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BACKGROUND: Endometrial cancer (EC) is the 6th most common cancer among women worldwide. No effective non-invasive
screening methods or approved blood biomarkers for EC exist. Previous research explored Attenuated Total Reflection-Fourier
Transform Infrared (ATR-FtIR) and Raman spectroscopies, using dried blood plasma. Fresh, ‘wet’, blood samples, that might provide
faster results, have not been investigated. This study compared ATR-FtIR and Raman spectroscopies on ‘wet’ and dry blood plasma
samples for EC detection. It also conducted a preliminary exploration into their diagnostic potential for EC in high-risk individuals
with polycystic ovary syndrome (PCOS).
METHODS: ‘Wet’ and dry blood plasma samples from participants with EC, PCOS and healthy controls were analysed using ATR-FtIR
and Raman spectroscopies. Machine learning algorithms and multivariate statistical analyses assessed spectral variance across
datasets to evaluate the techniques’ diagnostic performance.
RESULTS: Raman analysis of ‘wet’ plasma achieved 82% accuracy in detecting EC, while ATR-FtIR spectroscopy reached 78%. When
combined, diagnostic accuracy reached 86%. In comparison, dry plasma analysis with ATR-FtIR detected EC with 83% accuracy.
Spectral similarities were found between EC and PCOS.
CONCLUSIONS: Our study suggests that ATR-FtIR and Raman spectroscopies could revolutionise early diagnosis of EC. More
research is required to validate these promising findings.
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BACKGROUND
Endometrial cancer (EC) ranks as the 6th most common cancer in
women worldwide, with over 417,000 new cases diagnosed in
2020 [1]. A 60% increase in EC incidence rates in the UK from the
1990s to 2018 [2] and the predicted 12% rise in mortality rates
between 2023–2025 and 2038–2040 [3] highlight the growing EC
disease burden.
Several risk factors have been identified for EC. The leading theory

behind endometrial carcinogenesis points to an increased lifetime
exposure to oestrogen, which stimulates endometrial proliferation
[4]. This is a predominant feature in obesity and metabolic
syndromes with insulin resistance/hyperinsulinaemia, such as poly-
cystic ovary syndrome (PCOS) [4]. Individuals with PCOS are three
times more likely to develop EC compared to individuals without
PCOS, with the risk increasing to almost six times in pre-menopausal
women [5]. Additionally, a genetic predisposition to EC is seen in
individuals carrying mutations in mismatch repair genes (MLH1,
MSH2, MSH6, PMS2), associated with Lynch syndrome [6].

EC has traditionally been classified into two main histological
types, each associated with different sets of risk factors: Type I
(endometrioid adenocarcinoma), the most common form, which is
linked to unopposed oestrogen exposure, and Type II (non-
endometrioid, including serous and clear cell carcinomas as well
as squamous cell carcinoma and carcinosarcoma), which is non-
oestrogen dependent and tends to display more aggressive
behaviour, with a higher risk of extra-uterine disease at first
presentation [7–9]. Recent advances in the genomic and
proteomic characterisation of EC, particularly through The Cancer
Genome Atlas (TCGA) project [10], have led to a refined
understanding of its molecular landscape and the identification
of four EC molecular subtypes. This has facilitated the integration
of pathological and molecular classifications, providing more
accurate prognostic information and enabling tailored treatment
strategies. Approximately 67% of patients with EC present at early
stage, where the prognosis is excellent [11]. In contrast, patients
diagnosed with advanced disease have a 5-year survival rate of
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~15% [12, 13]. In addition, diagnosing EC at stage I incurs total
5-year diagnostic and treatment costs that are almost three times
lower than those for stage III diagnoses [13]. This highlights the
significant benefits of early disease detection and screening, not
only for improving patient outcomes but also for reducing
healthcare costs [12, 13].
While endometrial surveillance is recommended for patients

with Lynch syndrome, surveillance programmes for these patients
vary across countries and centres, survival data are limited, and
data are lacking on the impact of surveillance on mortality
reduction [6]. Conversely, there are no established population-
level EC surveillance programmes globally, nor for individuals with
risk factors such as high body mass index (BMI) or PCOS. The
assessment of endometrial thickness using transvaginal ultra-
sonography has been investigated as a non-invasive screening
strategy [14]. However, the 5 mm cut-off for endometrial thickness
has shown poor diagnostic accuracy for the screening of
asymptomatic postmenopausal women, who would be the likely
primary target of such programmes, alongside high-risk patients
[15]. Endometrial biopsy is more effective, but it is an invasive
procedure and this limits its application as a population-level
screening tool [4, 16]. Several blood-based prognostic biomarkers
have shown potential for risk stratification in EC, including
proteins such as cancer antigen 125 (CA125) and Human
Epididymis Protein 4 (HE4), as well as circulating cell-free tumour
DNA levels [17, 18]. However, none of these biomarkers is
currently approved for routine clinical use [19]. There is therefore
an urgent need for research into less invasive, inexpensive
diagnostic and screening techniques for EC.
A promising alternative approach to conventional EC diagnostic

methods is the non-invasive approach of blood plasma analysis
using vibrational biospectroscopy techniques. Rapid and non-
destructive, ATR-FtIR and Raman spectroscopies utilise the
absorption and inelastic scattering interactions, respectively,
between incident light and chemical bonds within a biological
sample [20–22]. Here, the wavelengths of light (photon energies)
absorbed or inelastically scattered by a sample are dependent on
the specific discrete ground state and fundamental vibrational
frequencies of the chemical bonds present [23]. Spectral patterns
of ATR-FtIR absorption bands and Raman scattering bands are
thus unique to the biological sample, providing a digital
‘molecular bio-fingerprint’. This is subject to change upon
alterations in the chemical bonds present, such as in the case of
cancer development [24].
Considered complementary in nature, ATR-FtIR and Raman

spectroscopies use a mid-infrared (MIR) and near-infrared (NIR)/
visible light source, respectively. These two spectroscopic
techniques feature differing quantum selection rules, whereby
one technique enables interactions with certain chemical bonds
undetected or less detected by the other [23]. Chemical bonds are
considered infrared-active and detectable using ATR-FtIR spectro-
scopy when their absorption of incident light increases the
amplitude of molecular vibration, sufficiently to induce a change
in the bond dipole moment [22]. Conversely, chemical bonds are
Raman active if incident radiation can excite them to a virtual
state, causing a change in the molecule polarisability [22].
Blood samples are an attractive choice for spectroscopy analysis

given the associated low procedural costs, the high patient
acceptability and minimally invasive nature of sample collection,
which makes them ideal candidates for screening test development.
Preliminary studies demonstrated promising results using ATR-

FtIR spectroscopy with dried blood plasma samples for EC
detection [25–28]. Indeed, the study of biofluids using spectro-
scopy is a rapidly advancing field, with potential applications
spanning not only oncology but also a wide array of acute and
chronic medical conditions [29–37].
The highly infrared (IR)-active nature of water molecules, with

broad absorption bands, is commonly thought to conceal the

spectral bands of important chemical bonds [38]. Thus, the use of
dried blood plasma over ‘wet’ samples has been conventionally
exclusively favoured when utilising ATR-FtIR spectroscopy for
cancer detection [25–28]. In the context of rapid diagnosis and
development of EC screening, however, the use of fresh, ‘wet’,
blood samples would be more advantageous. ‘Wet’ analysis would
potentially increase speed and efficiency of sample processing,
eliminating the additional time, resources and costs required for
sample dehydration. Additionally, fresh analysis protocols could
allow future development of tools for in vivo bedside diagnosis.
An evaluation of ATR-FtIR spectroscopy diagnostic performance
on ‘wet’ blood plasma samples has not previously been conducted
for EC patients. Similarly, Raman spectroscopy has been used
successfully for EC detection in biopsied endometrial tissue
samples [39], and for detection of malignancies such as breast,
cervical and oesophageal cancer [40–42]. Recent studies have also
demonstrated its potential for non-invasive investigation of
carcinogenesis, through the identification of markers associated
with epithelial-mesenchymal transition (EMT) by means of surface-
enhanced Raman spectroscopy (SERS) [43, 44]. However, Raman
has not previously been applied to EC detection using ‘wet’ blood
plasma samples.
In this study, we directly compare the efficacy of ATR-FtIR and

Raman spectroscopies applied to both ‘wet’ and dry blood plasma
for EC detection. Our primary aim is to determine whether one
technique is superior or if their combination can synergistically
enhance diagnostic performance. This evaluation is necessary to
inform future developments in EC screening and diagnosis. We
introduce a novel approach for processing spectral data from both
techniques, enabling a comprehensive analysis of their combined
performance. To our knowledge, this is the first study to utilise
‘wet’ alongside conventional dry blood plasma to assess the
diagnostic capabilities of independent and combined ATR-FtIR
and Raman spectroscopies for EC. Furthermore, this research
conducted a preliminary exploration into their diagnostic poten-
tial for EC in high-risk individuals with PCOS, a context that has not
previously been investigated.

MATERIALS AND METHODS
Study design
The primary aim of this study was to compare diagnostic abilities of ATR-FtIR
and Raman spectroscopies using ‘wet’ and dry plasma, examining the
spectroscopic techniques both independently and in combination. We also
conducted a preliminary study of whether patients with PCOS exhibited any
characteristic spectral pattern, more consistent with EC or with controls.
Blood plasma samples were obtained from a cross-sectional study

conducted within the division of Lifespan and Population Health at
Nottingham University Hospitals NHS (National Health Service) Trust in the
United Kingdom. Our study population comprised 54 participants, 22
patients with EC and 32 controls. The control group consisted of 14 healthy
participants and 18 participants with PCOS. The sample size was set at 54
participants as sample sizes between 24 and 50 are usually recommended
for single-centre feasibility studies [45–47].
Participants were recruited from Gynaecology clinics at Nottingham

University Hospitals NHS Trust based on three cohorts as follows: (i) if they
were undergoing treatment for endometrioid adenocarcinoma of the
endometrium; (ii) if they were undergoing surgery (hysteroscopy,
laparoscopy, or laparotomy) for a benign reason, or (iii) if they were
attending gynaecological outpatient clinics for investigation and manage-
ment of PCOS. Patients included in the cancer group had endometroid
adenocarcinoma of endometrium confirmed by a previous biopsy and
gold-standard histopathological analysis. Participants with PCOS were
diagnosed using the Rotterdam criteria (2004) [48]. Other causes of oligo or
anovulation were excluded from this study (e.g. congenital adrenal
hyperplasia, thyroid disorder or pituitary causes). Patients on hormonal
treatment, patients who had previously undergone chemotherapy or
radiotherapy and patients with non-endometrioid histology of EC were
also excluded. The following demographic details were recorded and
analysed as potential confounding factors: age, body mass index (BMI) and
blood pressure. The concept map of this study is presented in Fig. 1.
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Sample preparation
Peripheral venous blood samples were collected from each patient in 2014
using standard ethylenediaminetetraacetic acid (EDTA). Whole blood was
centrifuged at 1000 rcf (relative centrifugal force) for 10min, in ambient

conditions, to separate cells from the plasma; the plasma was stored at
−80 °C until spectral analysis in 2020–2024. Immediately prior to spectral
analysis, the frozen blood plasma samples were thawed for 30min at room
temperature. For each patient sample, a 100 μL plasma droplet was
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Fig. 1 Concept map of the study. EC endometrial cancer, ATR-FtIR Attenuated Total Reflection-Fourier Transform Infrared, PCA principal
component analysis, PCOS polycystic ovary syndrome. Created in BioRender: https://BioRender.com/d80g714.
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pipetted onto an aluminium tape (RS Advance Tapes AT502) covered,
borosilicate glass microscope slide (Surgipath® X-tra®, Leica), for immedi-
ate ATR-FtIR ‘wet’ analysis and 100 μL droplet was pipetted onto a fused
silica coverslip ready for immediate Raman ‘wet’ analysis. A further 100 μL
blood plasma aliquot was deposited on an aluminium tape-covered
borosilicate glass microscope slide for the dry ATR-FtIR analysis. The
samples for dry analysis were smeared over a 15mm2 area and allowed to
air-dry at room temperature for a minimum of 24 h, under dust cover, prior
to spectral measurement.

Attenuated total reflection Fourier-transform infrared (ATR-
FtIR) spectral acquisition
Infrared spectra were obtained from blood plasma samples using a Bruker
Tensor 27 FtIR spectrometer equipped with a Helios ATR diamond crystal
attachment, of 250 µm diameter aperture, which was pressed onto the
sample to be analysed (Bruker UK Ltd, Coventry), operated via OPUS
(version 5.5) software. The Helios was prior sealed with aluminium tape (RS
Advance Tapes AT502) to minimise ambient air ingress and was supplied
with purified air from which CO2 and water had been excluded (Parker
filtration).

Wet blood plasma samples. Two spectral acquisitions were recorded per
wet blood plasma sample, accumulating 360 scans in 5min per each
acquisition, with 4 cm−1 spectral resolution, 4 mm internal aperture and
10 kHz mirror step velocity. The ATR diamond crystal was rinsed with de-
ionised water and cleaned with 99% isopropyl alcohol (Fisher Chemical™)
between patient samples. A background spectrum, without any sample in
place, was taken prior to each new sample analysis.

Dry blood plasma samples. The dry blood plasma measurements were
collected from the periphery of the samples to account for the ‘coffee-ring’
effect [49] that occurred due to capillary flow, a common phenomenon when
liquid droplets are dried on a surface. Spectra were acquired from 20 different
locations, with a 4 cm−1 resolution, aperture of 4mm and 10 kHz mirror step
velocity, accumulating 144 scans in 2min per each measured point. The ATR
diamond crystal was cleaned between patient samples with de-ionised water,
followed by isopropyl alcohol. A background spectrum was taken prior to
each new patient sample analysis and at every 10min interval.

Raman spectroscopy spectral acquisition
The Raman instrument consisted of an inverted optical microscope (Nikon
Eclipse-Ti) equipped with an automated sample stage (H107 with Proscan
II controller, Prior Scientific) and a Raman spectroscopy module. For Raman
spectroscopy, a 785 nm laser (Toptica, XTRA) was focused with a 60x/
0.9 NA (numerical aperture) oil immersion objective. Laser power at the
sample was 120mW. Back-scattered light from the sample was focused
onto a silica glass optical fibre connected to a spectrometer (77200, Oriel,
Newport, with a 1000 lines/mm ruled diffraction grating) equipped with a
cooled back-illuminated deep depletion charge-coupled device (CCD)
(DU401A Andor Technology). For each blood plasma sample, Raman
spectra were collected as 0.5 × 0.5 mm2 raster scans with a 50 μm x-y
resolution. Each point spectrum was acquired with a 3 s exposure time,
and all spectra acquired from within the same raster scan were averaged
into a single, high signal-to-noise ratio Raman spectrum. Two high signal-
to-noise ratio Raman spectra were recorded for each specimen, each
spectral acquisition lasting 5.20 min.

Computational analysis
Pre-processing methods. The pre-processing of ATR-FtIR spectral data for
both ‘wet’ and dry blood plasma samples, as well as of the Raman spectral
data for ‘wet’ blood plasma samples, was performed using Quasar open-
source data analysis software, a variant of Orange data visualisation and
machine learning platform [50]. The ATR-FtIR ‘wet’ and dry raw spectra
were firstly truncated to include only the wavenumber range
1800–900 cm−1, known as the ‘bio-fingerprint region’. Atmospheric gas
correction was performed in Quasar to minimise any adventitious water
vapour and CO2 atmospheric spectral artefacts still present. The spectra
were baseline corrected using an asymmetric least squares method
(smoothing constant of 1000, 10 maximum iterations and 0.05 weighting
deviations). Vector normalisation was subsequently applied. The Raman
spectra were wavenumber-calibrated using the bands from a polystyrene
sample prior to each measurement. Raman spectra were truncated to the
wavenumber range of 1800–750 cm−1, and a rubber band baseline

correction was applied. Normalisation was performed by scaling the
Raman spectra to ensure the CH2 band at 1450 cm−1 was kept constant
across the dataset (integration between 1378.1 cm−1 and 1490.1 cm−1).
The ATR-FtIR and Raman spectra were pre-processed separately and then
merged using a custom Python code within the Quasar environment to
generate a combined dataset for classification analysis. The methods for
pre-processing of the combined ATR-FtIR/Raman spectra followed the
steps described above in this Section, except for the normalisation
procedure, which was as follows. In the combined model, vector
normalisation was applied to both the ATR-FtIR and the Raman spectra
pre-concatenation, to correct for differences in absorbance intensities
across spectra and allow merging and direct comparison between the two
techniques.

Unsupervised PCA analysis and supervised classification methods. Each
spectroscopic technique’s spectra were analysed using PCA for unsuper-
vised feature identification and supervised classification.
In the unsupervised analysis, PCA was applied to the pre-processed ATR-

FtIR and Raman spectra of cancer patients and controls, without
predefined classes or target labels (cancer or control), to identify spectral
patterns and clustering. This approach facilitated better understanding of
intrinsic variance in the datasets. Readers are referred to [51] for a
comprehensive description of PCA.
In the supervised classification, patients were randomly allocated to a

training group (70%) and a testing group (30%). The training dataset was
used for model construction, while the testing dataset for model
evaluation, ensuring classifiers were evaluated on spectra from patients
not seen during training, as in [27]. This randomisation was repeated ten
times, generating ten independent training/testing iterations, to assess the
impact of patient sampling on classifiers' performance and reproducibility
of the results. After training/testing groups were created, class labels
(cancer or control) were assigned according to the gold-standard
histopathological analysis and spectral pre-processing was conducted.
PCA was applied to reduce the dimensionality of all the ATR-FtIR and
Raman pre-processed spectral data, while retaining 95% variance. To
prevent overfitting, classifiers were trained on the PCA-reduced dataset
with 10-fold cross-validation. Four supervised classifiers were explored:
Random Forest (RF), Logistic Regression (LR), Support Vector Machine
(SVM) and k-Nearest Neighbors (kNN) algorithm. For methods’ details, we
refer the reader to [52, 53], noting that the built-in classifiers from Quasar
were used in this study. The trained models were subsequently tested on
the residual unseen 30% patient dataset in each iteration.

Selection of spectral biomarkers. Following the supervised classification,
the ‘Rank’ scoring function in Quasar was used to select a panel of ten
classifying wavenumbers. The ‘Rank’ function applies selected machine
learning methods (e.g. Random Forest or Logistic Regression) to score
wavenumbers, according to their correlation with a target class [54].
Therefore, the wavenumbers with the highest score best correlate with
the cancer class, allowing classification between cancers and controls.
Among the machine learning methods explored in this paper, Random
Forest was alone used with the ‘Rank’ function in Quasar to select a panel
of ten wavenumbers, because its overall classification accuracy was
superior to that of Logistic Regression and comparable to the overall
accuracy of SVM and kNN classifiers, across all spectroscopic analyses.

Statistical analysis
Statistical analysis was performed using Quasar (version 1.9.0) and MATLAB
(version R2023a). Validation of spectral consistency of the PCOS and
healthy participants’ groups, prior to combining them in a single control
group, was performed by multivariate analysis of variance (MANOVA) test.
The MANOVA tests were applied to the pre-processed and PCA-
transformed spectra of the PCOS and healthy participants’ groups in the
ATR-FtIR and Raman analyses. Sensitivity, specificity and accuracy were
calculated for each of the ten independent training/testing iterations for all
classifiers considered. The mean, standard deviation (SD), confidence
intervals (CI), and coefficients of variation for each metric were generated.
The classifiers’ performance was analysed and visualised with receiver
operating characteristic (ROC) curves and confusion matrices. The area
under the curve (AUC) values were calculated. Significant p values were
subsequently obtained through analysis of variance (ANOVA) tests, applied
to each wavenumber in the classifying panels. Clinical differences between
cancer and control groups were considered, and p values calculated using
a t-test for age comparison and a Pearson’s chi-squared test of
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independence for BMI and blood pressure, as in [28]. Statistical significance
was determined using a p value threshold of 0.05 for all analyses.

RESULTS
Participant Demographics
Patients’ characteristics are summarised in Table 1. The EC group
was significantly older than the control group (mean age: 63
years compared to 39 years, p < 0.0001). Within the control
group, 18 patients with PCOS had a mean age of 32 years
(SD= 6) and 14 healthy participants had a mean age of 48 years
(SD= 15). The cancer group had higher blood pressure levels
than the control group (p= 0.020), conversely, there was no
statistically significant BMI difference between cancers and
controls (p= 0.274). Disease stage was reported according to
the International Federation of Gynaecology and Obstetrics
(FIGO) 2009 system [55] as follows: 5 patients had stage IA EC
cancer, 7 patients had stage IB, 6 patients had stage IIA, 1 patient
had stage IIB, 1 patient had stage IIIA and 2 patients had stage
IIIB; there were no patients with stage IV.

Unsupervised exploratory analysis
The comparison of spectra from PCOS individuals with spectra
from healthy participants showed no statistically significant
differences, based on MANOVA tests. These findings confirm the
consistency of the dataset within the control group.
The MANOVA tests’ statistical output, score plots and pre-

processed mean spectra of PCOS and healthy individuals are
presented in Fig. S1 and S2, in the Supplementary Materials section.
The unsupervised analysis with PCA was then conducted on the

pre-processed ATR-FtIR and Raman spectra of ‘wet’ and dry blood
plasma samples from control and cancer participants. Figure 2
depicts the raw and pre-processed spectra for both ATR-FtIR and
Raman, control and cancer datasets. The unsupervised analysis
was also used to further explore the characteristics of PCOS
spectra within the control group (Figs. 3 and 4).
While the scatter plots in Fig. 3 reveal some overlap between

blue (control) and red (cancer) data points, distinct patterns of
separation between cancer and control clusters are present.
Spectral clustering is also evident in Fig. 4. Here, the control group
dataset is further split into healthy participants (in blue) and

patients with PCOS (in green), to observe the relationship
between PCOS spectra and cancer/control spectra. The overlap
of green and red data points highlights spectral similarities
between the PCOS and the cancer groups in all scatter plots.

Supervised analysis of independent and combined ATR-FtIR
and Raman for EC diagnosis
‘Wet’ blood plasma analysis using independent and combined ATR-
FtIR and Raman spectroscopies. The EC diagnostic abilities of ATR-
FtIR and Raman Spectroscopy of ‘wet’ blood plasma were explored
with the supervised classification analysis in two ways: first,
independently and then in combination. A comprehensive account
of test performance for each of the ten training/testing iterations is
provided in Supplementary Tables 1–4. Here we report the
averaged values of the ten training/testing iterations for each
statistic. Figures 5, 6a, b summarise the diagnostic performance of
independent ATR-FtIR and Raman analysis of ‘wet’ blood plasma.
The highest diagnostic performance from ‘wet’ samples was
achieved with the kNN classifier for the ATR-FtIR analysis (85%
sensitivity, 74% specificity, 78% accuracy) and with the SVM
classifier for the Raman analysis (81% sensitivity, 84% specificity,
82% accuracy). The ability to diagnose EC by combining both the
ATR-FtIR and Raman ‘wet’ blood plasma spectral data together,
using spectra ‘concatenation’, is reported in Fig. 6c. SVM applied to
the concatenated spectral analysis was the best-performing
classifier, detecting EC with 84% sensitivity, 88% specificity and
86% overall accuracy.

Comparison of ‘wet’ and dry blood plasma analysis using ATR-FtIR
spectroscopy for EC diagnosis. Figure 6a presents sensitivity,
specificity, and accuracy ranges for both dry and ‘wet’ blood
plasma samples analysed using ATR-FtIR spectroscopy. Detailed
results for the ‘wet’ samples are reported in Fig. 5. For dry blood
plasma, ATR-FtIR achieved sensitivities of 79% (SVM, SD= 12), 75%
(RF, SD= 7), 76% (kNN, SD= 8), and 62% (LR, SD= 11).
Specificities were 86% for SVM, RF, and kNN (SD= 6, 4, and 5,
respectively), and 66% for LR (SD= 13). AUC values were 90%
(SVM, SD= 7), 89% (RF, SD= 4), 88% (kNN, SD= 4), and 71% (LR,
SD= 10). Overall accuracies were 83% (SVM, SD= 5), 82% (RF,
SD= 4), 82% (kNN, SD= 3), and 64% (LR, SD= 8).

Selection of spectral biomarkers. Further analysis of the spectral
data from both ATR-FtIR and Raman techniques was conducted to
identify a panel of classifying spectral biomarkers. Although the
classifying wavenumbers varied across the ten training/testing
iterations, recurring peaks enabled the identification of spectral
‘regions of interest’. Statistically significant spectral ‘regions’, along
with their recurring wavenumbers and p values, are presented in
Fig. 7. The centre wavenumbers for these ‘regions’ in both ATR-
FtIR and Raman spectroscopies of ‘wet’ and dry blood plasma are
summarised in Table 2.
For the ATR-FtIR dataset, the predominant markers for EC were

found in the lipid and in the protein regions. Conversely, Raman
spectral markers of EC were mainly contributed by the nucleic
acids’ bands and by proteins’ and collagen’s bands. Similar results
were obtained in the combined ATR-FtIR-Raman analysis, where
the absorption peaks appeared consistent with those identified in
the independent analyses: the spectra biomarkers contributed
mainly by ATR-FtIR are in the lipids’ and proteins’ regions (1725,
1485 cm−1 and 1665, 1515, 1335 cm−1, respectively), while the
spectral markers contributed by Raman are mainly in the nucleic
acids’ (1481, 1391 and 1061 cm−1), carbohydrates’ (911 cm−1) and
Amide II (1511 cm−1) regions.

DISCUSSION
This study primarily aimed to investigate the EC detection abilities of
ATR-FtIR and Raman spectroscopies using ‘wet’ and dry blood plasma.

Table 1. Patient characteristics.

Patient
characteristics

Cancers
(n= 22)

Controls
(n= 32)

All (n= 54)

Age in years p < 0.0001

Mean (SD) 63 (10) 39 (13) 49 (17)

>50 20 6 26

<50 2 26 28

Weight (BMI) p= 0.274

Underweight
(<18)

0 0 0

Normal weight
(18.5–24.9)

1 1 2

Overweight
(25–29.9)

8 17 25

Obese (30–39.9) 11 14 25

Severely obese
(>40)

2 0 2

Blood pressure p= 0.020

Normotension 6 19 25

Hypertensiona 16 13 29

SD: standard deviation, p: p value.
aDefined as clinic reading ≥140/90 mmHg [49].
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The independent Raman analysis of ‘wet’ blood plasma with the
SVM classifier achieved 82% overall accuracy, displaying higher
detection rates for EC compared to the ‘wet’ blood plasma analysis
with ATR-FtIR (78% overall accuracy with kNN). The ‘wet’ Raman
analysis results were comparable to the dry blood plasma analysis
using ATR-FtIR, which detected EC with 83% overall accuracy (SVM
classifier). Notably, the combined ATR-FtIR-Raman approach
exhibited the highest classification accuracy at 86% for ‘wet’
samples, outperforming the individual techniques.
The identification of spectral biomarkers for EC using ATR-FtIR

and Raman spectroscopies highlights the distinct contributions of
each technique. ATR-FtIR primarily revealed spectral biomarkers
for EC in the lipids’ bands (at 1733 cm−1 and 1443 cm−1) and
protein regions (Amide I, Amide II and Amide III). Conversely, the
spectral bands selected by Raman spectroscopy originated mainly
from the nucleic acids (at 1317, 1279, 1090, 1071 cm−1) and from
proteins and collagen’s bands in the Amide III region (1260,
1241 cm−1). The complementary nature of these methods
becomes apparent in the combined analysis. Here, almost
mutually exclusive bands are seen, which are also consistent with
the absorption peaks identified in the independent ATR-FtIR and
Raman analyses. Importantly, while ‘wet’ and dry blood plasma
samples share some spectral features, the significant differences in

specific biomarker regions highlight the importance of the blood
plasma sample hydration state in spectral analysis.
The association between the presence of endometrial cancer

(EC) and alterations in lipid content, changes in protein secondary
structure, and shifts in DNA and RNA stretching vibrations has
been previously reported [25–28, 32, 56, 57]. These changes likely
reflect fundamental biochemical alterations associated with the
altered metabolic and proliferative states of cancer cells in
tumorigenesis. Dysregulated lipid metabolism, including increased
lipid uptake, lipogenesis, and lipid turnover, has been observed in
cancer cells and may contribute to tumour growth and invasive-
ness [58–60]. Additionally, the protein dysregulation of cancer
cells, including those involved in cellular signalling and structural
integrity, may explain the spectral differences in protein bands
between cancer and control groups [61, 62]. Finally, cancer cells
exhibit high proliferation rates and increased nuclear-to-
cytoplasmic ratios, as elevated cell division rates lead to
upregulated nucleic acid synthesis and turnover [63–66]. This
enhanced nucleic acid activity, crucial for rapid cell division, could
explain the observed spectral changes in the nucleic acid regions.
Taken together, these findings highlight how ATR-FtIR and Raman
spectroscopies could provide insights into the complex biochem-
ical alterations that occur in cancer development.
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The superior diagnostic performance observed with Raman
spectroscopy of ‘wet’ blood plasma compared to ATR-FTIR be
attributed to the distinct principles underlying each technique.
Functional groups with non-polar bonds and large, diffuse
electron clouds will scatter light more easily and will be Raman
active. Conversely, molecules with functional groups that have
strong polar bonds and dipoles display stronger peaks in the IR

[67]. Non-atmospheric water is a weak Raman scatterer, thus
minimally interferes with Raman signals [68], whereas it causes
absorption peaks in ATR-FtIR within the Amide I, Amide II and
adjacent band regions. We suspect these peaks may be causing
the lower classification performance for ‘wet’ ATR-FtIR spectral
analyses compared to that of ATR-FtIR of dry samples and Raman
of ‘wet’ samples.
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Combining the spectral datasets from both techniques likely
mitigated hydration-related challenges, enhancing the synergy of
sample characterisation, and leading to improved disease detec-
tion rates compared to either method alone (Table 2).
Of note, the undesirable variability in sensitivity, specificity, and

accuracy among the ten training/testing iterations was higher for
the ‘wet’ samples using both techniques, indicating lower
reproducibility compared to dry ATR-FtIR analyses. The acquisition
of raw spectral data of ‘wet’ blood plasma samples, for each of the
ATR-FtIR and Raman spectrometers, took ~11min per patient
sample, during which the ‘wet’ blood plasma samples may have
undergone slight dehydration. This may have contributed to
introducing sample-to-sample variability, likely manifesting as
spreading of the statistics in both techniques. To mitigate this
issue, shortening the spectral acquisition time may be beneficial.
Although reducing spectral resolution and the number of co-
added scans could expedite data collection, such changes may
also decrease the signal-to-noise ratio. In contrast, the dehydrated
patient samples remained stable throughout the measurements.
Due to the perceived challenges imposed by the presence of

water in biological samples on spectral acquisition, cancer studies
with ATR-FtIR spectroscopy have traditionally uniquely favoured
the use of dried blood plasma and serum samples [25–27]. The
largest multicentric ATR-FtIR spectroscopy study to date of dry
blood plasma, by Paraskevaidi et al. [28], reported 83% overall
accuracy for discrimination of EC (across all stages) from controls
and 78% diagnostic accuracy for sub-analysis of stage I disease
versus controls [28]. Our study found that ATR-FtIR spectroscopy of

dry blood plasma yielded diagnostic results comparable to those
reported by Paraskevaidi et al. in their analysis of controls versus
EC (across all stages) [28]. Notably, the diagnostic performance of
our ‘wet’ blood plasma analysis using ATR-FtIR was comparable to
their sub-analysis of controls versus stage I disease. Our cancer
group included 50% of patients with stage I disease.
The results here, together with those of Paraskevaidi et al. [28],

highlight the promising role of ATR-FtIR spectroscopy as an early
diagnostic tool for EC, and, importantly, the feasibility of applying
ATR-FtIR to ‘wet’ blood plasma samples for early-stage disease
detection. With regard to Raman spectroscopy, only one
preliminary study, by Artemyev et al., investigated surface-
enhanced Raman scattering (SERS) for EC diagnosis with dry
blood plasma samples [69], reporting 66% sensitivity, 95%
specificity and 85% accuracy for discrimination of EC versus
controls. Our Raman analysis of ‘wet’ blood plasma achieved
comparable diagnostic accuracy to that reported by Artemyev
et al. and superior sensitivity. Moreover, our combined ATR-FtIR-
Raman approach achieved the highest EC detection rates overall,
demonstrating that the techniques’ synergy can be harnessed to
improve diagnostic performance.
Finally, the unsupervised exploratory analysis with PCA of ATR-

FtIR and Raman spectra, conducted to evaluate the intrinsic
variance of the data, demonstrated spectral clustering between
cancers and controls in each of the independent and combined
spectroscopy analyses (Fig. 3). Denser clusters reflected higher
within-cluster spectral similarities. These were particularly evident in
the ATR-FtIR dataset of dry blood plasma. On the other hand, the
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slightly higher within-clusters data spread, seen for the ATR-FtIR
and Raman ‘wet’ analyses, might be a consequence of adventitious
sample dehydration potentially occurring during spectral acquisi-
tion. Of note, some overlap was present between cancer and
control clusters for both ATR-FtIR and Raman analyses. Interestingly,

analysing the spectra of patients with PCOS separately from the
healthy women in the control group significantly reduced the
overlap between cancer and healthy controls. In contrast, the
clusters of the PCOS dataset exhibited substantial overlap with both
the healthy individuals and cancer groups (Fig. 4), suggesting that
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PCOS spectra share similarities with both groups. This could
indicate that some PCOS individuals exhibit metabolic or molecular
profiles that are closer to healthy individuals, while others show
shifts that resemble cancerous changes.
This aligns with the known metabolic heterogeneity of PCOS,

which carries a 3 to 4-fold increased risk of EC [70]. Leading
theories to explain endometrial carcinogenesis in individuals with
PCOS propose the following aetiologies: raised oestrogen levels,
obesity and anovulatory menstrual cycles/infrequent shedding of
the endometrium, as well insulin resistance, most of which have
been shown to promote endometrial proliferation [71]. Never-
theless, the exact molecular mechanisms that increase the risk of
EC in PCOS remain unclear [72]. This preliminary work on PCOS
presents, for the first time, spectral similarities between the blood
plasma of patients with EC and PCOS. The observed spectral
overlap may reflect early biochemical changes preceding carci-
nogenesis. Alternatively, the spectral variability within PCOS may
simply highlight its biochemical diversity, causing its spectra to be
positioned between healthy and cancer groups.
To the best of our knowledge, this is the first study to assess the

feasibility of using ‘wet’ blood plasma samples for EC detection

through ATR-FtIR or Raman. It is also the first study, innovatively,
to integrate spectra from both the Raman and ATR-FtIR
techniques, resulting in a truly combined analysis.
Strengths of the study include the accompanying rigorous

participant assessment via pipelle biopsy, ensuring accurate
allocation to cancer and control groups based on histopathology.
Additionally, our computational analysis was designed to be
numerically robust and to evaluate diagnostic classification
reproducibility. Thus, we applied the classification algorithms
to ten randomly generated training/testing iterations of patient
datasets. This enabled generation of ten independent training,
validation and testing models, to verify precision of the
classifiers’ performance. We utilised aluminium tape-covered
substrates for ATR-FtIR analysis, which exhibit minimal infrared
absorption, while enabling collection of key biochemical features
[56, 73]. This approach is cost-effective, accessible, one-use yet
sustainable (aluminium foil is sterilised during remelting for
recycling; glass microscope slide substrates are sterilised and
reused in-house), achieving organic-cleansed, recycled option for
clinical settings, compared to expensive alternatives like calcium
fluoride (CaF2) slides. In all, aluminium tape-covered substrates

b Raman of wet blood plasma
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for ATR-FtIR analysis are suitable for adoption in wide-scale
testing strategies and in low-income settings in EC cancer
screening, and beyond.
The study has limitations. The small sample size of 54 participants,

while consistent with feasibility study recommendations [45–47, 74],
may limit generalisability. Additionally, there were differences in age
and hypertension rates between cancer and control groups, primarily
due to the inclusion of younger participants with PCOS in the control
group. While a previous larger multicentric study suggested that age,
BMI, and blood pressure did not significantly influence ATR-FtIR
spectral classification of dried blood plasma for EC, indicating that
the technique’s diagnostic capabilities were related to disease
presence/absence [28], future studies applying ATR-FtIR and Raman
to ‘wet’ blood analyses should continue accounting for these
confounding factors. Our study only included patients with
endometrioid adenocarcinoma of the endometrium. It is important
to note that some subtypes of endometrial cancer, particularly
endometrioid, may have a secretory nature, which could indeed
make them more amenable to biospectroscopy tests of peripheral
blood. As such, the findings of this study will not be applicable to
other non-secretory subtypes of EC, which have distinct molecular
and/or clinical characteristics and so could present different
diagnostic challenges. Finally, our control group included both
healthy participants and individuals with PCOS, which may have led
to an underestimation of the classifiers’ diagnostic abilities, as the
PCOS spectra showed similarities to the EC group in the
unsupervised PCA analysis.

FUTURE RESEARCH DIRECTIONS
This study has demonstrated the feasibility of using vibrational
biospectroscopy techniques to analyse ‘fresh’ (wet) blood
samples for endometrial cancer detection, highlighting their
potential for rapid and cost-effective blood analysis. Our findings
have significant implications for the future development of
bedside diagnostic approaches for EC and population-level
screening.
However, several key aspects must be addressed before clinical

implementation. Our results should be validated in larger, adequately
powered, prospective studies. We propose multicentric participation,
with collaboration of primary care and secondary care partners to
reach high-risk demographics. Coordination could be achieved
through regional or national cancer networks. Significantly, the
experimental design might involve frozen blood samples from
research network partners being sent to a central location for EC
analysis, ensuring protocol standardisation and consistency.
Future research should focus on diverse populations, including

individuals from ethnic minority backgrounds, and continue to
account for EC risk factors in the analysis of potential confounders.
Studies should also expand to include a broader range of EC
histotypes and explore the diagnostic potential of spectroscopy
techniques for pre-cancerous lesions such as endometrial hyperplasia.
Additionally, the role of biospectroscopy techniques as a

potential EC diagnostic tool in high-risk individuals with PCOS
warrants further investigation; research is needed to enable
further spectral characterisation, focusing on exploring potential
carcinogenesis biomarkers and assessing biospectroscopy diag-
nostic performance in this patient group.
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These future approaches will help enhance the diagnostic
efficiency and generalisability of the applied spectroscopic
techniques, supporting the development of both early EC
detection and EC screening methods.

CONCLUSIONS
In summary, this study highlights the significant potential of
vibrational biospectroscopy techniques in advancing EC diagnosis,
particularly using ‘wet’ blood samples. While the initial findings are
promising, larger and more diverse studies are needed to validate
these techniques and refine their application in clinical settings.
Through further investigation and standardisation, biospectro-
scopy techniques could become a valuable tool for early EC
detection and population-wide screening.
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