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BACKGROUND: We aimed to develop a machine learning model based on intratumoral and peritumoral 18F-FDG PET/CT radiomics
to non-invasively and dynamically predict the response to immunotherapy in non-small cell lung cancer (NSCLC).
METHODS: This retrospective study included 296 NSCLC patients, including a training cohort (N= 183), a testing cohort (N= 78),
and a TCIA radiogenomic cohort (N= 35). The extreme gradient boosting algorithm was employed to develop the radiomic models.
RESULTS: The COMB-Radscore, which was developed by combining radiomic features from PET, CT, and PET/CT images, had the
most satisfactory predictive performance with AUC (ROC) 0.894 and 0.819 in the training and testing cohorts, respectively. Survival
analysis has demonstrated that COMB-Radscore is an independent prognostic factor for progression-free survival and overall
survival. Moreover, COMB-Radscore demonstrates excellent dynamic predictive performance, with an AUC (ROC) of 0.857, enabling
the earlier detection of potential disease progression in patients compared to radiological evaluation solely relying on tumor size.
Further radiogenomic analysis showed that the COMB-Radscore was associated with infiltration abundance and functional status of
CD8+ T cells.
CONCLUSIONS: The radiomic model holds promise as a precise, personalized, and dynamic decision support tool for the treatment
of NSCLC patients.
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BACKGROUND
Immunotherapies that target programmed death 1/programmed
death ligand 1 (PD1/PD-L1) have become the standard treatment
for locally advanced or metastatic non-small cell lung cancer
(NSCLC) [1, 2]. However, despite breakthroughs in immunotherapy
that have improved prognosis in advanced NSCLC patients, only a
subset of these patients experience long-term clinical benefits
[3, 4]. Therefore, there is an urgent need to identify an effective
biomarker for predicting immunotherapy efficacy.
PD-L1 is currently the most widely utilized biomarker for

predicting the effectiveness of anti-PD1/PD-L1 immunotherapy
[5]. However, PD-L1 is not a perfect predictor of the efficacy of this
treatment [6]. Clinical trials have demonstrated that some patients
who test negative for PD-L1 can still derive benefits from anti-
PD1/PD-L1 therapy, which raises concerns about the predictive
value of PD-L1 [7, 8]. Furthermore, the detection of PD-L1
expression is influenced by spatial and temporal heterogeneity,
suggesting that a single biopsy may not accurately represent the

overall and dynamic expression of PD-L1 throughout the entire
tumor [9]. Last but not least, detecting PD-L1 requires invasive
histological biopsy sampling, which may be hindered by patient
tolerance and the quantity and quality of the specimens obtained.
Therefore, it is imperative to further develop non-invasive, stable,
and accurate biomarkers for predicting the effectiveness of
immunotherapy.
Previous studies have demonstrated the potential of fluoro-18-

fluorodeoxyglucose positron emission tomography/computed
tomography (18F-FDG PET/CT) radiomics in various aspects of
NSCLC, including preoperative lymph node staging, prediction of
epidermal growth factor receptor mutation status, and evaluating
the tumor immune microenvironment [10–12].
However, previous radiomics studies have primarily focused on

the tumor itself, overlooking the potential information that may
exist in the peri-tumoral regions. An increasing number of studies
have confirmed that the imaging characteristics of the regions
surrounding tumors may provide valuable information relevant to
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tumor diagnosis, treatment efficacy, and prognosis, which are
essential for predictive modeling [13, 14]. Further comprehensive
and in-depth research on tumor and peritumoral radiomics will
help us gain a better understanding of the complex heterogeneity
of tumors.
Moreover, the majority of research conducted previously on

radiomics has focused on baseline or single-time-point medical
images, neglecting the analysis of dynamic images at various time
points during treatment. Predictive models developed based on
radiomics often lack an exploration of their dynamic prediction
capability, making it difficult for them to cope with complex and
variable clinical scenarios. Therefore, the development of a
radiomic model with dynamic prediction capability can enhance
its practical application in complex and variable clinical scenarios,
providing more precise and targeted treatment and follow-up
strategies for patients.
In this study, we developed, validated, and applied a machine

learning model based on intratumoral and peritumoral 18F-FDG
PET/CT radiomics to non-invasively and dynamically predict
prognosis and response to immunotherapy in NSCLC patients.

METHODS
Study design and participant cohorts
Figure 1 outlines the overall study design. In this study, we retrieved data
from the database of Nanfang Hospital, Southern Medical University,
covering the period from January 2018 to January 2023. A total of 261
patients diagnosed with NSCLC and received to first-line anti-PD1/PD-L1
immunotherapy were identified. The specific inclusion and exclusion
criteria are detailed in Fig. S1. A simple random sampling strategy was
implemented, dividing patients into a training cohort and a testing cohort
in a 7:3 ratio. The reproducibility of the randomization process was ensured
by utilizing a predefined random seed. Subsequently, radiomics analysis
was conducted on both cohorts.
To further explore the biological basis of the radiomics model, an

internal radiogenomics cohort was established by selecting 41 patients
with available RNA sequencing data from both the training and testing
cohorts. To form an independent external radiogenomic cohort, we
recruited 35 eligible NSCLC patients from the TCIA database, which stores
the TCGA-LUAD [15] (https://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5) and
TCGA-LUSC [16] (https://doi.org/10.7937/K9/TCIA.2016.TYGKKFMQ) data-
sets, and performed radiogenomic analysis on the internal and external
radiogenomic cohorts. To further validate the conclusions of the
radiogenomics analysis, a multiplex immunofluorescence cohort was
formed by selecting 31 patients with available matched pathological
tissue sections from both the training and testing cohorts. The detailed
flowchart of patient selection can be found in Fig. S1.
This retrospective study was approved by the ethics committee of

Nanfang Hospital of Southern Medical University (NFEC-2019-265).
Informed consent was obtained from the patients for the use of
pathological specimens, while the necessity for patient informed consent
for the use of clinical data, laboratory test results, and 18F-FDG PET/CT was
waived.

Data collection
We evaluated and collected best overall response, progression-free survival
(PFS), and overall survival (OS) in the follow-up phase of treatment. The
definitions of complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD) were based on the RECIST V.1.1 criteria.
The primary endpoint of this study was the clinical benefit of
immunotherapy, defined as durable clinical benefit (DCB) lasting ≥ 6
months, which included CR, PR, or SD ≥ 6 months, or no durable clinical
benefit (NDB) with PD or SD lasting <6 months. The remaining collected
clinicopathological characteristics and laboratory test data are described in
detail in the supplementary methods.

Radiomic workflow
In this study, we developed a radiomic workflow for 18F FDG PET/CT
images. First, we extracted DICOM-format data from the pre-treatment CT
scans and the corresponding PET scans for each patient. The CT scans
provide information on anatomical morphology, while the PET scans offer

insights into the functional metabolism of the lesions. Subsequently, a
strategy for image fusion was developed to integrate the respective
strengths of PET and CT imaging while addressing the limitations inherent
in single-modality images. Through this approach, PET and CT images were
combined to produce PET/CT images that encompass both detailed
anatomical information and functional metabolic data.
In the segmentation phase, a multi-volume-of-interest (VOI) segmenta-

tion strategy was employed to comprehensively characterize the tumor.
Specifically, four distinct VOIs were defined: tumoral, peritumoral,
intratumoral, and tumor–peritumoral volumes. Through this workflow, a
total of 12 VOIs were obtained, with four VOIs corresponding to each
image type. Subsequently, radiomic features were extracted from PET, CT,
and PET/CT images using PyRadiomics in Python. Each VOI within a single
image type generated 2060 radiomic features, resulting in a total of 8240
features for each imaging modality.
To mitigate the curse of dimensionality, prevent model overfitting, and

enhance robustness, a comprehensive feature filtering process was
implemented. This process included the use of intra- and inter-class
correlation coefficients (ICCs), Student’s t-tests, minimum redundancy
maximum relevance (mRMR), least absolute shrinkage and selection
operator (LASSO), and recursive feature elimination (RFE).
A detailed description of the methods used for image acquisition, image

fusion, image segmentation, image preprocessing, feature extraction, and
feature selection in the workflow of radiomics is provided in Supplemen-
tary methods.
The PET, CT, and PET/CT images went through the above workflow, and

the following four prediction models were established using an extreme
gradient boosting (XGBoost) algorithm:

I. PET-Radscore: Includes features extracted from PET images.
II. CT-Radscore: Includes features extracted from CT images.
III. PET/CT-Radscore: Includes features extracted from PET/CT images.
IV. Combined (COMB)-Radscore: Includes features extracted from PET,

CT, and PET/CT images.

After the model training, a 10-fold cross-validation grid-search method
was used to fine-tune the model parameters. The features and parameters
of each model are described in Table S1. Following their development, a
comprehensive performance evaluation of each model was conducted, as
detailed in the supplementary methods.

Statistical analysis
All statistical and machine learning analyses were performed using R
version 4.3.0 (The R Project for Statistical Computing, http://www.
r-project.org/). The statistical tests were two-sided, with a p-value
significance threshold of 0.05 adopted throughout. Student’s t-test was
used to test for differences in continuous variables, and the χ2 test or
Fisher’s exact test was used to test for differences in categorical
variables. The cutoff value was established using the maximum Youden
index (i.e., Specificity+ Sensitivity− 1) in the training cohort. Subse-
quently, this cutoff value from the training cohort was applied
consistently to the other cohorts. When evaluating performance, the
models maintained a consistent cutoff value across all cohorts. Patients
were classified into two categories based on the calculated cutoff.
Survival analyses were performed using a Cox proportional hazard
model, Kaplan-Meier survival estimates, and the log-rank test. The
Pearson correlation coefficient was used to measure the correlations
between two variables.

RESULTS
Demographic and clinicopathological characteristics
The demographic and clinicopathological characteristics of the
training cohort and the testing cohort are presented in Table S2.
The training and testing cohorts consisted of 183 and 78 patients,
respectively. Among them, DCB was achieved by 184 patients
(70.5%), while the remaining 77 patients (29.5%) did not achieve
DCB. No statistically significant differences were observed between
the two cohorts concerning the baseline characteristics in this
study. Among all enrolled patients, those who achieved DCB
demonstrated several distinguishing characteristics when com-
pared to those who achieved NDB. These factors included
elevated levels of body mass index, PD-L1 tumor proportion
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score (TPS), and albumin, as well as decreased levels of serum
cytokeratin 19 fragment antigen 211, neuron-specific enolase,
squamous cell carcinoma antigen, platelets, and C-reactive
protein (all p < 0.05).

Performance evaluation of the prediction models
We followed a predetermined radiomic workflow and developed
the PET-Radscore, CT-Radscore, PET/CT-Radscore, and COMB-
Radscore models. Subsequently, the radiomic model with the

++

++
++ +

+
+ ++ +

++++++++++++++++++++++++++++++++++++ ++++++++++++
+++ +

+++ ++++ ++

++++

+
0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Time in months

Pr
og

re
ss

io
n−

fr
ee

 s
ur

vi
va

l (
%

)

Strata
+
+

+
+

COMB−low,PDL1(TPS)−Lung≥50%
COMB−low,PDL1(TPS)−Lung<50%

COMB−high,PDL1(TPS)−Lung≥50%
COMB−high,PDL1(TPS)−Lung<50%

++++++++++++++++++ +++++ ++
+ + +

+

+++
+ + + + +

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Time in months

Pr
og

re
ss

io
n−

fr
ee

 s
ur

vi
va

l (
%

)

COMB−Radscore + +low high

Log-rank:p=0.00064
HR:2.95(95%CI:1.54-5.63)

1−Specificity

Se
ns

iti
vi

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PET
CT
PET/CT
COMB

0.591(0.438−0.743)
0.720(0.594−0.847)
0.702(0.569−0.834)
0.819(0.702−0.935)

AUC(95%CI)

ROC curves

I.Image Selection and Preprocessing

Input Image VOI

GLRLM

Feature

3
3
1
2

Shape Histogram

1 2
3 4
1 1
3 4

3
2
1
1

Texture

Peritumor

Tumor-Peritumor

Intratumor

Tumor

CT

PET/CT

PET

Feature

CT

PET/CT

PET

ALL

COMB-Radscore

PET/CT-Radscore

PET-Radscore

CT-Radscore

COMB
Radscore

PDL1(TPS)

PDL1+Tumor cell

PDL1-Tumor cell

COMB
Radscore +

PDL1(TPS)

PDL1+Tumor cell

PDL1-Tumor cell

RNA-seq mIF

COMB
Radscore

COMB-low COMB-high

II.VOI Segmentation III.Feature Extraction

VI.Models Evaluation V.Models Training——XGBoost IV.Feature Selection

VIII.Dynamic changes in COMB-RadscoreVII.Clinical Utility

XI.Tumor Microenvironment Analysis X.COMB-Radscore and PDL1(TPS)-Lung IX.Spatial Heterogeneity

Firstorder

GLCM

GLSZM

NGTDM

GLDM

ICC(>0.75)

T-test(p<0.05)

mRMR(top50)

LASSO

RFE

Patient B

Baseline PET/CT

Patient B

Follow-up PET/CT

Patient A

Follow-up PET/CT

DCB

DCB

DCB
(Follow-up)

NDB
(Follow-up)

Baseline PET/CT

Patient A
COMB-Radscore = -2.34 (low)

COMB-Radscore = -2.76 (low) COMB-Radscore = 0.46 (high)

COMB-Radscore = -2.38 (low)

Fig. 1 Overall study design. VOI volume of interest, GLCM gray-level co-occurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-
level run-length matrix, GLSZM gray-level size-zone matrix, NGTDM neighboring gray-tone difference matrix, ICC intraclass/interclass
correlation coefficient, mRMR minimum redundancy maximum relevance, LASSO least absolute shrinkage and selection operator, RFE
recursive feature elimination, XGBoost extreme gradient boosting, COMB-Radscore combined Radscore, ROC curves receiver operating
characteristic curves, AUC area under the curve, CI confidence interval, HR hazard ratio, DCB durable clinical benefit, NDB no durable clinical
benefit, PD-L1 (TPS) programmed cell death ligand 1 (tumor proportion score), RNASeq RNA sequencing, mIF multiplex immunofluorescence.

X. Lin et al.

560

British Journal of Cancer (2025) 132:558 – 568



highest predictive ability was determined through a comprehensive
evaluation of model performance. The receiver operating char-
acteristic (ROC) curve shows that the COMB-Radscore model had
the highest the area under the curve (AUC) value among all
evaluated models. The AUC (ROC) values for the PET-Radscore, CT-
Radscore, PET/CT-Radscore, and COMB-Radscore models in the
training cohort were 0.846 (p-value < 0.0001), 0.856 (p-value
< 0.0001), 0.768 (p-value < 0.0001), and 0.894 (p-value < 0.0001),
respectively (Fig. S2a). In the testing cohort, the AUC values were
0.591 (p-value= 0.2295), 0.720 (p-value= 0.0035), 0.702 (p-value=
0.0074), and 0.819 (p-value < 0.0001), respectively (Fig. 2a).
The calibration curve showed a good fit of the COMB-Radscore,

with no significant differences observed in either the training or
testing cohort according to the Hosmer–Lemeshow test (Figs. S2b
and 2b). Decision curve analysis revealed that all models achieved
net clinical benefit against a treat-all-or-none plan, and the COMB-
Radscore exhibited the highest net benefit across most threshold
probability ranges (Figs. S2c and 2c). The precision-recall (PR)
curve demonstrated that the COMB-Radscore achieved the
highest AUC (PR) in both the training and testing cohorts, with
values of 0.819 (p-value < 0.0001) and 0.647 (p-value= 0.0209),
respectively (Figs. S2d and 2d).
In the testing cohort, the COMB-Radscore demonstrated super-

ior prediction accuracy compared to the PET-Radscore (NRI= 0.34,
pNRI= 0.035, IDI= 0.21, pIDI= 0.007), CT-Radscore (NRI= 0.29,
pNRI= 0.038, IDI= 0.14, pIDI= 0.012), and PET/CT-Radscore (NRI=
0.25, pNRI= 0.111, IDI= 0.17, pIDI= 0.006) based on the net
reclassification improvement (NRI) and integrated discrimination
improvement (IDI) analyses (Table S3). Furthermore, the

evaluation metrics, including positive predictive value (PPV),
negative predictive value (NPV), sensitivity, specificity, accuracy
(ACC), recall, F1 score, Matthews correlation coefficient (MCC), and
Kappa, also indicated that the COMB-Radscore exhibited optimal
predictive performance (Table S4).
Upon further analysis of the relationship between the COMB-

Radscore and treatment response, significant statistical differ-
ences in the COMB-Radscore were observed among the
different treatment responses. The groups with better treatment
responses (DCB, CR/PR, CR/PR/SD) exhibited lower COMB-
Radscore (Figs. S2e, 2e, and S3). The COMB-Radscore and
therapeutic response (DCB/NDB) of each patient in the training
and testing cohorts are illustrated in Figs. S2f and 2f,
respectively.
Furthermore, the predictive performance of COMB-Radscore

was compared to that of 10 serum inflammatory markers, and it
was found that COMB-Radscore outperformed all other markers
(Fig. S4a, b). Correlation analysis revealed no significant associa-
tion between COMB-Radscore and 10 serum inflammatory
markers (Fig. S4c).
Collectively, these results indicated superior performance of the

COMB-Radscore model in comparison to the other radiomic
models or serum inflammatory markers.

Clinical utility of the COMB-Radscore
To further explore the clinical applicability of the COMB-Radscore,
we conducted an analysis to compare the low and high COMB-
Radscore groups in terms of PFS, OS, and response to
immunotherapy. The Kaplan-Meier survival curves revealed
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significant differences in PFS (training cohort log-rank test p-
value < 0.0001; testing cohort log-rank test p-value= 0.00064) and
OS (training cohort log-rank test p-value= 0.00013; testing cohort
log-rank test p-value= 0.00019) between the low and high COMB-
Radscore groups (Fig. 3a, b). Patients in the low COMB-Radscore
group exhibited prolonged PFS and OS. In addition, a higher
proportion of patients with DCB, CR/PR, or CR/PR/SD were
observed within the low COMB-Radscore group compared to
the high COMB-Radscore group (Fig. 3c).
Univariate Cox regression analysis was performed on all baseline

clinicopathological variables to predict PFS and OS, followed by
multivariate Cox regression analysis, which included variables with

a p-value less than 0.05 to control for potential confounders. The
COMB-Radscore remained a powerful and independent prognostic
factor for predicting both PFS and OS (Tables S5–8).
In the PFS analysis, additional subgroup analyses were

conducted based on various clinical and pathological variables.
When stratified by factors such as gender, age, smoking status,
histological type, T stage, N stage, M stage, overall stage, number
of metastases, treatment strategy, and irAE, the COMB-Radscore
remained a statistically significant prognostic classifier in most
subgroups (Tables S9, 10).
Overall, our findings further confirm significant differences in

patient prognosis when stratified by the COMB-Radscore.
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Dynamic predictive ability of the COMB-Radscore
The performance of the COMB-Radscore in dynamically predicting
subsequent treatment efficacy was validated using the follow-up
18F-FDG PET/CT scans of patients. In this part of the study, 25
patients from the training and testing cohorts were included, all of
whom underwent follow-up 18F-FDG PET/CT scans 6 to 12 months
post-treatment. Based on disease progression within 6 months
after follow-up 18F-FDG PET/CT, we categorized the patients into
two groups: the NDB (Follow-up) group consisting of 11 patients
with disease progression and the DCB (Follow-up) group
consisting of 14 patients without disease progression. The detailed
procedures for validating the model’s dynamic predictive cap-
abilities are provided in the supplementary methods.
The ROC and PR curves demonstrated a favorable predictive

ability of the COMB-Radscore (Follow-up), yielding AUC values of
0.857 (p-value= 0.0026) for the ROC and 0.836 (p-value= 0.0046)
for the PR curves, respectively (Figs. 4a and S5c). The calibration and
decision curves also demonstrated good calibration and clinical
applicability of the COMB-Radscore (Follow-up) (Fig. S5a, b).
Likewise, the COMB-Radscore (Follow-up) exhibited strong perfor-
mance in other model evaluation metrics (Table S11). Significant
differences were observed among different subsequent treatment
outcomes with respect to the COMB-Radscore (Follow-up), with
lower levels observed in the DCB (Follow-up) group (Fig. S5d).
We analyzed the clinical utility of the COMB-Radscore (Follow-

up). PFS (Follow-up) was defined as the duration from the
initiation of 18F-FDG PET/CT follow-up scans to disease progres-
sion. Survival analysis showed a significant difference in PFS

(follow-up) between the low and high COMB-Radscore (Follow-up)
groups, with the low COMB-Radscore (Follow-up) group demon-
strating prolonged PFS (Follow-up) compared to its counterparts
(log-rank test p-value= 0.0036) (Fig. 4b). There was a higher
proportion of patients achieving DCB (Follow-up) in the low
COMB-Radscore (Follow-up) group compared to the other groups
(Fig. S5e).
Subsequently, we conducted further analysis of the dynamic

changes in COMB-Radscore. In the NDB (Follow-up) group, there
was a significant increase in COMB-Radscore based on follow-up
18F-FDG PET/CT images compared to the baseline. However, no
significant changes were observed in the DCB (Follow-up) group
(Fig. 4c).
Figure 4d illustrates the radiological responses and the

corresponding changes in COMB-Radscore for two representative
patients from the previously mentioned retrospective cohort.
Patient A underwent a baseline 18F-FDG PET/CT scan prior to

initiating first-line treatment, which yielded a baseline COMB-
Radscore of −2.34 (COMB-low). The best overall response (BOR) to
immunotherapy was a PR, classified as DCB, indicating that the
baseline COMB-Radscore effectively predicted Patient A’s
response to immunotherapy. After 9.73 months of treatment, a
follow-up 18F-FDG PET/CT scan revealed a radiological PR, with the
COMB-Radscore (follow-up) remaining stable at −2.38, showing
no significant change from the baseline. This stability suggests
that Patient A had a low risk of subsequent tumor progression and
could continue to benefit from immunotherapy. As anticipated,
Patient A continued to receive immunotherapy for an additional
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13.70 months, with regular radiological evaluations confirming PR
until they were lost to follow-up.
Similarly, Patient B also underwent a baseline 18F-FDG PET/CT scan

prior to initiating first-line therapy, resulting in a COMB-Radscore of
−2.76 (COMB-low). The BOR to immunotherapy was a PR, classified
as DCB, indicating that the baseline COMB-Radscore also successfully
predicted Patient B’s response to immunotherapy. After 9.87 months
of treatment, Patient B underwent a follow-up 18F-FDG PET/CT scan.
At this time, the follow-up COMB-Radscore had significantly
increased to 0.46 (COMB-high), indicating a high risk of subsequent
tumor progression, despite the radiological evaluation still showing a
PR at that time. As anticipated, disease progression was detected
during the follow-up CT scan after Patient B received two additional
cycles of immunotherapy.
These findings suggest that, compared to relying solely on

tumor size for radiological evaluation, the COMB-Radscore has the
potential to facilitate the early detection of disease progression in
patients.

Complementarity of COMB-Radscore and TPS-Lung
In this study, we further explored the spatial heterogeneity of the
predictive capabilities of TPS and COMB-Radscore. The results
showed that the TPS derived from biopsy specimens of primary
lung tumors, designated as TPS-Lung, demonstrated superior
predictive performance for immunotherapy efficacy compared to
TPS derived from other regions. Likewise, the COMB-Radscore
derived from primary lung tumors demonstrated superior
predictive performance for the efficacy of immunotherapy
compared to the COMB-Radscore derived from metastases at
other locations. Detailed results regarding spatial heterogeneity
are presented in the supplementary materials (Supplementary
Results 1, Figs. S6–S8, Tables S12, 13).

In this study, both the TPS-lung and COMB-Radscore showed
strong predictive capabilities for the efficacy of immunotherapy.
Consequently, we further explored the correlation and potential
complementarity between them. The correlation analysis revealed
no significant association between COMB-Radscore and TPS-Lung,
and there was no statistically significant difference in the
distribution of TPS-Lung between the low and high COMB-
Radscore groups (Fig. S9).
Subsequently, two cohorts were established from the training

and the testing cohorts. The first cohort, referred to as the COMB-
Radscore prediction failure cohort, consisted of NDB patients with
a low COMB-Radscore and DCB patients with a high COMB-
Radscore. In this particular cohort, the AUC (ROC) for TPS-Lung
was found to be 0.867 (p-value= 0.0002) (Fig. 5a). The second
cohort, known as the TPS-Lung prediction failure cohort, included
NDB patients with a TPS-Lung ≥ 50% and DCB patients with a TPS-
Lung <1%. Within this specific cohort, the AUC (ROC) for the
COMB-Radscore was calculated to be 0.926 (p-value= 0.0004)
(Fig. 5b). Furthermore, when combining both COMB-Radscore and
TPS-lung assessments, a more refined stratification of patients was
achieved (Figs. 5c and S10). Specifically, individuals classified as
COMB-low (low COMB-Radscore)+ TPS-Lung ≥50% demonstrated
significant benefits from immunotherapy in terms of a higher
proportion of DCB patients and longer PFS and OS. Conversely,
those categorized as COMB-high (high COMB-Radscore)+ TPS-
Lung <50% exhibited the opposite outcomes.
In the NSCLC population with a TPS < 50%, there is currently no

recognized biomarker to distinguish the patient population that
would benefit from immunotherapy monotherapy or combination
therapy. Therefore, we further evaluated the potential application
value of COMB-Radscore in this clinical scenario. Survival analysis
revealed that in the low COMB-Radscore group, combination
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therapy did not offer a long-term PFS benefit over monotherapy.
In contrast, patients in the high COMB-Radscore group who
received combination therapy experienced a significant improve-
ment in PFS compared to those on monotherapy. Detailed results
are presented in the supplementary materials (Supplementary
Results 2, Fig. S11). Subsequently, to develop an integrated model,
we created a new sub-training and sub-testing cohort by selecting
128 and 54 patients with TPS-Lung information from the training
and testing cohorts, respectively. In the sub-training cohort, an
integrated model named TPS-Radscore was developed using the
XGBoost algorithm by combining COMB-Radscore and TPS-Lung.
The predictive ability of TPS-Radscore was significantly improved
compared to COMB-Radscore or TPS-Lung alone. In the sub-
training and sub-testing cohorts, the AUC (ROC) values for
identifying DCB patients were 0.974 (p-value < 0.0001) and 0.888
(p-value < 0.0001), respectively (Fig. 5d). In the sub-testing cohort,
NRI and IDI analyses demonstrated that the TPS-Radscore
exhibited higher prediction accuracy than the COMB-Radscore
(Table S14). Furthermore, other model evaluation metrics, were
superior to those of COMB-Radscore as well (Table S15).

Biological basis of the COMB-Radscore
Radiogenomic analysis was conducted to explore the underlying
biological basis of the COMB-Radscore. First, gene set enrichment
analysis [17] (www.gsea-msigdb.org/gsea/index.jsp) was performed
to identify potential molecular pathways associated with the COMB-
Radscore. Significant enrichment in several immune-related mole-
cular pathways was observed in the COMB-low group. (Fig. S12a).
The TCIA cohort also exhibited similar findings (Fig. S12b).
Subsequently, we analyzed the differences in the immune

microenvironment between low and high COMB-Radscore patients
using IOBR [18], an immunology tool previously developed by our
research group. We calculated the four different immune pheno-
types (MHC molecules, effector cells, suppressor cells, and
checkpoints) using IPS [19]. The results showed that the COMB-
low group demonstrated higher scores for MHC molecules
(p= 0.049) and lower scores for checkpoints (p= 0.026) compared
to the COMB-high group (Fig. 6a). Additionally, we evaluated the
infiltration abundance of immune cells in patients using Cibersort
[20] and further analyzed the T cell functional status of the two
groups of patients using gene markers for cytolytic activity(CYT) [21]
and the T-cell-inflamed gene-expression profile (GEP) [22]. The
results revealed that the COMB-low group exhibited elevated levels
of CD8+ T cells (p= 0.019) and M1 macrophages (p= 0.065), while
displaying decreased levels of M2macrophages (p= 0.011) (Fig. 6b).
Furthermore, the COMB-low group demonstrated higher CYT
(p= 0.032) and an enhanced T-cell–inflamed GEP score
(p= 0.0051) compared to the COMB-high group (Fig. 6c). Similar
results were also observed in the TCIA cohort (Fig. S13).
The composition of CYT genes was analyzed, revealing a

significantly higher expression level of the PRF1 (p= 0.031) gene
in the COMB-low group than in the COMB-high group (Fig. S14a).
However, no significant difference was observed in the expression
level of the GZMA (p= 0.26) gene. Similarly, we examined the
expression levels of the immune checkpoint PDCD1 (p= 7.5e-05)
and found a significant upregulation in its expression within the
COMB-low group. Furthermore, correlation analysis demonstrated
a significant negative association between PRF1 and PDCD1 with
respect to the COMB-Radscore (Fig. S14c). Similar results were also
observed in the TCIA cohort (Fig. S14b, d).
To further validate the disparities in CD8+ T cell quantity and

function within the tumor immune microenvironment between
the two patient groups, we conducted multiplex immunofluores-
cence staining on pathological tissue sections from 31 patients in
the training and testing cohorts. The results showed a higher
density of CD3+ CD8+ T cells, CD3+ CD8+ PRF1+ T cells,
CD3+ CD8+ PD1+ T cells, and CD3+ CD8+ PD1+ PRF1+
T cells (all p < 0.05) in the COMB-low group compared to

the COMB-high group (Fig. 6d). These findings suggest that
patients with a low COMB-Radscore exhibit an immune-inflamed
tumor microenvironment and are more likely to benefit from
immunotherapy.

DISCUSSION
Previous studies have demonstrated the effectiveness of radio-
mics as a non-invasive method for predicting the response of
NSCLC patients to anti-PD1/PDL-1 therapy. Wu et al. extracted
radiomic features from thin-slice chest CT images of NSCLC
patients before immunotherapy and used LASSO and stepwise
logistic regression to establish a combined radiomic signature for
predicting immunotherapy response [23]. The combined radiomic
signature identified DCB patients with an AUC (ROC) of 0.82 and
0.75 in the training and validation cohorts, respectively.
Radiomics offers unique insights into tumor biology and

treatment responses. However, previous radiomics studies often
focused on single images or single VOI, difficult to comprehen-
sively characterize the heterogeneity of tumors and their tumor
microenvironment. Moreover, it is crucial to meticulously and
transparently report all parameters used in the radiomics work-
flow, including pre-processing and PyRadiomics steps, to ensure
standardized methodologies [24]. This will guarantee the con-
sistency of feature extraction, extremely improve model robust-
ness and reproducibility, facilitate comparisons across studies.
Therefore, in this study, we developed an 18F-FDG PET/CT
radiomics machine learning model using multi-image fusion and
multi-VOI segmentation strategies to predict immunotherapy
response, and reported the parameters and methodologies used
in the radiomics workflow minutely and clearly, including
scanning equipment, pre-processing, standardization, fusion,
segmentation, feature extraction, feature filtering, and modeling.
Results showed that the COMB-Radscore, which was developed by
integrating radiomic features from PET, CT, and PET/CT images,
had the most satisfactory predictive performance.
In machine learning, imbalanced data in classification tasks can

result in decreased recognition capability for the less numerous
classes, thereby affecting the overall performance of the model. In
this study, both the training and testing cohorts exhibited an
imbalance in sample categories, with a DCB to NDB ratio of
approximately 2.4:1. As a result, during model training, the
algorithm may have developed a bias favoring the identification
of DCB patients, which in turn led to reduced performance in
recognizing NDB patients. Ultimately, this bias contributed to a
decrease in AUC(PR) within the testing cohort.
Additionally, we performed dynamic longitudinal imaging

analysis and found that the COMB-Radscore has the potential to
become a dynamic biomarker that can guide subsequent
immunotherapy. However, it is important to note that only 25
patients underwent dynamic longitudinal imaging analysis
because 18F-FDG PET/CT is not commonly used in clinical follow-
up. Therefore, the effectiveness of the COMB-Radscore in this
clinical scenario remains to be prospectively validated.
Tumor heterogeneity is a prevalent and significant characteristic

in the processes of tumor initiation and progression. Hong et al.
conducted an analysis of PD-L1 expression in 1,398 NSCLC
patients to examine its heterogeneity and its effects on the
efficacy of immune checkpoint inhibitor (ICI) therapy [9]. In this
study, we evaluated the predictive value of PD-L1 expression
across various biopsy sites for immunotherapy in NSCLC patients.
Our findings indicated that PD-L1 expression in lung biopsy sites
demonstrated optimal performance in predicting the outcomes of
ICI therapy. However, we observed no significant association
between PD-L1 expression in other metastatic biopsy sites and
patient responses to ICI therapy or overall survival. This finding is
not exactly identical to the conclusions drawn by Hong et al.,
which may be attributed to the significant differences in the
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composition of the metastatic sites within our study cohort
(n= 18; eight from the pleura, four from the brain, three from
muscle, three from bone, and three from the liver). Furthermore,
significant heterogeneity was observed in the radiomic features of
primary lung tumors, liver metastases, and adrenal metastases.
This reminds us that extending models based on single-organ
radiomic features to other metastatic tumors remains a significant
challenge.
Single-modal data do not fully describe the status of the cancer.

The integration of multi-modal data, such as tissue pathology,
radiology, genomics, and clinical information, is expected to
further advance the development of precision oncology [25]. In
this study, we have integrated the data from the COMB-Radscore
and TPS-Lung to develop an integrated model called TPS-
Radscore, which has further improved prediction performance.
The data-driven radiomics approach essentially fails to elucidate

the underlying biological mechanisms [26]. The disconnect
between radiomic models and their biological implications greatly
limits their widespread clinical application. Therefore, the relation-
ship between radiomics and biological significance has garnered
growing attention from researchers. Sun et al. developed a
radiomics score for tumor-infiltrating CD8+ cells, which was
correlated with tumor immunophenotype, pathology, and clinical
outcomes [27].
In this study, we conducted radiogenomic analysis, and the

observed results demonstrate that COMB-Radscore is associated
with the abundance and functional status of CD8+ T cells, which
potentially elucidates the underlying mechanism for the accurate
prediction of immunotherapy efficacy in NSCLC patients by
COMB-Radscore. However, further validation through additional
foundational experiments is necessary to verify these conclusions.
There were some limitations in our research. First, the patient

data were obtained from a single-center cohort, with the majority
of patients hailing from a specific geographic region in China. The
distribution of their clinical and pathological characteristics may
differ from global trends, and the generalizability of the model
should be further validated through external verification. Second,
this study was retrospective; therefore, the model may be affected
by selection bias. In addition, the PFS and OS follow-up data we
collected inevitably contain right censoring, which is particularly
serious in the OS data. This may lead to an underestimation of the
true survival rate of patients. In this study, RECIST 1.1 was
employed to evaluate the efficacy of immunotherapy. However, it
is essential to consider iRECIST for assessing immunotherapy
outcomes, as it incorporates novel response patterns to ICI,
including pseudoprogression and hyperprogression, despite its
limited adoption in clinical practice.

CONCLUSIONS
In summary, our research involved developing and validating a
machine-learning model based on intratumoral and peritumoral
18F-FDG PET/CT radiomics. The model demonstrates excellent
predictive ability in forecasting the response of NSCLC patients to
immunotherapy, which may provide precise, personalized, and
dynamic decision support for the treatment of NSCLC patients.
However, it should be noted that these findings require further
validation through prospective studies.
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10.7937/K9/TCIA.2016.JGNIHEP5) and TCGA-LUSCdatasets (https://doi.org/10.7937/
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