accelerates prostate tumourigenesis with a
proliferative collagen-poor phenotype through co-operation
with AP1 subunit cFos
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BACKGROUND: Prostate cancer (PC) is the commonest male visceral cancer, and second leading cause of cancer mortality in men
in the Western world.
METHODS: Using a forward-mutagenesis Sleeping Beauty (SB) transposon-based screen in a Probasin Cre-Recombinase (Pb-Cre)
Pten-deficient mouse model of PC, we identified Arid1a loss as a driver in the development of metastatic disease.
RESULTS: The insertion of transposon in the Arid1a gene resulted in a 60% reduction of Arid1a expression, and reduced tumour
free survival (SB:Ptenfl/fl Arid1aINT median 226 days vs SB:Ptenfl/fl Arid1aWT 293 days, p= 0.02),with elevated rates of metastasis
(SB:Ptenfl/fl Arid1aINT 75% lung metastasis rate vs 17% SB:Ptenfl/fl Arid1aWT, p < 0.001). We further generated a Pb-Cre Pten- and Arid1a-
deficient mouse model, in which loss of Arid1a demonstrated a profound acceleration in tumorigenesis in Ptenfl/fl mice compared to
Pten loss alone (Pb-Cre Ptenfl/flArid1a+/+ median survival of 267 days vs Pb-Cre Ptenfl/fl Arid1afl/fl 103 days, p < 0.0001).
CONCLUSION: Our data revealed homozygous Arid1a loss is required to dramatically accelerate prostate tumourigenesis. Analysis
of RNA and ChIP -Sequencing data suggests Arid1a loss enhanced the function of AP-1 subunit cFos. In clinical PC cohort, ARID1A
and cFos levels stratified an aggressive subset of PC with a poor survival outcome with a median of only 30 months.
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BACKGROUND
Prostate cancer (PC) is the most common cancer in men and the
second most common cause of cancer related deaths in the
Western world [1]. Premature deaths from PC are a result of
metastatic and/or recurrent disease for which there are no
curative options. Building on our recent research on an in vivo
Sleeping Beauty (SB) transposon based forward-mutagenesis
screen [2, 3], we explore putative role of ARID1A as a mechanism
for progressive PC.
Alterations in epigenetic programming are increasingly impli-

cated in the development and progression of cancers. ARID1A is a
subunit of the chromatin-remodelling BRM/BRG1-associated
factors (BAF) complex, which is a member of the Switch-
Induced/Sucrose Non-Fermentable (SWI/SNF) subfamily [4, 5].
The BAF complex uses an ATP-dependent chromatin remodelling
enzyme, either Brahma (BRM) or Brahma-related gene 1 (BRG1), as
the catalytic subunit to remodel chromatin [6]. By altering
chromatin and nucleosome structures, access to DNA can be
altered to epigenetically control gene expression. ARID1A is only
found in the BAF complex and is mutually exclusive in the BAF

complex with ARID1B, which shares approximately 50% homology
[7].
As one of the most mutated epigenetic regulators in cancer [8],

ARID1A seems to have a context dependent role in different
cancers. ARID1A as part of the BAF complex can mediate
chromatin remodelling and gene expression which can be pro-
or anti-tumorigenic. Wnt/β-catenin, KRAS, and oestrogen receptor
(ER) are all oncogenic pathways which are disrupted when ARID1A
is lost [9–11]. ARID1A has also been shown to be a tumour
suppressor due to its inhibition of cell cycle, mediation of DNA-
repair, and high mutation rates in certain cancers such as ovarian
cancer [12–15]. Similarly, the role of ARID1A in PC remains unclear
with both tumour promoting and suppressing effects reported.
ARID1A has been shown to regulate oncogenic drivers such as
ERG and androgen receptor [16, 17]. Our data revealed that
homozygous Arid1a loss is required to dramatically accelerate
prostate tumourigenesis, resulting in tumours with a reduced and
disorganised stroma. Arid1a loss mediated tumour formation in
the mouse involved both the anterior and dorsolateral lobes, a key
distinction from Pten-loss driven tumours which tend to be limited
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to the anterior lobes. Finally, the status of PTEN, ARID1A and cFos,
as an ARID1A downstream effector, is associated with patient
survival outcome.

MATERIALS AND METHODS
Mice
Animal experiments were carried out in line with the Animals (Scientific
Procedures) Act 1986 and the EU Directive of 2010 sanctioned by Local
Ethical Review Process (University of Glasgow). Mice were maintained on a
mixed strain background at the Cancer Research UK Scotland Institute
under project licence authority (70/8645 and P5EE22AEE to Professor Hing
Leung). Mice were bred and housed in individually ventilated cages under
specific pathogen-free conditions on a 12/12-hour light/dark cycle and fed
and watered ad libitum. Mice were genotyped by Transnetyx using PCR
analysis of ear notch tissue.
Alleles used were as follows: Arr2 Probasin-Cre [18], Ptenflox [19], T2/

Onc3het- [20], Rosa26Lox66SBLox71/+ [20], and Arid1aflox [21]. Mice were aged
until ethically approved clinical endpoints where mice display clinical signs
(bladder distension, hunching and/or weight loss), or a palpable prostate
tumour >1.2 cm. Mice which were culled for reasons other than tumour-
associated clinical endpoints were excluded from analysis. Mice were
culled when reaching an ageing endpoint of 18 months. All cohort mice
were male and were monitored by researchers trained in relevant clinical
signs three times per week.

Cell lines
DU145 (dural metastatic), PC3 (bone metastatic), LNCaP (lymph node
metastatic), C4-2 (LNCaP derivative), CWR22 (primary prostate tumour)
human prostate cancer cell lines were obtained from ATCC and grown in
RPMI-1640 (Sigma Aldrich) and supplemented with 1% L-Glutamine
(Gibco) and 10% foetal bovine serum (FBS) (Sigma Aldrich). This medium
was used for all cell lines in most instances so will be referred to as
standard culture medium (SCM). The 22Rv1 human prostate cancer cell line
was grown in RPMI-1640 (Sigma Aldrich) and supplemented with 1%
L-Glutamine (Gibco) and with charcoal-stripped FBS (Thermo Fisher) to
remove lipophilic materials such as androgen. RWPE human prostate
cancer cell line was grown in Keratinocyte serum free medium (Thermo
Fisher) supplemented with human recombinant epidermal growth factor
(rEGF) and bovine pituitary extract as supplied. Cell cultures were routinely
tested for and found to be negative for mycoplasma contamination and
were authenticated by the Laboratory of the Government Chemist
standards.
Stable ARID1A knock out (KO) clones were generated in DU145 cells

using a CRISPR/Cas9 plasmid with a specific guide RNA to the ARID1A
sequence (Santa Cruz, sc-400469) and a homology directed repair plasmid
(Santa Cruz, sc-400469-HDR). Amaxa Cell Line Nucleofector Kit (Lonza) was
used for electroporating the cells with the plasmids. Setting A023 and
nucleofector kit L was used for DU145. Puromycin was used for selection
and individual clones were picked following selective pressure. A CRISPR/
Cas9 control plasmid with a non-specific guide RNA (Santa Cruz, sc-
418922) and an in-house Infra-Red Fluorescent Protein (IRFP) plasmid were
used as a control with puromycin as a selectable marker on the IRFP
plasmid. As above, puromycin was applied and individual puromycin
resistant control clones were selected.

siRNA treatment
siRNAs were purchased from Dharmacon: ON-TARGETplus Human ARID1A
siRNA SMARTPool or ON-TARGETplus non-targeting siRNA (Sequences
shown in Supplementary Table 1). Cell lines were reverse transfected with
siRNAs to a final concentration of 25 nM using Lipofectamine RNAiMAX
(Invitrogen) following the manufacturer’s protocols with three technical
replicates per experiment. To assess siRNA knockdown efficiency, RNA was
extracted for quantitative real-time PCR (RT-PCR) analysis.

Cell growth analysis
Following seeding at 1 × 105 cells/ml in a 6-well plate, and reverse
transfection with siRNAs indicated above, DU145, PC3, and LNCaP cells
were counted after 72 h. Growth following ARID1A knockdown was
normalized to the non-targeting control. Each experiment included three
technical replicates. For stable DU145 KO clones, cells were seeded and
counted after 72 h with growth shown relative to empty vector 1. Each
experiment included three technical replicates.

Colony forming assay
DU145, PC3, and LNCaP cells were plated at 1 × 105 cells/ml in a 6-well
plate, reverse transfected and incubated with siRNAs for 24 h. 200 cells of
DU145 and PC3, or 600 cells for LNCaP were then reseeded at a low density
in a 10 cm dish to allow colonies to form. Cells were then fixed and stained
with Crystal Violet (0.5% w/v) and colonies were quantified by fluorescent
detection using the Odyssey System (LI-COR).

Immunoblotting
Immunoblotting performed as previously described [22]. Immunoblotting
was performed with the following antibodies: ARID1A (Cell Signalling,
12354, 1:1000), ARID1B (Cell Signalling, 92964, 1:1000), AR (Santa Cruz, N-
20, 1:1000), PTEN (Cell Signalling, 9559, 1:1000), HSC70 (Santa Cruz
Biotechnology, SC-7298), Anti-rabbit IgG, HRP linked antibody (Cell
Signalling, 7074, 1:400) and Anti-mouse IgG, HRP linked antibody (Cell
Signalling, 7076, 1:400). For all immunoblots images shown are represen-
tative of three independent experimental replicates.

RNA extraction
RNA was extracted from cell lines grown in 6-well plates or from cell pellets
using the RNAeasy Mini Kit (Qiagen) as per the manufacturer’s instructions.
The optional step to remove genomic DNA using RNase-free DNase
(Qiagen) was also included for all samples. RNA was eluted in final step of
extraction into RNAse-free molecular grade water and quantified using a
Nanodrop (Thermo Fisher). For extraction of RNA from snap frozen tissue,
samples were pulverized using a micro-homogenizer, and the resulting
powdered tissue was resuspended in RLT-buffer (Qiagen RNeasy Mini Kit)
and then further homogenized using Precellys tubes and Precellys
Evolution Homogenizer (Bertin Instruments). Once homogenized, RNA
was extracted using the RNAeasy Mini Kit (Qiagen) as per the
manufacturer’s instructions, including the DNase digestion step.

Real time—PCR (RT-PCR)
RT-PCR was performed as described previously [3]. Briefly, first-strand
cDNA was produced by reverse transcription from extracted RNA samples
using the High-Capacity cDNA Transcription kit (Applied Biosystems)
following the manufacturers protocol. RTPCR was carried out using
TaqMan Universal Master Mix (Thermo Fisher Scientific) with primer
appropriate Universal ProbeLibrary probes (Roche). Taq-man RTPCR was
carried out as previously described [2]. The CASC3 gene was used as the
reference to normalise expression levels. Data regarding gene expression is
shown relative to levels in control cells. (List of primers and universal probe
number are shown in Supplementary Table 1)

RNA sequencing
RNA sequencing (RNA-Seq) was carried out as previously described [2].
Briefly, the quality of the RNA extracted was tested using an Agilent 220
Tapestation on RNA screentape. Three independent experimental repli-
cates of each sample with three technical replicates were sequenced.
Quality checks and trimming on the raw fastq RNA-Seq data files were

performed using FastQC [23], FastP [24] and FastQ Screen [25]. RNA-Seq
paired-end reads were aligned using HiSat2 version 2.2.1 [26] and sorted
using Samtools version 1.7 [27]. Aligned genes were identified using
Feature Counts from the SubRead package [28].
Expression levels were determined and statistically analysed using the R

environment version [29] and utilizing packages from the Bioconductor
data analysis suite [30]. Differential gene expression was analysed based
on the negative binomial distribution using the DESeq2 package [31] and
adaptive shrinkage using Ashr [32].
The reference and annotation genomes Ensembl GRCm 38 [33] was

used for the mouse RNA-Seq and ChIP-Seq data and Ensembl GRCh38 [34]
was used for the human RNA-Seq data.
Identification of enriched biological functions was achieved using

g:Profiler [35], and GSEA version 7.5.1 from the Broad Institute [36].

Chromatin immunoprecipitation (ChIP) sequencing
The ChIP assay was performed using the SimpleChIP Enzymatic Chromatin
IP Kit with magnetic beads (Cell Signalling Technologies #9003). 25 mg of
murine prostate tissue from Pb-Cre Ptenfl/fl Arid1a +/+ mice was processed
following the manufacturer’s instructions and disaggregated using a
Dounce homogeniser. The following antibodies were used: Histone H3
(Cell Signalling, #D2B12, 1:100 dilution), normal rabbit IgG (Cell Signalling,
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#2727, 1:100 dilution), ARID1A/BAF250A rabbit mAb (Cell Signalling,
#12354, 1:100). For immunoprecipitation, samples were incubated with
antibodies at 4 °C overnight. DNA products were then quantified using
Qubit high-sensitivity DNA assay kit (Thermo Fisher, Q32851) and libraries
prepared using NEBNext Multiplex Oligos for Illumina Index Primer Set 1
(New England Biolabs, E7335S) and NEBNext Ultra II DNA Library Prep Kit
for Illumina (New England Biolabs) library preparation kit. Samples were
sequenced on a NextSeq 2000 (Illumina) with 30 million 2x100bp paired
end reads by the Glasgow Polyomics next generation sequencing and
transcriptomics service.
The consensus peak sets were created using the Nf-Core version 1.2.2

[37] of the ChIP-Seq workflow. Transcription Factor binding profiles where
obtained from JASPAR 2020 [38] and Bedtools [39] was used to identify
nearest Transcription Factor to each peak.
Binding Analysis for Regulation of Transcription [40] was used to predict

functional transcriptional regulators that bind at cis-regulatory regions to
regulate gene expression. Genes with an Irwin Hall p value below 0.05 were
identified by combining the RNA-Seq and ChIP-Seq data.
Further analysis and visualisation was conducted using the R program-

ming language and the Tidyverse [41] set of packages.
Computational analysis was documented at each stage using MultiQC

[42], Jupyter Notebooks [43] and R Notebooks [44].

Human tissue microarray (TMA)
0.5mm2 cores of prostate tissue, as identified by pathologists, were
removed from a representative area of the formalin-fixed paraffin-
embedded (FFPE) block. Tissue was obtained from untreated patients
undergoing transurethral prostatectomy (TURP) (repository details from
Newcastle REC:2003/11). Patients were diagnosed with PC upon histolo-
gical examination or by transrectal ultrasound scan (TRUS) between the
years of 1988-2005. These samples consisted of clinical T1 (N= 33), T2
(N= 120), T3 (N= 113), and T4 (N= 25) stage samples. Only patients who
died from PC were included in Kaplan-Meier curves (N= 49). Following
staining and scoring by the Aperia Imagescope v12.4.6.5003 (Leica
Biosystems) of the TMA, scores could be grouped. Scores in the lower or
higher interquartile ranges were assigned to ‘low’ or ‘high’ groups
respectively Scores that resided in intermediate range were defined as
being in the ‘medium’ range.

Immunohistochemistry (IHC)
IHC staining was performed on 4-μm FFPE sections previously dry heated
at 60 °C for 2 h. ARID1A (1:200, 12354, Cell Signalling), Col1a1 (1:200, 93668,
Cell Signalling), Ki67 (1:1000, 12202, Cell Signalling), Phospho Serine 473
AKT (1:45, 9271, Cell Signalling) and PTEN (1:70, 9559, Cell Signalling), c-Fos
(1:300, ab190289, Abcam), JunD (1:75, sc-271937, Santa Cruz)on the Leica
Bond Rx autostainer. Sections treated as previously described [45].
IHC was quantified by using HALO Image Analysis software (Indica Labs).

Slides were scanned and analysed using HALO to quantify stain intensity
and percentage of cells positive for stain. The Software was trained in each
instance to classify and quantify only the stain in the epithelial
compartment as only this stain constitutes the tumour. The software then
allocated a score to each cell. Histoscore was determined by the following
formula: (% cells low intensity) + 2(%cells medium intensity) + 3(%cells
high intensity) = Histoscore.

STATISTICAL ANALYSIS
Statistical analyses, except for the RNA-seq and ChIP-Seq datasets,
were performed using GraphPad Prism v9.3.1. Testing comprised
of unpaired two tailed t-tests, Mann–Whitney, Kaplan–Meier
survival analysis and one- and two-way ANOVA with post-tests
for multiple comparisons (detailed in figure legends). All experi-
ments were performed in experimental replicates, with technical
replicates for each experiment noted. The graphs represent the
mean data from the repeated experiment or sample ±SEM.

RESULTS
Transposon insertion in the Arid1a gene accelerates prostate
tumourigenesis and reduces mouse survival
Probasin Cre-recombinase Ptenflox/flox (Ptenfl/fl) mice develop inva-
sive prostate adenocarcinoma and reach clinical endpoint between

9 and 12 months [46]. However, these mice rarely develop
metastasis and have been aged up to 18 months with the tumours
confined to the prostate. We employed forward-mutagenesis
Sleeping Beauty transposon based system [2] to generate the
SB:Ptenfl/fl (Pb-Cre4Ptenfl/flT2/Onc3hetRosa26Lox66SBLox71/+) mouse line,
whereby gene expression can be randomly altered to identify novel
genetic events that accelerate prostate tumorigenesis (Supplemen-
tary Fig. 1). We observed reduced survival among SB:Ptenfl/fl mice
when compared to control Pb-Cre; Ptenfl/fl mice (SB:Ptenfl/fl, n= 17,
median 293 days vs Pb-Cre;Ptenfl/fll mice, n= 23, median 469 days
[47]) (Fig. 1a, left panel). To identify putative driver events, prostate
tumours were sequenced, and common transposon insertion sites
were identified [2]. Four out of twenty-one SB:Ptenfl/fl mice were
identified to have insertions in the gene body of Arid1a (Arid1aINT).
SB:Ptenfl/fl Arid1aINT mice had a significantly reduced survival when
compared to SB:Ptenfl/fl mice harbouring insertions affecting other
genes (Arid1aWT) (median 226 days vs 299 days respectively) (Fig. 1a,
right panel). The other genes altered have been described in other
studies by our group, including PPARG and MBTPS2 [2, 3].
Resultantly the Arid1aWT has a reduced survival compared to
Ptenfl/fl loss alone (median 299 vs 469 respectively). Arid1aINT bearing
tumours had a 64% reduction in Arid1a expression (p < 0.0001)
(Fig. 1b). At clinical endpoint, tumour weights were comparable
irrespective of the Arid1a status (Fig. 1c). Intriguingly, mice
habouring tumours with Arid1aINT were found to have high
prevalence of metastatic disease, with all four Arid1aINT mice
developing lymph node metastasis as well as three of the four mice
bearing lung metastases (Fig. 1d).
Using cBioPortal, we visualised ARID1A alteration frequencies in

multiple (primary and metastatic) PC cohorts (Fig. 1e). ARID1A was
altered between 10-20% of primary PC, and around 20% of
metastatic PC (Fig. 1e). The common alteration types included
shallow deletion and mutation. Importantly, ARID1A significantly
co-occurred with PTEN alterations (Fig. 1e), consistent with
functional interaction between the two genes in driving prostate
tumorigenesis highlighted by our Sleeping Beauty screen.

Homozygous Arid1a deletion drastically accelerates Pb-
Cre;Ptenfl/fl mediatd prostate carcinogenesis
To investigate the functional relevance of Arid1a in prostate
tumorigenesis in vivo, we crossed the Pb-Cre;Ptenfl/fl mouse line
with Arid1afl/fl mice to induce conditional deletion of Arid1a and
Pten in the murine prostate. Homozygous Pten loss was
functionally confirmed by dramatic upregulated phosphorylation
of AKTSer473 (Supplementary Fig. 2A), which was maintained
regardless of the Arid1a status. Similarly, ARID1A loss was
confirmed by IHC showing gene copy dependent loss of ARID1A
staining in epithelial cells (Ptenfl/fl Arid1a+/+, histoscore of 42;
Ptenfl/fl Arid1afl/+, histoscore of 23.4; Ptenfl/fl Arid1afl/fl, histoscore of
3) (Supplementary Fig. 2B), with ARID1A immunoreactivity also
detected in the stroma.
In keeping with our previous findings and the literature, control Pb-

Cre;Ptenfl/fl Arid1a+/+ mice reached clinical endpoint at a median of
9 months (or 267 days) [46] (Fig. 2a). Pb-Cre;Ptenfl/flArid1afl/+mice had
similar survival outcomes to the control Pb-Cre;Ptenfl/fl Arid1a+/+mice:
Ptenfl/flArid1afl/+ (n= 19) median 236 days vs. Ptenfl/fl Arid1a+/+

(n= 10) median 267 days, p= 0.83 (Fig. 2a). Pb-Cre;Ptenfl/flArid1afl/fl

mice however developed prostate tumours rapidly, leading to a
significant reduction in their survival compared to controls: Ptenfl/
flArid1afl/fl (n= 8) median 103 days vs. Ptenfl/fl Arid1a+/+ (n= 10)
median 267 days, p< 0.0001 (Fig. 2a). Tumour weights at endpoint
were comparable among all three genotypes (Ptenfl/fl Arid1a+/+mean
0.72 g, Ptenfl/flArid1afl/+ mean 0.63 g, Ptenfl/flArid1afl/fl mean 0.71 g),
signifying the rapid nature of prostate tumorigenesis in Pb-Cre;Ptenfl/
flArid1afl/fl mice (Fig. 2a, b).
Homozygous loss of Arid1a resulted in epithelial-dense

tumours involving both anterior and dorsolateral lobes (Fig. 2c),
contrasting to tumour formation in the control Pb-Cre;Ptenfl/fl
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Arid1a+/+ mice being limited to the anterior lobes. Furthermore,
tumours from Pb-Cre;Ptenfl/flArid1afl/fl mice exhibited a distinct
morphology with marked loss of a structured stromal compart-
ment as illustrated by collagen I staining (Fig. 2c). In keeping with
a role for Arid1a in tumour morphology, loss of Arid1a also led to
a reduction in luminal marker keratin 8 (Pb-Cre;Ptenfl/fl Arid1a+/+,
histoscore of 77.3; Pb-Cre;Ptenfl/fl Arid1afl/+, histoscore of 56.8; Pb-
Cre;Ptenfl/fl Arid1afl/fl, histoscore of 43.4) and an elevation in basal

marker keratin 5 (Pb-Cre;Ptenfl/fl Arid1a+/+, histoscore of 18.8; Pb-
Cre;Ptenfl/fl Arid1afl/+, histoscore of 21.7; Pb-Cre;Ptenfl/fl Arid1afl/fl,
histoscore of 62.7) (Supplementary Fig. 3). Deletion of Arid1a was
also associated with a more proliferative phenotype with gene
copy dependent elevation in Ki67-positive cell staining: Pb-
Cre;Ptenfl/fl Arid1a+/+, 9.5% cells positive ; Pb-Cre;Ptenfl/fl Arid1afl/+,
15.8% cells positive; Ptenfl/fl Arid1afl/fl, 23.2% cells positive
(Fig. 2d). Loss of Arid1a promoted prostate tumorigenesis, with
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rapid tumour formation and altered tumour morphology (less
differentiated epithelial compartment and reduced/disorganised
stroma). Furthermore, upregulated Sox2 mRNA expression in
Ptenfl/fl Arid1afl/fl tumours is consistent with a less differentiated
phenotype, while we found no evidence of neuro-endocrine

differentiation with reduced SYP (Synaptophysin) and equivocal
CHGA (Chromogranin A) mRNA expression (Fig. 2e). Collectively,
our findings support our hypothesis that loss of Arid1a
cooperates with Pten loss in in vivo prostate tumorigenesis as
suggested by the Sleeping Beauty screen (Fig. 1).
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To characterise the relationship of Arid1a loss with wildtype or
heterozygous loss of Pten in prostate tumorigenesis, we generated
the Pb-Cre; Arid1afl/fl (Pten+/+ or Ptenfl/+) mouse cohorts. Previous
work has already demonstrated that Pb-Cre;Ptenfl/+ mice do not
develop adenocarcinoma of the prostate [46]. Pb-Cre;Pten+/+

Arid1afl/fl mice did not develop any prostate tumours (Supple-
mentary Fig. 4A), although there was evidence of prostate
intraepithelial neoplasm (PIN), predominantly in the dorsolateral
lobe (Supplementary Table 2A). In contrast, the Pb-Cre;Ptenfl/+

Arid1afl/fl mouse cohort developed tumours in 5 of 12 mice, with
three reaching clinical endpoint, along with PIN formation
(Supplementary Fig. 4A, B, Supplementary Table 2A). The clinical
endpoint tumours of the Pb-Cre;Ptenfl/+ Arid1afl/fl mice were
morphologically similar to Pb-Cre;Ptenfl/flArid1afl/fl tumours, with a
dense tumour texture (Supplementary Fig. 4C showing bladder
distension due to tumour growth). Given these striking similarities,
we hypothesised that inactivation of the remaining Pten allele
contributes to tumour formation in Pb-Cre;Ptenfl/+ Arid1afl/fl mice,
and studied PTEN immunoreactivity in clinical endpoint Pb-
Cre;Ptenfl/+ Arid1afl/fl tumour (Supplementary Fig. 4D). Indeed, we
observed reduced PTEN protein levels in the endpoint Pb-
Cre;Ptenfl/+ Arid1afl/fl tumours, while PTEN protein remained intact
in benign glands without tumour formation. Hence, de novo
inactivation of the remaining Pten allele may functionally replicate
a Pb-Cre;Ptenfl/flArid1afl/fl genotype in driving tumorigenesis.
Besides differences in tumour morphology, Arid1a mediated
tumour formation was noted to affect both the anterior and
dorsolateral lobes, a key distinction from Pten-lost driven tumours
which tend to be limited to the anterior lobes (while PIN formation
was evident even in the dorsolateral lobes following homozygous
Pten deletion alone, Supplementary Table 2B).

Transcriptomic analysis of combined Pten- and Arid1a-
deficient tumours
With a background of homozygous Pten deletion, homozygous
Arid1a loss resulted in substantially more altered gene expression
when compared to heterozygous Arid1a loss, namely 1540 and
183 genes respectively, with only 132 shared genes (Fig. 3a).
Principal component analysis (PCA) showed the largest variance
compared to control is only achieved following homozygous loss
of Arid1a while heterozygous loss closely clusters with controls
(Fig. 3b). Of note, the three tumours from Pb-Cre;Ptenfl/flArid1afl/+

mice exhibited substantial heterogeneity at the transcriptome
level. This is reminiscent of the heterogenous endpoints observed
in the Pb-Cre;Ptenfl/flArid1afl/+ mice, with some mice reaching
clinical endpoint as early as 76 days while others as late as
130 days (Fig. 2a). Pb-Cre;Ptenfl/flArid1afl/+ tumours only had
183 significantly dysregulated genes compared to Pb-Cre;Ptenfl/fl,
indicating a single copy loss of Arid1a does not cause large

transcriptional changes (Fig. 3c, top panel). In contrast, of the
1540 significantly dysregulated genes following homozygous
Arid1a loss, with 1143 genes downregulated and only 397 genes
upregulated (Fig. 3c, bottom panel). The observation that nearly 3
fold more genes were downregulated than upregulated following
homozygous Arid1a loss is consistent with the notion that Arid1a
more frequently opens chromatin than closes it [48]. Five of ten
upregulated cell signalling networks in the Pb-Cre;Ptenfl/fl Arid1afl/fl

tumours were related to cell cycle control (Fig. 3d). Geneset
enrichment analysis (GSEA) identified the enriched phase of cell
cycle signalling to be around the G2/M phase transition, with key
regulators of this checkpoint enriched including AURKA, PLK1,
NEK2, CCNA2 (Fig. 3e).
Consistent with data from analysis of in vivo tumours, knockout

of ARID1A in the human prostate cancer DU145 cells significantly
promoted growth, increasing cell counts in DU145 ARID1A
knockout KO2, KO4 clones and KO pool cells by 68%, 45% and
38% respectively (Supplementary Fig. 5, Fig. 3f). Likewise, colony
forming capabilities were elevated by 90% in KO2 and 57% in KO4
cells, though not in the KO Pool cells (Fig. 3g). We further carried
out transcriptomic analysis on KO2 and KO4 cells, comparing to
DU145 empty vector (EV1) control cells. PCA confirmed close
similarities among the ARID1A KO cell clones when compared to
empty vector controls (Fig. 3h). Network analysis identified that
knockout of ARID1A upregulates cell cycle pathways, as well as
increasing translation, suggesting global changes in growth
(Fig. 3i). GSEA also validated this effect on cell cycle, identifying
an elevation in mitotic spindle formation in DU145 KO clones
(Fig. 3j).

Loss of ARID1A correlates with upregulation of AP-1 subunit
cFos and identifies patients with reduced survival
To gain molecular insight into Arid1a-mediated epigenetic
changes in prostate tumorigenesis, we performed Chromatin
Immunoprecipitation Sequencing (ChIP-Seq) on Pb-Cre;Ptenfl/fl

tumours to interpret data from transcriptomic analysis. Binding
Analysis for Regulation of Transcription analysis was performed on
the ChIP-Seq dataset to highlight putative transcription factors
that may functionally interact with ARID1A. We then interrogated
the gene list from the transcriptomic dataset to understand how
the activity of these transcription factors changed based on the
expression of their target genes (Fig. 4a). We identified increased
activity of AP-1 family transcription factors to be associated with
Arid1a loss (Fig. 4b). The AP-1 transcription factor family is
involved in critical cell processes such as differentiation and
proliferation. Among the AP-1 subunits, JunD and cFos were both
significantly upregulated following Arid1a loss by 1.5-fold and
3-fold respectively (Supplementary Table 3). We further investi-
gate cFos and JUND protein levels in the murine tumours with

Fig. 3 Loss of ARID1A elevates cell cycle signalling in Pten-deficient tumours. a Number of significant genes (P < 0.05, Fold Change >1.5)
from RNA-Seq analysis of endpoint prostate tumours comparing Pb-Cre;Ptenfl/fl Arid1a+/+ (n= 3) compared to Pb-Cre;Ptenfl/fl Arid1afl/+ (n= 3) or
Pb-cre;Ptenfl/fl Arid1afl/fl (n= 3) mice. b Principal component analysis (PCA) showing comparison and variance of individual mouse samples of
indicated cohorts. c Volcano plot showing up and downregulated genes (P < 0.05, Fold Change >1.5) in Ptenfl/fl Arid1afl/+ (n= 3) and Ptenfl/fl

Arid1afl/fl (n= 3) cohorts. d Significantly upregulated cell signalling networks visualised using Metacore in Pb-Cre;Ptenfl/fl Arid1afl/fl compared to
Pb-Cre;Ptenfl/fl Arid1a+/+ tumours. e Gene set enrichment analysis showing 1.58 normalised enrichment score (NES) in Hallmark G2M
checkpoint from Pb-Cre;Ptenfl/fl Arid1afl/fl mice. Most significant genes of enrichment shown in heatmap with z-score indicated between +2 and
–2 with colour gradient of red to blue. f Fold change in cell count for DU145 EV clones compared to ARID1A KO clones after 72 h of growth,
*P= 0.015, **P= 0.0025, ****P < 0.0001; ANOVA with Tukey’s analysis. Each data point represents a single technical replicate, three of which
made up each experimental replicate, error bars showing SE. g Stain intensity of colony growth from colony forming assay. Relative growth
relative to EV1. *P= 0.02 EV1 vs KO2, *P= 0.045 EV1 vs KO4, ANOVA with Tukey’s analysis. Each point represents an experimental replicate
each made up of three technical replicates, error bars showing SEM. h Number of significant genes (P < 0.05, Fold Change >1.5) from RNA-Seq
analysis comparing EV1 (n= 5) compared to KO2 (n= 5) or KO4 (n= 5). Principle component analysis (PCA) showing comparison and variance
of individual samples of indicated cell clones. i Significantly upregulated cell signalling networks visualised using Metacore in KO2 and KO4
compared to EV1. j Gene set enrichment analysis showing 1.59 (KO2) and 1.84 (KO4) normalised enrichment score (NES) in Hallmark Mitotic
Spindle compared to EV1. Genes from leading edge of enrichment shown in heatmap with z-score indicated between +2 and –2 with colour
gradient of red to blue.
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varying Arid1a status. IHC staining confirmed dramatic upregu-
lated nuclear cFos and JUND levels in Pb-Cre;Ptenfl/fl Arid1afl/fl at
13-and 6.5-fold respectively, when compared to control
Pb-Cre;Ptenfl/fl and Pb-Cre;Ptenfl/fl Arid1afl/+ tumours (Fig. 4c,
Supplementary Fig. 6A). This requirement for homozygous
deletion of Arid1a in driving a pro-tumourigenic phenotype is
reminiscent of the mouse survival data (Fig. 2a).

By utilising publicly available cFos ChIP-Seq data from Kuonen
et al., we interrogated how cFos target genes were changing in
our mouse models [49]. The observed increased expression and
nuclear localisation of cFos are consistent with upregulated gene
expression among known cFos target genes involved in cell cycle
control such as Cdk1, Cyclin E1, Cyclin E2, and A2 (Fig. 4d).
Interestingly, nuclear hormone receptors AR and RXRA were
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suggested to have reduced activity following Arid1a loss (Fig. 4b),
which is in line with previous observations that ARID1A can
function as a transactivator of nuclear hormone receptors [10, 50].
We next investigated whether the status of ARID1A and PTEN in

clinical tumours was associated with patient outcomes. Patients
with tumours showing lower ARID1A and PTEN levels had a poorer
survival compared to other patient groups combined (ARID1A low
PTEN low median survival 31 months vs all other groups median
survival 57 months *p= 0.0303) (Fig. 4e). We further explored the
prognostic implications of altered cFos or JUND protein levels in
our PC TMA. JUND did not correlate with tumour stage, ARID1A
levels, or patient survival (Supplementary Fig. 6B–E). Interestingly,
cFos levels inversely correlated with ARID1A status (Fig. 4f), while
cFos levels increased as tumour stages increased from Stage 1 to
3, though not in Stage 4 tumours (Fig. 4g). Importantly, combining
ARID1A and cFos levels allows patient stratification into two
prognostic groups, with low ARID1A/high cFos having a sig-
nificantly reduced survival compared to high ARID1A/low cFos
(Fig. 4h). Interestingly this trend was not observed with cFos
staining alone (Supplementary Fig. 6F), suggesting that cFos is
functionally related to ARID1A in driving prostate cancer progres-
sion. Finally, using publicly available clinical datasets from
cBioPortal, tumours with low ARID1A, low PTEN, and high cFos
were associated with a significantly poor survival outcome when
compared to high ARID1A, high PTEN, and low cFos levels,
corroborating the findings of our TMA analysis (Fig. 4i).

DISCUSSION
Dysregulation of the epigenome is a hallmark of advanced
cancers, with alterations in epigenetic regulators amongst the
most frequently alterations found in in PC [51]. Our Sleeping
Beauty screen identified ARID1A as a candidate driver in PC
(Fig. 1). This finding was also reflected in clinical samples. In
cBioPortal we observe frequent deletion of ARID1A; similarly, in
our human TMA, reduced ARID1A protein levels were associated
with less favourable patient survival outcome. The role of ARID1A
in tumourigenesis appears diverse and context-dependent [9–11].
This complex context-dependent role of ARID1A motivated us to
investigate Arid1a using a GEMM system, where simultaneous loss
of Pten and Arid1a in vivo produced aggressive and locally
invasive prostate tumours (Fig. 2).
Tumours from Pb-Cre;Ptenfl/fl Arid1afl/fl mice have an interesting

morphology, with reduced expression of luminal and increased
expression of basal markers when compared to the tumours
driven by homozygous Pten loss alone, suggestive of a less
differentiated and proliferative phenotype (Fig. 2c, d, respectively).
We further observed diminished and disorganised stroma in
tumours driven by combined loss of Pten and Arid1a. To our
knowledge, the Pb-Cre;Ptenfl/fl Arid1afl/fl mouse model exhibited
the most rapid tumour development to clinical endpoint of any

published prostate cancer GEMM, with a hyperproliferative and
locally invasive cancer [52]. RNA-Seq identified that loss of Arid1a
elevated cell cycle signalling (Fig. 3). By overlaying the RNA-Seq
and ChIP-Seq datasets, increased transcriptional activity of the AP-
1 transcription factor family was suggested. This was consistent
with our findings of enriched cell cycle-related genes being
overrepresented and upregulated. Indeed, cFos, a key component
of AP-1, when combined with ARID1A and PTEN, is found to be
highly prognostic in a cohort of clinical prostate cancer (Fig. 4).
A recent publication by Li et al. [53] also explored ARID1A in

prostate cancer, and identified that loss of ARID1A can mediate
immune evasion via a IKKβ/ARID1A/NF-κB axis [53]. Immune
evasion is expected to facilitate tumour initiation and metastasis
while cell cycle elevation observed in our study will promote
uncontrolled growth, as previously reported [12–15]. Our study
expands on the Li et al. publication and further demonstrated that
homozygous Arid1a deletion or deep loss of ARIDA expression is
required for rapid prostate tumourigenesis: (1) Dramatic accelera-
tion of tumourigenesis in Pb-Cre;Ptenfl/fl Arid1afl/fl mice (Fig. 2a),
with solid tumour formation involving both the anterior and
dorsolateral lobes while Pb-Cre;Ptenfl/fl driven tumours are cystic
and limited to the anterior lobes, (2) Tumour formation in the
dorsolateral lobes of Pb-Cre;Ptenfl/fl Arid1afl/fl mice originated from
the successful progression of PIN lesions in the dorsolateral lobes
of Pb-Cre;Ptenfl/fl mice into tumours (Supplementary Table 2), (3)
Upregulated cFos and JUND expression in tumours from Pb-
Cre;Ptenfl/fl Arid1afl/fl mice, (4) Significant increased colony forming
ability in DU145 ARID1A KO2 and KO4 clones with negligible
ARID1A expression (Supplementary Fig. 5), (5) Poor patient
survival outcome being associated with low ARID1A and PTEN
expression, and low ARID1A and high cFos expression in our TMA
PC cohort (Fig. 4e, h, respectively), and (6) Association between
reduced ARID1a and increased cFos expression (Fig. 4f) and the
poor patient outcome for tumours with high cFos, low PTEN and
low ARID1A expression (Fig. 4i). It is worth noting that our
observation of reduced and disorganised collagen expression in
tumours from Pb-Cre;Ptenfl/fl Arid1afl/fl mice is consistent with the
model whereby a collagen-poor stroma results in enriched
tumour-suppressive cytokines and leads to undifferentiated and
invasive pancreatic cancer with shorted patient survival [54]. The
focus of future study will help determine the interplay between
cancer and immune cells within the tumour microenvironment.
Based on the publicly available datasets in cBioPortal, shallow,

rather than deep, ARID1A deletions are documented, implicating
additional genetic and epigenetic events in order to accelerate
tumourigenesis to the level observed in our Pb-Cre;Ptenfl/fl Arid1afl/fl

mouse cohort. Future research is warranted to fully defined
molecular events that would interact with shallow loss of ARID1A
in clinical tumours. Previous studies have also demonstrated the
Pten-deficient murine models stabilise BRG1 allowing the SWI/SNF to
mediate oncogenic remodelling in a BRG1-dependent manner [55].

Fig. 4 The status of ARID1A, AP-1 subunit cFos and PTEN is associated with patient survival. a Schematic showing the overlaying of RNA-
Seq and ChIP-Seq data to identify transcription factor networks regulated by ARID1A in mouse prostate tumours. b Table showing
transcription factors with significantly increased or decreased activity following ARID1A loss. c Immunohistochemistry of indicated mouse
prostate tissue stained and score for nuclear and cytoplasmic positivity of cFos including representative images. ****P < 0.0001, ANOVA with
Tukey’s analysis. Each data point is an individual mouse, error bars show SEM. d Volcano plot showing up and downregulated cFos target
genes (P < 0.05, Fold Change >1.5) in Pb-Cre;Ptenfl/fl Arid1afl/+ (n= 3) and Pb-Cre;Ptenfl/fl Arid1afl/fl (n= 3) cohorts. cFos target genes identified
through dataset (https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets). e Kaplan–Meier (log-rank) curve
demonstrating survival of patient cohorts with different levels of ARID1A and PTEN as stained in a human PC tissue microarray. *P= 0.0303;
log-rank (Mantel-Cox) test. f cFos positivity when compared to ARID1A status seen in Fig. 1 from human prostate cancer tissue microarray.
***P= 0.001 ****P < 0.0001; ANOVA with Tukey’s post hoc analysis. g Histoscore for cFos staining of human tissue microarray by stage of
prostate cancer (same as shown in Fig. 1h), not significant P= 0.09, ****P < 0.0001; ANOVA with Tukey’s post hoc analysis. h Kaplan–Meier (log-
rank) curve demonstrating survival of patient cohorts with low ARID1A, High cFos compared to High ARID1A, Low cFos as stained in a human
PC tissue microarray. **P= 0.0012; log-rank (Mantel-Cox) test. i Kaplan–Meier (log-rank) curve demonstrating survival of patients cohorts with
different levels of ARID1A, PTEN, and cFOS. Patient data obtained from cBioPortal using studies of metastatic PC (SU2C/PCF Dream Team, Cell
2015), and primary PC (TCGA, Firehose Legacy). log-rank (Mantel-Cox) test **p= 0.0013.
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This would suggest an ARID1B-BRG1 BAF complex may represent a
particularly potent ‘onco-BAF’ complex in PTEN-deficient PC, in
particular with loss of ARID1A. Importantly, this subtype of PC may be
targetable through exploiting their defective DNA-damage response
as has been demonstrated in other ARID1A-mutant cancers [13, 56].
This can include targeting DNA-damage response machinery, such as
through PARP, ATM, or ATR inhibition as single agents or as
radiosensitisers [13, 57–60]. Alternatively, BRM/BRG1 PROTACS may
be of efficacy in cancers with mutated BAF components [61].

CONCLUSIONS
Homozygous Arid1a loss dramatically accelerates prostate tumour-
igenesis, resulting in hyper-proliferative and undifferentiated
tumours with a reduced and disorganised stroma. Arid1a loss
mediated tumour formation in the mouse involved both the
anterior and dorsoateral lobes, a key distinction from Pten-loss
driven tumours which tend to be limited to the anterior lobes.
Finally, the status of PTEN, ARID1A and cFos, as an ARID1A
downstream effector, is associated with patient survival outcome.
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