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BACKGROUND: Cholangiocarcinoma (CCA) is a rare and highly aggressive malignancy originating in the bile ducts. Owing to
limitations involving pathological sampling, the clinical differentiation of CCA from benign biliary diseases remains challenging. This
study aimed to evaluate the differences between the bile lipidomes of CCA patients and those of patients with benign disease to
develop a bile lipid classifier that can help to differentiate CCA from benign conditions.
METHODS: Bile samples were collected by endoscopic retrograde cholangiography (ERCP) from patients with CCA or benign
disease. The participants were divided into three cohorts: the first two cohorts underwent untargeted lipidomic analysis, whereas
the third cohort was subjected to targeted lipid quantification. Untargeted lipidomic analysis was performed via ultrahigh-
performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS).
Targeted lipid quantification was conducted via UHPLC‒MS/MS in multiple reaction monitoring (MRM) mode. Lipid features were
screened to construct a bile lipid classifier using the machine learning algorithm, least absolute shrinkage and selection operator
(LASSO) regression, followed by cross-validation in two cohorts. The selected lipid features were further validated by targeted
quantification in the third cohort. The functions of the significantly differentially abundant lipids in proliferation were validated in
CCA cell lines.
RESULTS: In total, 241 bile samples were collected and divided into three cohorts for independent lipidomic analysis: Cohort 1
included 32 CCA samples and 68 benign controls; Cohort 2 included 30 CCA samples and 30 benign controls; and Cohort 3 included
32 CCA samples and 49 benign controls. There were significant differences in the lipid profiles of the bile samples obtained from
patients with CCA and individuals with benign disease, with multiple lipid classes, particularly lysophosphatidylcholine (LPC),
significantly downregulated in the CCA group. Multimodule correlation networks constructed via weighted lipid coexpression
network analysis (WLCNA) revealed significant associations between lipid modules and clinical traits. A machine learning-based bile
lipid classifier, termed BileLipid, was developed for CCA diagnosis; this classifier incorporates six lipid features. This classifier
achieved areas under the receiver operating characteristic curve (AUCs) of 0.943, 0.956, and 0.828 in Cohorts 1, 2, and 3,
respectively. Additionally, the significantly downregulated lipid LPC in CCA bile was found to significantly inhibit the proliferation of
CCA cell lines, suggesting its potential role as a protective factor in CCA.
CONCLUSIONS: This study not only identified lipidomic alterations in CCA using bile samples but also established and validated a
bile lipid classifier with high specificity and sensitivity for distinguishing between CCA and benign bile duct diseases. Our findings
highlight the potential of bile lipid biomarkers for improving the differential diagnosis and risk assessment of CCA and preventing
potential overintervention in patients with benign biliary disease.
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INTRODUCTION
Cholangiocarcinoma (CCA) is a rare and highly aggressive
malignancy that originates in the bile ducts [1, 2]. CCA has a
global incidence ranging from 0.3 to 6/100,000 people per year, a
mortality rate of 1–6/100,000 people per year, and is the cause of
~2% of all cancer-related deaths worldwide yearly [3]. Despite its
rarity, the incidence and mortality of CCA are increasing globally,
particularly in Asian countries [3–5]. Currently, the diagnosis relies
on a combination of serum tumour markers, radiographic
imaging, and histological examination [6–8]. However, the unique
anatomical locations of CCA pose significant challenges for
invasive pathological diagnosis [9]. Preoperative confirmation is
achieved primarily through brush cytology, forceps biopsy, or fine
needle aspiration biopsy [8]. However, the positivity rate of brush
cytology is often low [10–12], biopsy procedures carry high
operational risks and can yield false-negative results [13], and to
varying degrees, traditional serum tumour markers and imaging
tests suffer from limitations in their sensitivity and specificity [14].
Therefore, developing a safe, efficient, and reliable diagnostic test
for CCA is imperative to improve the clinical management of bile
duct diseases and improve patient survival outcomes.
Over the last decade, there have been significant strides in the

use of various liquid biopsy methods in early diagnosis and
precision diagnostics for a wide range of malignant tumours [15].
Most studies in this field have focused on biomarkers derived from
blood [16, 17]. However, in certain site-specific diseases, more
targeted body fluids (e.g., urine, cerebrospinal fluid, pleural fluid,
and peritoneal fluid) can be obtained, providing more biomarkers
that carry information about the corresponding diseases [17–19].
Theoretically, analysing biomarkers from non-blood sources may
provide greater sensitivity than plasma-based assays for certain
tumour types or anatomical locations [20, 21]. In this study, we
innovatively explored the diagnostic potential of bile samples for
CCA. The main advantage of using bile over blood is its ability to
exclude interference information from other organs and sites,
thereby capturing the unique molecular features of the biliary
system in a more targeted manner. This specificity may allow for a
more accurate representation of the heterogeneity inherent in
biliary tract cancers [22]. Furthermore, bile samples can be collected
during endoscopic retrograde cholangiography (ERCP) examina-
tions without the need for additional invasive procedures; because
ERCP is a common examination modality for patients with biliary
tract diseases, bile has attracted the attention of biliary physicians
and scientists as a minimally invasive biospecimen [22–25].
Lipid metabolism reprogramming, a key characteristic of

malignant tumours, has been continuously emphasised in studies,
along with advances in lipidomics technology for liquid biopsy of
tumours [26]. From the perspective of biological function, lipids
are a complex group of biomolecules that serve as structural
components of biological membranes and provide and store
energy, with specific lipid molecules acting as signalling molecules
to regulate cellular activities [27]. The diagnostic value of
lipidomics has been validated in various cancers, including lung
[28], pancreatic [29], colorectal [30], gastric [31], and endometrial
cancers [32], but systematic exploration of lipidomic data in the
context of bile duct cancers remains limited. In our previous study,
we preliminarily analysed volatile metabolites in bile via gas
chromatography‒mass spectrometry and performed comparative
analyses between benign and malignant samples [33]. Among the
metabolites we detected, there were significant alterations among
multiple lipid metabolites, particularly in the free fatty acid
families [33]. Building on our previous research foundation and
the existing results of lipidomics in liquid biopsy applications in
cancer, we determined that bile lipidome analysis could be a
pivotal research direction.
In this study, we aimed to evaluate differences in the bile

lipidomes of patients with CCA and those with benign bile duct
disease to develop a bile lipid classifier capable of distinguishing

CCA from benign conditions. The model was trained, validated, and
tested in three independent cohorts, utilising both untargeted and
targeted lipidomics approaches. Our untargeted lipidomic investi-
gations in Cohort 1 and Cohort 2 identified a bile lipid classifier
comprising 6 lipid features that effectively differentiates CCA from
benign conditions. To validate the robustness and generalisability of
this classifier, we subsequently evaluated its diagnostic perfor-
mance in an independent cohort (Cohort 3) using a targeted lipid
quantification approach. This stepwise validation strategy not only
confirmed the reliability of the lipid-based biomarker panel but also
underscored its translational potential across diverse clinical
settings and analytical platforms. To our knowledge, this study
represents the first large-scale lipidomic analysis of bile samples
from patients with CCA and benign bile duct disease. We developed
and validated a bile lipid classifier consisting of 6 lipids, which
demonstrated robust diagnostic performance across three inde-
pendent cohorts. This highlights the clinical applicability and
reliability of bile lipid profiling for CCA diagnosis. Collectively, our
findings underscore the potential of bile lipidomics as a promising
diagnostic tool for CCA.

MATERIALS AND METHODS
Study design
This was a single-centre, prospective descriptive study of bile samples
collected by ERCP from patients with CCA or benign disease. All
participants were biliary patients who visited Zhongnan Hospital of Wuhan
University from June 2020 to August 2024. The participants were randomly
assigned to three cohorts, each meeting the predefined criteria (Cohen’s
d= 0.8, α= 0.05, Power = 0.8). Based on power analysis, a minimum of 26
participants per group (with a total sample size of at least 52 participants
per cohort) was determined to be sufficient to achieve the required 80%
statistical power for detecting the predefined effect size. Each cohort
underwent independent lipid extraction and detection, ensuring the
reproducibility and robustness of the study results across all groups. Three
independent clinical researchers who were blinded to the bile test results
collected the clinical data, including demographic information, medical
history, imaging results, serum tumour markers, pathology reports, Eastern
Cooperative Oncology Group Performance Status (ECOG-PS), disease
scoring and tumour staging outcomes. The study was approved by the
Medical Ethics Committee of the Clinical Trial Centre at Zhongnan Hospital,
Wuhan University (Approval number: Scientific Research Ethics[2020100]).
Informed consent for sample collection was obtained from all patients
before the operation.

Participants
Bile samples and clinical information were collected from patients with CCA
or benign biliary diseases. The inclusion criteria were as follows: (1) benign
and malignant biliary tract diseases that required ERCP for examination or
treatment and (2) successful completion of the ERCP procedure. The
exclusion criteria were as follows: (1) other malignant tumours, such as
pancreatic cancer, (2) metastatic cancer, (3) receiving any known anticancer
therapy, (4) sepsis due to biliary tract infection, and (5) unclear diagnosis due
to lack of clinical information or insufficient follow-up time.
The diagnostic criteria were established according to internationally

recognised guidelines and expert consensus, including the National
Comprehensive Cancer Network (NCCN), the European Society for Medical
Oncology (ESMO), and other authoritative sources [8, 34, 35]. Benign
disease was confirmed if any of the following criteria were met: (1)
Postoperative pathological examination of resected samples confirming
benign characteristics (e.g., biliary lithiasis, chronic inflammation, or
adenoma) [8, 34]. (2) Nonsurgical criteria (≥2 criteria required): ① no
evidence of tumour progression on CT/MRI scans over a minimum follow-
up period of 6 months [34], ② serum CA19-9 levels consistently ≤37 U/mL
with no progressive upward trend (after excluding confounding factors
such as active biliary obstruction or infection) [8, 34], or ③ clinical follow-up
confirming the absence of malignancy-associated symptoms (e.g.,
progressive jaundice, weight loss) or end-stage events. Benign biliary
diseases are further subdivided into inflammatory biliary tract disorders
(IBTs, including recurrent pyogenic cholangitis (RPC), primary biliary
cholangitis (PBC), primary sclerosing cholangitis (PSC), etc.) and nonin-
flammatory diseases (NIBTs).
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Malignancy diagnosis required the following: (1) malignancy confirmed
by ultrasound-guided core needle biopsy or ERCP-guided forceps biopsy
(≥3 sites) or surgical specimens, independently verified by two senior
pathologists [8, 34]; (2) Nonsurgical cases (≥3 criteria required): ① dynamic
contrast-enhanced imaging (CT/MRI) showing progressive invasive fea-
tures (e.g., capsular penetration, vascular invasion) [8, 34], ② PET-CT
demonstrating FDG uptake (SUVmax ≥3.0) [34], ③ serum CA19-9 elevation
(increase across three consecutive tests at 4-week intervals, excluding
inflammatory interference), ④ multidisciplinary-team-confirmed tumour
progression during 6-12-month follow-up [8, 34], or ⑤ malignancy-related
end-stage outcomes (biliary obstructive liver failure/tumour-associated
mortality) [8]. Clinical staging of CCA was performed according to the TNM
staging criteria from the 8th edition of the American Joint Committee on
Cancer (AJCC) Hepatobiliary and Pancreatic Cancer Staging Manual [36].

Sample collection and preparation
Fasting bile samples were collected from patients via the ERCP method
during diagnostic or therapeutic biliary drainage. Bile was aspirated
following bile duct intubation and prior to the injection of contrast
medium. Fresh bile samples were centrifuged at 12,000×g for 10minutes,
and the supernatant was filtered through a 0.45-μm sterile filter before
being stored at -80°C.
Before analysis, the bile samples were thawed, and lipids were extracted

via an adjusted extraction method (MTBE/methanol) [28, 29]. All reagents
were obtained from Sigma‒Aldrich® (Merck). Briefly, 200 μL of bile was
mixed with 250 μL of ice-cold methanol (34860) and 750 μL of methyl tert-
butyl ether (MTBE, 34875). For targeted lipid quantification, three classes of
lipid internal standards (5 Cers, 4 LPCs, 3 TGs) were spiked into the extract.
The mixture was vortexed for 1 min and then centrifuged at 16000 × g for
5 min at 4 °C. Subsequently, 800 μL of the upper organic phase was
transferred to a new centrifuge tube, filtered through a 0.22-μm oil filter,
and evaporated to dryness under a vacuum centrifugal concentrator
(12,000 × g, 4 °C). The dry extract was reconstituted in 50 μL of methanol,
vortexed, and transferred to a glass amber vial with a microinsertion tube
for lipidomic analysis. Pooled quality control (QC) samples were created by
taking 5 μL aliquots of the supernatant from each sample for QC and
generating an annotated lipid database.

Lipidomic analysis
For untargeted lipidomics, an Agilent 1290 Infinity UHPLC coupled to a
quadruple time‒of‒flight mass spectrometer equipped with an ion mobility
drift tube (Agilent DTIM-QTOF-MS 6560, Agilent Technologies, USA) was
used for LC–IM–MS/MS data acquisition. Chromatographic separations were
performed on an Agilent Infinity Poroshell 120 EC-C18 column (3.0 ×
100mm, 2.7 µm) with the column temperature maintained at 50 °C. The
mobile phases were composed of (A) H2O/MeOH (9:1, v/v) with 10mM
NH4AC and 0.2 mM NH4F and (B) ACN/MeOH/IPA (2:3:5, v/v) with 10mM
NH4AC and 0.2 mM NH4F. The elution gradient was carried out as follows:
0–1min, 70% B; 1–3.5min, 70% B to 86% B; 10–11min, 86% B to 100% B;
11–17min, 100% B; 17–17.1min, 100% B to 70% B; and 17.1–19min, 70% B.
The flow rate was 0.6mL/min. For positive and negative mode analyses, the
injection volumes were 3 μL and 6 μL, respectively. The sample was
maintained at 4°C throughout the entire analysis.
The mass spectrometry parameters were configured as follows.

Electrospray ionisation (ESI) was performed in positive ion mode with a
mass scan range of 50–1000 Da, and in negative ion mode with a range of
50–1700 Da. The sheath gas temperature was maintained at 370 °C with a
flow rate of 12 L/min, while the drying gas temperature was set to 300 °C
with a flow rate of 10 L/min. The nebuliser pressure was 50 psi. The
capillary voltage was set to 3500 V in positive mode and 3000 V in negative
mode. The collision cross section (CCS) values were measured with the
single-field method with nitrogen as the drift gas. The maximum drift time
was set to 60ms, and the scan rate was set to 1 frame per second. A drift
gas upgrade kit was used to maintain both the drift tube and trap funnel
pressures at 3.9 and 3.8 Torr, respectively. The entrance and exit voltages
of the drift tube were set to 1200 V and 250 V, respectively. The trap filling
and trap release times were set to 20,000 μs and 150 μs, respectively. All
the ion mobility‒mass spectrometry (IM‒MS) fragmentation spectra were
acquired in “alternating frames” mode with frame 2 fixed at 20 V. The
MS1 spectra were acquired in “single frame–not fragmented” mode. All
data acquisition was carried out with MassHunter Workstation Data
Acquisition Software (version B.09.00; Agilent Technologies, USA).
For targeted lipid quantification, the sample extracts were analysed

using an LC‒ESI‒MS/MS system (UPLC, ExionLC AD, https://sciex.com.cn/;

MS, QTRAP® 6500+ System, https://sciex.com/). The analytical conditions
were as follows: UPLC: column, Thermo Accucore™C30 (2.6 μm,
2.1 mm×100mm i.d.); solvent system, A: acetonitrile/water (60/40, V/V,
0.1% formic acid, 10 mmol/L ammonium formate), B: acetonitrile/
isopropanol (10/90 VV/V, 0.1% formic acid, 10mmol/L ammonium
formate); gradient programme, A/B (80:20, V/V) at 0 min, 70:30 V/V at
2.0 min, 40:60 V/V at 4 min, 15:85 V/V at 9 min, 10:90 V/V at 14min, 5:95 V/V
at 15.5 min, 5:95 V/V at 17.3 min, 80:20 V/V at 17.3 min, 80:20 V/V at 20min;
flow rate, 0.35ml/min; temperature, 45°C; and injection volume, 2 μL. The
effluent was alternatively connected to an ESI-triple quadrupole-linear ion
trap (QTRAP)-MS. LIT and triple quadrupole (QQQ) scans were acquired
with a QQQ–linear ion trap mass spectrometer (QTRAP), QTRAP®
6500 + LC‒MS/MS System, equipped with an ESI Turbo Ion-Spray interface,
operating in positive ion mode and controlled by Analyst 1.6.3 software
(Sciex). The ESI source operation parameters were as follows: ion source,
turbo spray; source temperature, 500°C; ion spray (IS) voltage, 5500 V; and
ion source gas 1 (GS1), gas 2 (GS2), and curtain gas (CUR), which were set
at 45, 55, and 35 psi, respectively. Instrument tuning and mass calibration
were performed with 10 and 100 μmol/L polypropylene glycol solutions in
QQQ and LIT modes, respectively. QQQ scans were acquired as MRM
experiments with the collision gas (nitrogen) set to 5 psi. DP and CE for
individual MRM transitions were performed with further DP and CE
optimisation. A specific set of MRM transitions was monitored for each
period according to the metabolites eluted within this period.

Lipid annotation
For untargeted lipidomics, after the IM‒MS data were acquired, mass and
single-field CCS calibrations were first performed via the IM–MS Reprocessor
and IM–MS Browser (version B.08.00; Agilent Technologies, USA), respectively.
The lipids in all the ion IM‒MS data files of the QC samples were subsequently
annotated with Lipid Annotator (Version 1.0; Agilent Technologies, USA),
which generated a database that contains accurate mass, retention time (RT)
and CCS values. The database can be exported to a PCDL file for later use with
the ID browser. The method parameters used for lipid annotation were as
follows: feature finding parameters with a Q score ≥ 30.0; library parameters
with positive ions ([M+ NH4]+, [M+ H]+, [M+Na]+) and negative ions
([M+ CH3COO]- and [M-H]-); identification parameters: sum composition
level, mass deviation≤10.0 ppm; multiple lipid IDs for the same feature,
reporting the top candidate only; score threshold, fragment score≥30 and
total score≥60; and constituent level, reporting the dominant constituent if
the relative abundance differential was ≥10%. Third, the compound features
in the MS1 data of each sample were extracted with a mass profiler (version
B.08.01, Agilent Technologies, USA). Feature finding was performed for
signals having a minimum ion count of 100 using the maximum ion volume
as a measure of abundance. The isotope model was selected for common
organic molecules, and the charge states were limited to a range of 1−1. The
features were subsequently aligned with an RT tolerance of 0.2min, a CCS
tolerance of 5%, and a mass of 10 ppm. The final filter was based on a Q score
> 80.0. The frequency of sample occurrence in at least one group was equal to
or greater than 50%. Finally, the annotated database with accurate mass, RT
and CCS values was used to identify the MS1 features by launching an ID
browser followed by returning the feature list to the mass profiler. Lipid
annotation was completed on the basis of the RT, CCS, and m/z values of the
lipid features. Lipid features from the Cohort 1 and Cohort 2 libraries were
simultaneously compared to determine the correspondence between
isoforms and different ion forms, and lipids with the same molecular formula
were numbered according to RT and abundance.
For targeted lipid quantification, lipid identification was performed

utilising RT, precursor‒product ion pairs, and tandem mass spectrometry
(MS/MS) spectral matching. Quantitative analysis was conducted using
multiple reaction monitoring (MRM) mode on a QQQ mass spectrometer.
The raw MS data were processed with Analyst software (version 1.6.3).

Lipidomic data processing
The raw lipidomic data obtained after annotation and peak area extraction
were normalised by taking the natural logarithm. To reduce potential
interbatch variations for untargeted lipidomic data, each feature peak of the
study samples was divided by the average abundance of that lipid from the
same cohort to obtain the relative abundance. MetaboAnalyst 6.0 (https://
www.metaboanalyst.Ca/) and the R package ropls v.1.36.0 were used for
univariate analysis of lipid abundance, and multivariate analysis included
principal component analysis (PCA), partial least squares–discriminant
analysis (PLS–DA) and orthogonal partial least squares–discriminant analysis
(OPLS–DA). The false discovery rate (FDR) is controlled via the Benjamini‒
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Hochberg (BH) procedure, which adjusts raw p values to account for multiple
hypothesis testing. For differential expression analysis, the log2-fold change
(FC) was used to quantify the relative change in expression levels between
the two conditions. Differential features between two groups were identified
by the p value adjusted by the FDR and FC significance thresholds (FDR-
adjusted p < 0.05, Wilcoxon rank-sum test; |log2(FC)| ≥ 1).

Weighted lipid correlation network analysis (WLCNA)
In the weighted coexpression analysis of lipids detected in untargeted
lipidomic cohorts, the correlation matrix between lipids in the dataset
represents a fully connected weighted network, where the weight on each
edge corresponds to the correlation between the quantitative profiles of
two lipids. A soft threshold of 9 was selected, and the adjacency matrix was
transformed into a topological overlap matrix (TOM) with the TOMsimi-
larity function. Module identification was performed using dynamic tree
cutting with deepSplit = 1, and hierarchical clustering of the coexpression
network identified 10 modules (R package: WGCNA v.1.73). The Spearman
correlations between modules and clinical traits were calculated,
significantly correlated modules and clinical traits were identified, key
lipids within the identified modules were analysed, and lipid coexpression
networks within each module were constructed (R packages: WGCNA
v.1.73, psych v.2.4.6.26; GraphPad Prism 9.0.0; Cytoscape 3.10.2).

Establishment, validation and evaluation of diagnostic models
The optimal lipid biomarker model for predicting CCA was built via binary
logistic regression with the least absolute shrinkage and selection operator
(LASSO, R package: glmnet v.4.1.8). The probability of CCA was calculated
as follows: probability = 1/(1+e^(-(α0 + (∑θ0Xk)), where α0 is the intercept,
θ0 is the final logistic regression coefficient for the kth lipid, and Xk is the
natural logarithm of the normalised concentration level. The performance
of the discriminant model in both the training and validation cohorts was
evaluated by estimating the area under the curve (AUC) according to
receiver operating characteristic (ROC) analysis (R package: pROC v.1.18.5,
GraphPad Prism 9.0.0). Clinical decision curve analysis (DCA), clinical
impact curve (CIC) analysis, and calibration analyses were used for multiple
evaluations of the model diagnostic performance and clinical application
(R packages: car v.3.1.2, rmda v.1.6, rms v.6.8.1, ResourceSelection v.0.3.6).

Cell culture and stimulation with LPC
Human CCA cells and normal bile duct epithelial cells (TFK1, QBC939 and
HIBEpiC; Cell Bank of Type Culture Collection, Shanghai, China) were
cultured at Roswell Park Memorial Institute (RPMI) 1640 medium
(11875093 Gibco, USA) containing 10% foetal bovine serum (A5669701,
Gibco, USA), 100 units/mL penicillin and 100 μg/mL streptomycin
(15140122, Gibco, USA) in an incubator at 37°C with 5% CO2. Exogenous
LPC (Sigma–Aldrich, 62962) was dissolved in ethanol and added to
preheated medium at 37°C (ethanol to medium volume ratio of 0.1%) to
prepare a stimulating environment.

Cell proliferation assay
The CCK-8 assay was used to measure cell proliferation according to the
instructions provided with the kit (BS350A, Biosharp, China). Briefly, 5000
cells/well were plated in 96-well plates. After the cells adhered, exogenous
lipids were introduced at concentrations of 50, 100, and 200 μM. The assays
were conducted at 24, 48, 72, and 96 hours. For the EdU cell proliferation
analysis (ab222421, Abcam, UK), the cells were incubated with 10 μM EdU
after stimulation with 100 μM lipids for 48 hours. The cells were then fixed,
permeabilized, and stained with Hoechst, and the number of EdU-positive
cells in five random fields was counted under a fluorescence microscope. For
the clonogenic assay, cells stably stimulated with lipids and control cells in
the logarithmic growth phase were seeded into 6-well plates. After 2 weeks
of incubation, the colonies were fixed with 4% paraformaldehyde and
stained with crystal violet, after which the number of colonies was
determined. Cell cycle analysis was conducted with a cell cycle staining kit
in accordance with the manufacturer’s instructions (CCS012, MultiSciences,
China). The proportions of stained cells in the G0/G1, S, and G2/M phases
were visualised and calculated with a CytoFLEX flow cytometer.

RNA sequencing and transcriptional analysis
The CCA cell line QBC939 was cultured with or without 100 μM LPC for
48 hours. Total RNA was isolated with an RNeasy mini kit (Qiagen,
Germany). One microgram of total RNA was used for library preparation.

mRNA was isolated with oligo(dT) beads, fragmented, and primed using
random primers. cDNA synthesis was followed by adaptor ligation and size
selection using DNA Clean Beads. Libraries were amplified by PCR,
validated, and sequenced on an Illumina instrument with a 2×150 paired-
end configuration.
Cutadapt (v1.9.1) was used to process the data, removing adapters and

low-quality bases. HISAT2 (v2.2.1) was used to index and align the clean
data to the reference genome. HTSeq (v0.6.1) was used to estimate gene
expression levels. Differential expression analysis was conducted using the
DESeq2 package, with a significance threshold of a p value ≤ 0.05 and a
log2FC > 1. Gene Ontology (GO) terms were identified using GOSeq
(v1.34.1), and KEGG pathway enrichment was performed using in-house
scripts.

Statistical analysis
Count data are expressed as frequencies (percentages), normally distributed
data are expressed as the mean ± standard deviation (SD), and skewed data
are expressed as the median (25th and 75th percentiles). The chi-square test
(count data), independent samples t test (normally distributed), or Mann‒
Whitney U test (skewed distribution) was used for univariate analysis. The
choice between parametric and nonparametric methods was determined by
the data distribution and sample size. If the data lacked a normal distribution,
logarithmic transformation was performed.

RESULTS
Study populations and patient characteristics
This observational analysis included 94 patients with CCA and 147
benign controls. The tumour group included 19 intrahepatic CCA
(iCCA) patients, 30 perihilar CCA (pCCA) patients, and 45 distal CCA
(dCCA) patients. The benign control group included 68 patients
with simple biliary stones, 60 patients with RPC, 11 patients with
PSC, 4 patients with PBC, and 4 patients with benign biliary
tumours (2 patients with adenomas, 1 patient with a papillary
mucinous tumour, and 1 patient with polypoid hyperplasia).
Benign controls were further subdivided into those with IBTs and
those with NIBTs.
These patients were randomised into 3 cohorts: Cohort 1

consisted of 68 benign controls (34 IBT patients and 34 NIBT
patients) and 32 CCA patients (9 iCCA patients, 10 pCCA patients,
and 13 dCCA patients), Cohort 2 included 30 benign controls (14
IBT patients and 16 NIBT patients) and 30 CCA patients (6 iCCA
patients, 14 pCCA patients, and 10 dCCA patients), and Cohort 3
included 30 benign controls (27 IBT patients and 22 NIBT patients)
and 30 CCA patients (6 iCCA patients, 6 pCCA patients, and 22
dCCA patients). There were no significant differences in sex, age,
or body mass index (BMI) between the CCA and control groups in
the 3 cohorts. The flowchart of patient recruitment, cohort
allocation, data analysis, and diagnostic modelling for this study
is shown in Fig. 1. The demographic characteristics of the
241 subjects are shown in Supplementary Table S1.

Bile lipid composition
In Cohort 1 and Cohort 2, untargeted lipidomic profiling employ-
ing IM‒MS was conducted to characterise the bile lipidome
comprehensively in the first two cohorts. Lipid extraction, library
construction (incorporating isomer-resolved databases), and LC‒
IM‒MS analysis were performed independently for each cohort to
assess analytical reproducibility. The total ion chromatogram (TIC)
plots and PCA plots of the QC samples in the two cohorts showed
good concordance, indicating that the assays in both batches of
this study had strong performance stability (Supplementary Fig. S1,
2). In +ESI mode, a total of 202 lipid features were identified in
Cohort 1. The lipid with the highest percentage was lysopho-
sphatidylcholines (LPCs), with 74 profiles (36.43%), followed by
ceramides (Cers, 17.82%), acylcarnitines (ACars, 10.89%), and
triglycerides (TGs, 10.40%). A total of 180 lipid features were
identified in Cohort 2, with the predominant species being LPCs
(43.89%) and TGs (16.67%) (Fig. S3a, c). Negative electrospray
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ionisation mode (-ESI) identified 243 lipids in Cohort 1 and 196
lipids in Cohort 2, with Cers and phosphatidylcholines (PCs) being
the most prevalent in both cohorts (Fig. S3b, d). The RT, CCS, and
mass-to-charge ratio (m/z) for the corresponding lipid features are
in the Supplementary Materials (Supplementary Tables S2-5).

Bile lipidomic profiling of CCA patients and benign controls
To compare the differences in lipidomic profiles between CCA
patients and benign controls, we performed differential lipid analysis,
lipid profile clustering and chemometric analysis on the results from
both cohorts analysed in positive and negative ion modes.
In positive ion mode, we identified 82 differential features

between tumours and controls in Cohort 1, with 22 upregulated
and 60 downregulated features (FDR < 0.05). In Cohort 2, we
identified 109 differential features, 35 of which were upregulated
and 74 of which were downregulated (Fig. S4). The types of lipids
that were upregulated and downregulated in both cohorts were
essentially the same, with the most significantly upregulated lipid
type being TGs and the most significantly downregulated lipid
type being LPCs. We then performed hierarchical clustering by
means of Ward’s method on the basis of the top 25 most
significantly differential lipids (Wilcoxon rank-sum test). The CCA
and control samples in both cohorts exhibited hierarchical
clustering, with a more pronounced clustering effect observed
in Cohort 2 (Fig. S5). PCA, PLS–DA and OPLS–DA score plots
revealed partial discrimination between tumours and controls,
with more pronounced separation observed in Cohort 2, especially
in positive ion mode (Figs. S6, 7).
Similarly, in negative ion mode, the two cohorts had similar

lipidomic differences. The differential lipids detected were
predominantly downregulated, with the major species being
LPCs, fatty acids (FAs), and Cers (Figs. S4–7).

To evaluate the diagnostic accuracy of our method on the basis
of lipidomic profiles, we used a random forest classification
algorithm because of its robustness in high-dimensional data
analysis. In both positive and negative ion modes, the algorithm
identified similar features that differentiated CCA patients from
benign controls. The out-of-bag error rates for Cohort 1 and
Cohort 2 were 0.18 and 0.117, respectively, on the basis of the
positive ion mode data and 0.232 and 0.1, respectively, on the
basis of the negative ion mode data (Fig. S8).

Altered bile lipidome of CCA patients
To further delineate the metabolic alterations of distinct lipid species
in CCA patients, we integrated lipid profiles and their classifications
obtained from both positive and negative ionmodes within the same
cohort. Upon data integration, PCA score plots demonstrated
enhanced discrimination between the CCA and control groups
(Fig. 2a, b). On the basis of the top 50 most significantly differential
lipid features (Wilcoxon rank-sum test), hierarchical clustering was
performed to generate lipid abundance heatmaps. Among the top 50
differential lipids, a predominance of features derived from the
positive ion mode was observed (Fig. 2c, d).
By combining these data with the metabolic relationships

between different lipid species, we created a visualisation network
to highlight the most dysregulated lipid species in CCA (Fig. 3). In
the lipidomic profile of CCA patients, multiple lipids appeared to
be downregulated, with LPCs being the most significantly
downregulated. Conversely, TGs were the most significantly
upregulated species. This difference between LPCs and TGs was
even more pronounced in Cohort 2 (Fig. 3b). In addition, a variety
of Cers were also downregulated in the CCA group, with this
downregulation being more pronounced in Cohort 1 (Fig. 3a). The
altered bile lipidome of CCA patients suggests the possible

Patients recruitment

Inclusion criteria: 

  (1) Benign and malignant biliary tract
diseases;
  (2) Successful completion of the ERCP 
procedure.

Exclusion criteria:

(1) Non-biliary malignant tumours; 
(2) Metastatic tumour; 
(3) Any known anti-cancer therapy;
(4) Sepsis due to biliary tract infection; 
(5) Unclear diagnosis.

Assignment of study cohorts

Control
(n=30)

Cohort 2

Tumour
(n=30)

Untargeted lipidomic

Difference
analysis

Clinical traits

WLCNA

Diagnostic
model

Biological validation

Control
(n=68)
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Tumour
(n=32)

Control
(n=49)

Cohort 3

Tumour
(n=32)

Targeted lipid quantification

Difference
analysis

Diagnostic
evaluation

a b
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III
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SBS
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BBT

PSC
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Male

Female

60~69

>69

<60

Sex

Age

Control
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Fig. 1 Schematic overview of bile lipidomic profiling and diagnostic applications in cholangiocarcinoma (CCA). a Study design workflow:
a Study participants were stratified into three independent cohorts. Cohorts 1 and 2 underwent independent untargeted lipidomic analyses
for diagnostic model development and cross-validation. Cohort 3 was subsequently analysed using targeted lipid quantification to verify
candidate lipids identified via untargeted lipidomics analysis and validate the diagnostic model. b Demographic Characteristics: A multilayer
circular chart systematically presents the clinical and demographic information across six hierarchically structured levels. The innermost layer
(1) denotes cohort allocation (Cohorts 1–3), followed by group classification (control vs. tumour) in the second layer. The third layer defines
the clinical stratification criteria: the control group is subdivided into inflammatory and noninflammatory biliary tract disorders, whereas the
tumour group is categorised according to TNM stage (I-IV). The fourth layer specifies disease subtypes. The control group includes simple
biliary stones (SBS), recurrent pyogenic cholangitis (RPC), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and benign
biliary tumours. The tumour group was further classified into the following CCA subtypes: intrahepatic (iCCA), perihilar (pCCA), and distal
(dCCA). The fifth and sixth layers summarise sex distribution and age stratification, respectively.
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accumulation of TGs and depletion of lipids such as LPCs, Cers,
and FAs in the CCA tumour microenvironment.

Effects of disease status on the lipidomic characterisation of
CCA
On the basis of the integrated data from the positive and negative
ion modes, we analysed the impact of different tumour locations
on the lipidome of CCA. Regardless of whether the tumour was
iCCA, pCCA, or dCCA, consistent lipidomic alterations were
observed, indicating that tumour location is not a decisive factor
for lipid changes in bile (Fig. S9). We further stratified tumour
patients into early (stage I/II) and intermediate/advanced (stage III/
IV) stages. The differences between CCA patients and benign
controls appeared to be associated with tumour stage, as the
significantly differential lipids exhibited more pronounced

changes in the intermediate/advanced group. However, the
distinctions between benign and malignant samples remained
significant overall. Both the PCA and PLS–DA plots clearly
distinguished between the benign and malignant samples, while
a high degree of overlap was observed between the early and
intermediate/advanced tumour stages. In the PLS–DA score plot,
only a few early-stage samples overlapped with the elliptical
boundary of the benign control group (Figs. 4a–d, S10).
Considering that IBTs are significant risk factors and crucial

differential diagnoses for CCA, we similarly analysed the lipidomic
differences among IBTs, NIBTs, and CCA. Consistent with the
differences observed between tumour location and tumour stage
subgroups, the primary distinction in bile lipidomics lies in the
malignant versus benign characteristics. However, a trend of
transition from IBTs to CCA was observed. In the PLS–DA plots for
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Hierarchical clustering heatmaps displaying the top 50 most significantly differentially abundant annotated lipids between the control and
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both cohorts, IBTs are positioned at the junction of NIBTs and CCA.
The concentration differences of differential lipids between IBTs
and CCA are not as pronounced as those between NIBTs and CCA.
These findings suggest that bile lipidomic profiles may be
influenced by disease progression and malignancy status
(Fig. 4e–h, Fig. S10).

Effects of demographic and clinical indicators on the lipidomic
characteristics of CCA
Previous studies in lipidomics have highlighted the impact of sex
differences on study subgroups, suggesting that sex should be an
important consideration in lipidomic analyses [29, 37, 38]. To
investigate the effect of sex on the benign/malignant classifica-
tion, we performed OPLS–DA with sex stratification. The results
indicated that the sex stratification model improved the accuracy
of correctly assigning samples to the benign and malignant
categories (Fig. S11). Specifically, in Cohort 1, the discrimination

efficiency between benign cases and CCA cases was better for
both males (Q2= 0.498) and females (Q2= 0.512) after sex
stratification than before sex stratification (Q2= 0.394). In Cohort
2, the discriminatory effect in the female group was greater
(Q2= 0.82 vs. 0.66) than that in the male group, whose Q2 was
lower after sex stratification than before (Q2= 0.61), although it
remained above 0.6. The visualisations of CCA metabolic altera-
tions after sex stratification in the two cohorts are shown in the
Supplementary Materials (Fig. S12-13).
Next, to further analyse their variations across the different age

groups, BMI categories, liver function (Child‒Pugh grade), and
performance status (ECOG-PS) subgroups, we selected the lipids
with the highest levels of significance among the three lipid
classes. Significant differences in the relative concentrations of
these lipids were consistently noted between the control and
tumour groups, and these differences were independent of the
other covariates (Fig. S14).
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Weighted lipid correlation network analysis (WLCNA)
Because lipid extraction and analysis were independently
conducted in the two cohorts, we selected 91 lipid features
identified in both cohorts in positive ion mode and 124 lipid
features identified in both cohorts in negative ion mode as
candidate lipids for WLCNA and diagnostic modelling. A total of
215 lipids from the two cohorts were used to identify 10 modules
(soft threshold >9, scale-free topological fit index >0.8; Fig. 5a–c,
Fig. S15). Analysis of module‒trait relationships revealed that 9
modules, most notably the turquoise module, were inhibited in
CCA, and a significant increase in lipids was associated with the
gold module (Fig. S15). We analysed the relationships between
lipid coexpression modules and clinical traits, including the age-
adjusted Charlson Comorbidity Index (aCCI), BMI, Child‒Pugh
grade, ECOG score, and various blood test indicators, and the
results revealed significant correlations (Fig. 5d).
Notably, the gold and turquoise modules had strong associa-

tions with several clinical phenotypes, with correlation coefficients
of 0.454 (p < 0.001) and -0.497 (p < 0.001) for aCCI and 0.433
(p < 0.001) and -0.477 (p < 0.001) for total bilirubin (TBIL),
respectively (Fig. 5d). Lipids in the gold and turquoise modules
were further analysed to assess lipid-module correlations and
lipid-clinical trait correlations. This analysis aimed to identify
potential key lipids related to six clinical indicators, including the
aCCI, Child‒Pugh grade, TBIL, alkaline phosphatase (ALP), phos-
pholipid (PLIP), and CA19-9. The gold module showed positive
correlations with these metrics, with all lipids in the module being
triglycerides (TGs) and TG 50:1 [M + NH4]+ identified as the key
lipid. In contrast, the turquoise module exhibited negative
correlations, consisting predominantly of LPCs and several
lysophosphatidylethanolamines (LPEs), with LPC 18:3 [M + H]+

identified as the key lipid in the turquoise module (Fig. 5e, f).
Finally, the coexpression network of lipids inside the gold and
turquoise modules was mapped (Fig. 5g, h).
Together, these results highlight a striking association between

clinical traits and bile lipid species/classes in the disease
characteristics of CCA, suggesting the potential value of bile lipid
profiling for clinical diagnosis.

Establishing, tuning and validating the classification model
with differential bile lipids
As illustrated in the workflow in Fig. 6a, we conducted diagnostic
modelling using data from both Cohort 1 and Cohort 2. Variable
selection and parameter regularisation were performed by
penalising likelihood maximisation via parameter λ, and the
optimal combinations of bile lipid markers for diagnosing CCA
were identified through the LASSO binary logistic regression
model. The developed diagnostic models were then validated in
the alternate cohort, with the best diagnostic model chosen on
the basis of cross-validation results across the two cohorts. Given
that the previous section indicated improved accuracy in
distinguishing between benign and malignant cases after sex
stratification, we simultaneously conducted modelling and valida-
tion processes in male and female patients.
We also assessed the diagnostic efficacy of conventional serum

hepatobiliary tumour biomarkers as clinical benchmarks in all 241
patients from the three cohorts, with their optimal cutoff values
determined based on Youden’s index. Among these biomarkers,
carbohydrate antigen 19-9 (CA19-9) demonstrated the highest
discriminative power for CCA (AUC= 0.778), followed by carci-
noembryonic antigen (CEA; AUC= 0.716) and carbohydrate
antigen 125 (CA125; AUC= 0.707) (Fig. 6b–d).

−10

−5

0

5

10

−10 −5 0 5 10

Component 1 (25.4%)

C
om

po
ne

nt
 2

 (
14

.0
%

)

C
I/II
III/IV

PLS−DA Cohort 2

C I/II

III/IV

Cer_NS d38:2[M+Na]
Cer_NS d41:2[M+Na]
LPC 18:0−2[M+H−H2O
Cer_NS d41:2[M+CH3
Cer_NS d39:1[M+H]+
LPC 18:0−2[M+H]+
Cer_NS d38:2[M+H]+
Cer_NS d38:1[M+CH3
Cer_NS d40:2[M+Na]
Cer_NS d38:1[M+Na]
LPC 18:0[M+H−H2O]+
LPC 18:2[M+H−H2O]+
Cer_NS d38:2[M+H−H
Cer_NS d40:2[M+H−H
LPC 18:3[M+Na]+
LPC 18:3[M+H]+
TG 50:1[M+NH4]+
TG 52:2[M+Na]+
TG 52:2[M+NH4]+
TG 50:3[M+NH4]+
TG 50:1[M+Na]+
TG 50:3[M+Na]+
TG 54:4[M+NH4]+
TG 54:4[M+Na]+
TG 54:6[M+NH4]+

class class
C
I/II
III/IV

−1

−0.5

0

0.5

1

−10

−5

0

5

10

−10 0 10

Component 1 (21.8%)

C
om

po
ne

nt
 2

 (
13

.4
%

)

CCA
IBT
NIBT

PLS−DA Cohort 1

C
C

A

IB
T

N
IB

T

LPC 18:0−2[M+H]+
Cer_NS d38:2[M+H−H
Cer_NS d40:2[M+Na]
LPC 18:3[M+H]+
LPC 18:3[M+Na]+
Cer_NS d38:2[M+Na]
LPC 18:0−2[M+H−H2O
LPC 18:2[M+H−H2O]+
Cer_NS d40:2[M+H−H
Cer_NS d41:2[M+Na]
Cer_NS d38:1[M+Na]
Cer_NDS d41:1[M−H]
Cer_NS d39:1[M+NH4
ACar 15:0−2[M+H]+
Cer_NS d38:1[M+H−H
Cer_NS d41:2[M+CH3
Cer_NS d38:1[M+CH3
Cer_NS d38:1[M−H]−
Cer_NS d40:1[M+H−H
Cer_NS d39:1[M+H]+
TG 50:1[M+NH4]+
TG 52:2[M+NH4]+
TG 54:4[M+Na]+
TG 52:2[M+Na]+
TG 54:4[M+NH4]+

class class
CCA
IBT
NIBT

−1

−0.5

0

0.5

1

−15

−10

−5

0

5

10

−10 0 10

Component 1 (25.7%)

C
om

po
ne

nt
 2

 (
13

.5
%

)

CCA
IBT
NIBT

PLS−DA Cohort 2

C
C

A

IB
T

N
IB

T

LPC 20:3[M+H]+
LPC 18:2−2[M+H−H2O
LPC 20:3[M+CH3COO]
LPC 20:4−3[M+H−H2O
LPC 22:6[M+CH3COO]
Cer_NDS d40:2[M+CH
FA 22:5[M−H]−
LPC 18:2[M+H−H2O]+
FA 22:6[M−H]−
LPC 18:2−2[M+H]+
LPC 20:1−2[M+H]+
LPC 22:6[M+H]+
LPC 18:2[M+H]+
LPC 18:3[M+H]+
EtherPC 14:0e_18:2
LPC 19:1[M+H]+
LPC 18:2[M+CH3COO]
LPC 18:3[M+CH3COO]
LPC 17:0[M+Na]+
LPC 18:1[M+CH3COO]
LPC 18:0−2[M+H−H2O
LPC 22:5−2[M+H]+
LPC 16:1−2[M+H]+
LPC 18:0−2[M+H]+
LPC 18:3[M+Na]+

class class
CCA
IBT
NIBT

−1

−0.5

0

0.5

1

C I/II

III/IV

LPC 18:3[M+H]+
LPC 18:2[M+CH3COO]
LPC 22:6[M+H]+
LPC 18:2[M+H−H2O]+
LPC 17:0[M+Na]+
LPC 18:3[M+Na]+
LPC 18:2−2[M+H]+
LPC 16:1−2[M+H]+
LPC 22:5−2[M+H]+
LPC 18:2−2[M+H−H2O
LPC 20:4−3[M+H−H2O
LPC 22:6[M+CH3COO]
LPC 20:3[M+H]+
FA 22:5[M−H]−
LPC 18:2[M+H]+
LPC 18:0−2[M+H−H2O
LPC 19:1[M+H]+
LPE 16:0[M−H]−
LPC 18:0−2[M+H]+
LPC 18:1[M+CH3COO]
EtherPC 14:0e_18:2
LPC 20:1−2[M+H]+
LPC 18:3[M+CH3COO]
FA 22:6[M−H]−
Cer_NDS d40:2[M+CH

class class
C
I/II
III/IV

−1

−0.5

0

0.5

1

g hfe

dcb

−10

−5

0

5

10

−10 0 10

Component 1 (20.5%)

C
om

po
ne

nt
 2

 (
15

.2
%

)

C
I/II
III/IV

PLS−DA Cohort 1a

Fig. 4 Differential characteristics of bile lipidomics in cholangiocarcinoma (CCA) at different stages and inflammatory biliary tract
diseases in benign controls. a–d compare early-stage (I/II) and intermediate/advanced-stage (III/IV) CCA with benign controls in Cohorts 1
(a, b) and 2 (c, d). e–h contrast the inflammatory biliary tract disease (IBT) and noninflammatory biliary tract disease (NIBT) groups with the
CCA patients in Cohorts 1 (e, f) and 2 (g, h). The results are visualised through two complementary analyses: (1) partial least
squares–discriminant analysis (PLS–DA) score plots, illustrating group separation on the basis of the top two latent components, and (2) lipid
clustering heatmaps displaying hierarchical relationships and abundance patterns of the 25 most statistically significant differential lipids.
Keywords: C Benign controls, I/II early-stage CCA (TNM stages I-II), III/IV intermediate/advanced-stage CCA (TNM stages III-IV), IBT inflammatory
biliary tract disease, NIBT noninflammatory biliary tract disease.

F.-S. Liu et al.

1572

British Journal of Cancer (2025) 133:1565 – 1582



MEviolet

MEpurple

MEdarkred

MEdarkorange

MEred

MEsalmon

MEturquoise

MElightcyan

MEroyalblue

MEgold

aC
CI

BM
I

Chil
d.

Pug
h

ECOG
TNM

RBC HB
PLT

HCT
RDW TT

DD
ALT

AST
TBIL

DBIL
ALB

GGT
ALP TBA

SOD

UREA

CREA UA TC TG
HDL

LD
L

sd
LD

L.
C

LP
a

PLI
P

CEA

CA12
5

CA19
9

Spearman's rho

−0.25

0.00

0.25

−log10 pvalue

1

2

3

4

5

1.0 0.8 0.6 0.4 0.2 0.0

MEgold

MEroyalblue

MElightcyan

MEturquoise
MEsalmon

MEred

MEdarkorange

MEdarkred

MEpurple

MEviolet 0

0.2

0.4

0.6

0.8

1

0.6 0.7 0.8 0.9 1.0

0.2

0.3

0.4

0.5

0.6

MEgold Spearman's rho

0.6 0.7 0.8 0.9 1.0

MEgold Spearman's rho

0.6 0.7 0.8 0.9 1.0

MEgold Spearman's rho

0.6 0.7 0.8 0.9 1.0

MEgold Spearman's rho

0.6 0.7 0.8 0.9 1.0

MEgold Spearman's rho

0.6 0.7 0.8 0.9 1.0

MEgold Spearman's rho

aC
C

IS
pe

ar
m

an
's

rh
o

TG 50:1[M+NH4]+ TG 52:2[M+NH4]+ TG 50:1[M+NH4]+ TG 50:1[M+NH4]+TG 50:1[M+NH4]+TG 54:4[M+NH4]+

F = 10.05
p value = 0.009

0.1

0.2

0.3

0.4

0.5

C
hi

ld
.P

ug
h

S
pe

ar
m

an
's

rh
o

F = 6.918
p value = 0.023

0.2

0.3

0.4

0.5

T
B

IL
S

pe
ar

m
an

's
rh

o

F = 20.4
p value = 0.0009

0.2

0.3

0.4

0.5

0.6

A
LP

S
pe

ar
m

an
's

rh
o

F = 8.002
p value = 0.016

0.2

0.3

0.4

0.5

P
LI

P
S

pe
ar

m
an

's
rh

o

F = 4.691
p value = 0.053

0.2

0.3

0.4

0.5

0.6

C
A

19
9

S
pe

ar
m

an
's

rh
o

F = 32.09
p value = 0.0001

0.4 0.5 0.6 0.7 0.8 0.9
–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

MEturquoise Spearman's rho

aC
C

IS
pe

ar
m

an
's

rh
o

LPC 18:3[M+H]+

F = 18.49
p value =0.0003

–0.5

–0.4

–0.3

–0.2

–0.1

MEturquoise Spearman's rho

C
h

ild
.P

ug
h

S
pe

ar
m

an
's

rh
o

LPC 18:3[M+H]+

F = 26.24
p value < 0.0001

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0.0

MEturquoise Spearman's rho

T
B

IL
S

pe
ar

m
an

's
rh

o

LPC 18:3[M+H]+

F = 30.87
p value < 0.0001

–0.5

–0.4

–0.3

–0.2

–0.1

0.0

MEturquoise Spearman's rho

A
LP

S
pe

ar
m

an
's

rh
o

LPC 18:3[M+H]+

F = 19.73
p value = 0.0004

–0.4

–0.3

–0.2

–0.1

MEturquoise Spearman's rho

P
LI

P
S

pe
ar

m
an

's
rh

o

LPC 18:0[M+H-H2O]+

F = 220.9
p value < 0.0001

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

MEturquoise Spearman's rho

C
A

19
9

S
p

ea
rm

a
n'

s
rh

o

LPC 18:3[M+H]+

F = 41.55
p value < 0.0001

LPC
18:0[M+H-H2O]+

LPC 17:0[M+H]+

LPE 18:1[M-H]-

LPC 18:0-2[M+H]+

LPC 16:0-2[M+H]+

LPC 18:3[M+H-H2O]+

LPC
18:2[M+CH3COO]-

LPC
18:0-2[M+H-H2O]+

LPE 16:0[M-H]-

LPC 18:3[M+Na]+

LPC 18:2[M+H]+

LPC 16:1-2[M+Na]+

LPE 20:1[M-H]-

LPC
18:1[M+CH3COO]-

LPC
18:0[M+H]+

LPC
18:2[M+H-H2O]+

LPE 18:0[M-H]-

LPC 18:3[M+H]+

LPC 18:0[M+Na]+

LPC
18:3[M+CH3COO]-

LPC 20:1[M+H]+

LPC 18:2-2[M+H-H2O]+

H4]+NTG 4499:1[M+N9:1[M+N

Na]+NTG 5TG 554:4[M+N54:4[M+N

TG
H4]+H4:4[44:444:444[54554545444 4[M[4[[M+NHM[M+NH[[

Na]+Na]Na]+NaaNNNTG 5550:1[M+N50:1[M+NNN

TG
H4]+4]+4]+H4H450:33[3[M+NHHH3[

TG
a]+a50:3:33[M+Na3[M+Na

TG
H4]+H452:22552:225552:2255 2[[222[M+NH[2[M+NH[22

TG
a]+a52:252:52:5252:222[M+Na2[M+Na2

TG
H4]+4 +4]++4]+4H444H50:11[[M+NHHHHH1[

++TTTG 46:2[M+NH4]+TG 46:2[M+NH4]+

Na]+NTG 5TG 55554:6[M+N54:6[M+N5
TG

H4]+4]+4]HH54:6:66[M+NHHH:6

TG
H4]+H452:152:11[1[M+NH1[M+NH1

ba

f

hg

e

d

c

0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
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When modelling was performed with the Cohort 1 positive ion
mode dataset without differentiating between sexes, LASSO regres-
sion identified 6 variables at the optimal λ (Fig. S16). Using the
regression coefficients of these 6 lipid features, a predictivemodel was
constructed for ROC analysis, yielding an AUC of 0.943 in the training
set (Cohort 1) and 0.956 in the validation set (Cohort 2) (Fig. 6e). After

stratification by sex, 3 and 7 lipid features were identified, and sex-
related models were constructed for the male and female sets,
respectively (Fig. S17). The male diagnostic model achieved AUCs of
0.950 and 0.942 in the training and validation sets, respectively,
whereas the female diagnostic model achieved AUCs of 0.955 and
0.975 in the training and validation sets, respectively (Fig. 6f).
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Subsequently, diagnostic modelling and validation for both sex-
agnostic and sex-stratified groups were performed on the positive
ion mode dataset of Cohort 2 (Fig. 6g, h), the negative ion mode
dataset of Cohort 1 (Fig. 6i, j) and the negative ion mode dataset
of Cohort 2 (Fig. 6k, l). The results demonstrated that the best
diagnostic efficacy was achieved by modelling with the positive
ion mode dataset of Cohort 1, both with and without sex
stratification. Using this model, we calculated the probability of
CCA incidence for all samples. The optimal diagnostic model of
bile lipids achieved an AUC of 0.948 without sex stratification,
0.948 for males and 0.966 for females (Fig. 6m–o).

Diagnostic performance of the optimal bile lipid classifier
for CCA
Despite modest performance gains in sex-stratified models, the
sex-agnostic bile lipid classifier was selected for clinical validation
given its cross-sex generalizability. We compared this bile lipid
classifier with other high-quality bile marker studies to contextua-
lise its efficacy. One such study, known as BileScreen, analysed 23
gene mutations and 44 genes with methylations identified from
bile samples. BileScreen developed a multilevel biomarker-based
malignancy detection model and validated its diagnostic ability
for biliopancreatic malignancies in a cohort of 338 patients [20].
Another study, called BileMet, focused on metabolomic markers
from bile samples. BileMet developed a metabolic marker-based
biliary tract cancer detection model and validated its diagnostic
ability in 336 patients [25].
Compared with the classifiers from BileScreen and BileMet, the

bile lipid classifier in this study demonstrated comparable
diagnostic performance, with certain metrics outperforming the
aforementioned models. In the training set, the bile lipid classifier
achieved an AUC of 0.943, compared with 0.953 for BileScreen and
0.891 for BileMet. In the validation set, the bile lipid classifier
achieved an AUC of 0.956, whereas BileScreen and BileMet
achieved AUCs of 0.950 and 0.912, respectively. Furthermore, the
sensitivity of the bile lipid classifier was better than that of BileMet
and BileScreen, while its specificity was similar to that of BileMet
but lower than that of BileScreen (Fig. 6p, q).
In addition, we conducted multiple evaluations of the bile lipid

classifier using clinical DCA, CIC analysis, and calibration analyses
(Fig. S18). The DCA results demonstrated that the net benefit of
clinical decision-making for all three models was superior to that
of CA19-9. The CIC analysis indicated that good overlap between
the model predictions and real cases was achieved after a risk
threshold of 0.4. In some models and datasets, overlap was
observed at a risk threshold of 0.2 or even lower, highlighting the
model’s value for both high-risk patients and early diagnosis. The
calibration curves also showed good agreement, with the
Hosmer–Lemeshow test p values for all the models being greater
than 0.05, indicating that there was no statistically significant
difference between the predicted probability and the true value.
We further evaluated the ability of the bile lipid classifier to

identify CCA in patients with normal CA19-9 levels. In this study,

60 patients, including 9 patients with CCA, had CA19-9 levels
below the upper limit of the normal range (37.0 U/mL). The bile
lipid classifier demonstrated strong discriminative performance for
CCA in this population, achieving an AUC of 0.954, a sensitivity of
1, and a specificity of 0.882. The optimal CA19-9 cutoff,
determined from the pooled dataset of 241 patients across the
three cohorts, was 68.17 U/mL—higher than the conventional
clinical threshold of 37 U/mL (Fig. 6d). This observation is
consistent with previous studies reporting elevated thresholds
associated with improved diagnostic performance [39]. On the
basis of this threshold, we performed stratified diagnostic
evaluations of the patients. For those with CA19-9 levels less
than 68.17 U/mL, the bile lipid classifier achieved an AUC of 0.931,
with a sensitivity of 1 and a specificity of 0.797 (Fig. S19).

Independent validation and recalibration of the BileLipid
classifier through targeted lipid quantification
The diagnostic evaluation confirmed the clinical translational value
of the bile lipid classifier, termed BileLipid. To increase data
robustness and analytical precision, we conducted LC‒MS/
MS–MRM-based targeted quantification of 6 candidate lipids in the
biomarker panel of BileLipid in Cohort 3, which included Cer d40:2,
LPC 18:0, LPC 18:2, LPC 20:3, TG 50:1, and TG 54:4 (Table S6). Lipid
abundance profiles mirrored trends in previous cohorts: Cer and LPC
species were downregulated, whereas TG levels were elevated
(Fig. 7a, b). The diagnostic performance of individual lipids for CCA
was evaluated across all cohorts. LPC 18:2 exhibited the highest
single-metabolite discriminatory capacity, with AUC values of 0.817,
0.960, and 0.858 in Cohorts 1, 2, and 3, respectively (Fig. S20).
We subsequently evaluated the diagnostic performance of

BileLipid in Cohort 3, achieving an AUC of 0.828, a sensitivity of
62.5%, and a specificity of 91.8% (Fig. 7c, d). Given that BileLipid was
derived from untargeted lipidomics data, we recalibrated the lipid
weighting coefficients using targeted quantification results from
Cohort 3. This optimised model, adj.BileLipid (Fig. S21), showed
enhanced diagnostic performance in Cohort 3, with an AUC of
0.897, sensitivity of 75.0%, and specificity of 91.8% (Fig. 7c, e).

Application of the BileLipid classifier in real-world clinical
patients
Four samples from patients with biliary obstruction and similar
clinical presentations (aged 63-73) were selected to further
illustrate the performance of the BileLipid classifier in predicting
CCA. All 4 patients were admitted to the hospital with obstructive
jaundice. Imaging revealed dilatation of the upper portion of the
common bile duct, with stenosis or nodules in the middle and
lower portions of the duct, raising clinical suspicion of malignant
bile duct tumours.
Patient 1 had nodules at the distal end of the common bile duct

and dilation of the proximal duct. ERCP endoscopy revealed an
obstruction in the lower part of the common bile duct, suggesting
a possible tumour lesion. Cytological examination of the lower
common bile duct revealed a relatively high number of bile duct

Fig. 6 Establishment, validation and evaluation of the bile lipid classifier for discriminating between benign control and CCA samples.
a The establishment workflow of the CCA classifier. Diagnostic modelling was conducted using data from Cohort 1 and Cohort 2. Optimal
combinations of bile lipid markers were identified through the LASSO binary logistic regression model. These diagnostic models were then
validated in another cohort. The best diagnostic model was selected on the basis of cross-validation results across the two cohorts.
Additionally, the modelling and validation process was performed with sex stratification to account for potential sex-specific differences in
lipid profiles. b–d Diagnostic performance of the serum markers for CCA. The figure highlights the optimal cutoff points for each marker in this
study cohort, along with the sensitivity (SEN), specificity (SPE), and area under the curve (AUC) values, including the 95% confidence interval
(CI) for the AUC. e-l Diagnostic performance was assessed by modelling with the positive ion mode datasets of Cohort 1 (e, f) and Cohort 2
(g, h) and the negative ion mode datasets of Cohort 1 (i, j) and Cohort 2 (k, l). The other cohort served as a validation set. This assessment was
conducted both with and without sex stratification. Waterfall plots for predicting the probability of CCA using sex-neutral (m), male (n), and
female (o) optimal diagnostic models; the optimal cutoff points, SEN, SPE and AUC are labelled. Each stream represents the predicted
probability of disease according to the classifier, and the colours indicate the gold standard of diagnosis: red represents CCA, and blue
represents benign cases. p, q SEN, SPE and AUC for the BileScreen, BileMet and the bile lipid classifier (BileLipid).
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epithelial cells. Most of these cells were well differentiated,
although a small number showed slight disorganisation and mild
heterogeneous hyperplasia (Fig. 8a). The patient did not undergo
surgery or antitumor therapy; instead, biliary stenting was
performed to alleviate jaundice symptoms. Three years after
discharge, the patient remained alive and well with no signs of
malignancy, indicating a benign biliary obstruction.
Patient 2 presented with dilated intrahepatic bile ducts and

localised stenosis at the lower end of the common bile duct. ERCP
endoscopy revealed an abnormal biliopancreatic duct confluence
combined with lower bile duct stenosis. Owing to the severe
progression of jaundice, the patient underwent pancreaticoduo-
denal surgery. Postoperative pathology revealed localised intest-
inal epithelial hyperplasia with inflammatory cell infiltration in the
biliary epithelium and localised pancreatic follicular atrophy
(Fig. 8b), confirming a diagnosis of benign biliary obstruction.
Patients 3 and 4, who had similar imaging findings of marked

dilatation of the intra- and extrahepatic bile ducts and stenosis of

the middle and lower portions of the common bile duct,
underwent pancreaticoduodenal surgery. Postoperative patholo-
gical examinations confirmed adenocarcinoma of the bile ducts
(Fig. 8c, d). These 4 patients had highly similar clinical presenta-
tions and low sensitivity to CA19-9 (17.55–21.62 U/ml, all below
the upper limit of the normal range of 37.00 U/ml). CCA was
suspected prior to treatment, and the benign or malignant nature
of the conditions was confirmed only through subsequent clinical
findings.
According to the predictions of the BileLipid classifier in this

study, the predicted probabilities of CCA in Patients 1 and 2 were
less than 0.05, whereas the predicted probabilities in Patients 3
and 4 were both greater than 0.8 (Fig. 8e). This consistency with
the final clinical results demonstrates the model’s strong
discriminatory performance and highlights the potential value of
bile lipid biomarkers in the differential diagnosis of CCA, thereby
aiding in the identification and management of patients with
biliary obstruction in a clinical setting.
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Fig. 7 Validation and recalibration of the BileLipid classifier. a Heatmap of the normalised abundance of the 6 lipid features across the 3
cohorts. b Intergroup comparison of the relative concentrations of the 6 lipids in Cohort 3 using targeted lipid quantification (Wilcoxon rank-
sum test). c Diagnostic performance (ROC curves) of the original BileLipid classifier and the recalibrated adj.BileLipid model (refitted using
Cohort 3 quantification data). Waterfall plots displaying predicted CCA probabilities for Cohort 3 patients using (d) BileLipid and (e)
adj.BileLipid classifiers.
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LPC is protective against CCA in vitro
The results of the bile lipidomic differential analysis revealed that
LPC levels were significantly lower in the bile samples of CCA
patients than in those of patients with benign disease and that
LPC was the lipid with the most significant difference among all
lipid types (Figs. 2, 3). The turquoise module, identified by WLCNA
as having significant clinical relevance, was also predominantly
enriched with the LPC class of lipids (Fig. 5). To understand the
functional importance of these significantly depleted lipids in CCA,
we examined the effects of LPC on the proliferation of the CCA cell
lines (TFK1, QBC939) and normal biliary epithelial cell (HiBEC). The
cells were stimulated with an LPC mixture consisting of 69% C16:0
chains, 27% C18:0 chains, and 3% C18:1 chains. We found that LPC
significantly inhibited cell proliferation in a dose-dependent
manner (Fig. 9a). This growth-inhibitory effect was confirmed by
colony formation (Fig. 9b) and EdU (Fig. 9c) assays in the QBC939
and TFK1 cell lines. Moreover, LPC delayed the G1/S transition in
these two cell lines (Fig. 9d). These findings indicate that LPC
suppresses cell proliferation and delays the G1/S transition in CCA
cells, suggesting its role as a protective factor against CCA.
We then performed RNA sequencing analysis on LPC-treated

CCA cells to explore potential mechanisms of action. The GO
enrichment results revealed that multiple lipid metabolism
pathways were altered after LPC treatment, with lipid catabolic
processes, small molecule catabolic processes, and fatty acid
metabolic processes being the most significantly changed (Fig. 9e).
KEGG enrichment analysis revealed that the neuroactive ligand‒

receptor interaction, MAPK signalling, and multiple lipid metabo-
lism pathways were the most significantly altered cellular
processes in CCA cells following LPC treatment (Fig. S22). Among
the genes involved in these pathways, PDK4 (FC= 2.3, p= 7.20E
−16), LYPD6 (FC= 2.7, p= 3.43E−08), and FADS2 (FC= 2.3,
p= 1.55E−05) presented the most significant differences. Both
PDK4 and FADS2 are involved in fatty acid metabolism, which has
been widely reported to influence CCA development. These
findings suggest that LPC may affect CCA cell proliferation by
regulating fatty acid metabolism.

DISCUSSION
In this study, we developed an efficient bile lipidomic assay using
IM–MS to differentiate the lipidomic profiles of bile samples from
patients with CCA and those with benign bile duct diseases. We
conducted difference analysis, machine learning modelling, and
diagnostic efficacy assessment to evaluate the potential of this
bile lipidomic assay in clinical applications. This study established
and validated a new bile lipid classifier, BileLipid, which consists of
six lipids. The classifier achieved AUCs of 0.975 and 0.978 for the
CCA in the training and validation sets, respectively. This classifier
was then validated in a third cohort via LC‒MS/MS, and the six
lipids were further targeted for quantitative analysis with MRM
mode. Furthermore, we investigated the function of the down-
regulated lipid LPC, and in vitro experiments confirmed the
inhibitory effect of LPC on the proliferation of CCA cell lines. This
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b
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AgePatient Sex CA19-9 Probability

1 73 F. 19.46 0.043

2 70 F. 17.55 0.035

3 63 F. 19.88 0.813

4 70 M. 21.62 0.869

Fig. 8 Clinical evaluation of 4 representative patients diagnosed by the bile lipid classifier. a Imaging of Patient 1 revealed nodules at the
distal end of the common bile duct and dilation of the proximal duct. Cytological examination of the lower common bile duct revealed a
relatively high number of bile duct epithelial cells. Most of these cells are well differentiated, although a small number exhibit slight
disorganisation and mild heterogeneous hyperplasia. b Patient 2 presented with dilated intrahepatic bile ducts and localised stenosis at the
lower end of the common bile duct. Postoperative pathology revealed localised intestinal epithelial hyperplasia with inflammatory cell
infiltration in the biliary epithelium and localised pancreatic follicular atrophy. c, d Patients 3 and 4 exhibited similar imaging findings of
marked dilatation of the intra- and extrahepatic bile ducts and stenosis of the middle and lower portions of the common bile duct.
Postoperative pathology confirmed adenocarcinoma of the bile ducts. e Sex, age, CA19-9, and the bile lipid classifier-predicted probability of
CCA in 4 patients.
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Fig. 9 Validation of the potential protective effect of lysophosphatidylcholine (LPC) against CCA in vitro. a LPC decreased the viability of
CCA cell lines (TFK1, QBC939) and normal biliary epithelial cell (HiBEC), as determined by the CCK-8 assay. b LPC significantly suppressed the
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work not only broadens the application field of bile liquid biopsy
technology but also provides new insights for clinical translation.
The importance of bile as a characteristic body fluid in

diagnosing CCA and differentiating benign from malignant biliary
strictures is gradually being emphasised [22]. Several studies have
validated the unique advantages of bile samples in diagnosing
biliopancreatic malignancies [20, 22, 23, 25, 40, 41]. In addition to
genomics, transcriptomics, and proteomics, metabolomics—
which assesses the end products of gene expression and
environmental influences—has emerged as a highly promising
field in clinical diagnostics [25, 42–44]. Notably, existing studies
have focused primarily on ctDNA in bile because challenges such
as the reproducibility and comprehensiveness of small molecule
analysis in complex body fluids limit the acceptance of metabolite
analysis in liquid biopsy. The BileMet study compared the
performance of metabolic fingerprints in bile and plasma for the
diagnosis of biliary tract cancers and revealed that bile metabolic
diagnostic markers had better diagnostic performance than did
plasma metabolic markers (AUC= 0.891 vs. 0.717) [25]. BileMet
further validated the diagnostic advantages of bile in the field of
metabolic markers, and our results suggest that lipid metabolites
in bile have a diagnostic value comparable to that of ctDNA and
metabolomics.
We observed significant downregulation of several lipids in the

CCA bile samples. This overall suppression of lipid metabolism in
cancer body fluids has also been reported in other tumours
[24, 28, 29, 31, 32]. In a study by Wang G et al., changes in lipid
profiles in the plasma of lung cancer patients were analysed. They
reported that the downregulated lipids in lung cancer patients
were mainly LPCs, which aligns with the findings of the present
study. However, Wang G et al. reported that the upregulated lipids
in the plasma of lung cancer patients were primarily PCs. Their
diagnostic panel included 3 LPCs, 5 PCs, and 1 TG. In their panel,
the LPCs were all downregulated, whereas the PCs and the TG
were upregulated in lung cancer patients. All these lipids are
involved in glycerophospholipid and glycerolipid metabolism [28].
Similarly, Wolrab D et al. reported the downregulation of LPCs and
the upregulation of TGs in pancreatic cancer, which is consistent
with our findings in CCA. This similarity may be attributed to the
close anatomical proximity of the origin sites of CCA and
pancreatic cancer. Additionally, they reported that the most
significantly downregulated lipid in pancreatic cancer was
sphingomyelin (SM) [29]. In contrast, our study revealed that
there was little difference in SM between CCA patients and benign
controls. Our findings also revealed a decrease in free fatty acid
levels in bile, which is consistent with our previous results [33].
Sharma et al. analysed the lipidome profile of bile from

gallbladder cancer patients and gallbladder stones. Although they
similarly reported lipid inhibition in cancer bile, the predominant
lipid profiles in bile detected in that study were not exactly
identical to those reported in the present study. In Sharma’s study,
PC and phosphatidylethanolamine (PE) were the predominant
lipids in bile, whereas in gallbladder cancer, PC, PE, phosphati-
dylserine (PS), and phosphatidylinositol (PI) were the main lipid
species whose expression was downregulated [24]. The predomi-
nant lipids in bile identified in this study were PC, LPC, and Cer,
with LPC and Cer being the main lipid species whose expression
was downregulated. These differences highlight the heterogeneity
of lipid metabolism in CCA compared with that in gallbladder
cancer, and this heterogeneity may also be influenced by other
factors, such as sampling methods and assay platforms. In the
study by Sharma et al., bile was obtained primarily via aspiration
from the gallbladder or bile ducts via a 24-G needle during
surgical interventions. In contrast, in our study, bile samples were
collected during ERCP examinations. This method is less invasive
and traumatic than surgery, allowing bile to be captured under
conditions that are closer to the physiological environment prior
to clinical intervention. Consequently, this ensures that the sample

retains information that is more representative of the original
microenvironmental ecology.
The differences in bile lipidomic profiles between patients with

CCA and those in the benign control group suggest the potential
for early and accurate diagnosis of CCA. However, translating this
method into clinical practice requires consideration of real-world
clinical conditions. Therefore, we comprehensively evaluated the
clinical information of the enroled patients, including sex, age,
BMI, liver function, comorbidities, tumour stage, and other
relevant indicators, before diagnostic modelling. This approach
aims to minimise potential biases in laboratory testing and sample
grouping. After categorising CCA patients into early- and
intermediate/advanced-stage groups, we observed distinct differ-
ences between benign and malignant cases that were indepen-
dent of tumour stage. Although some lipids showed more
pronounced concentration changes in intermediate/advanced-
stage tumours, the lipid profiles of early- and intermediate/
advanced-stage tumours were highly similar and markedly
different from those of benign diseases. These findings suggest
that bile lipidome analysis could be instrumental in the early
diagnosis of CCA. Early detection through this method allows
timely therapy and intervention, potentially enhancing the
survival benefits for patients.
Notably, the bile lipidomic profile of patients with IBTs more

closely resembles that observed in CCA. In contrast, the
differences between NIBTs and CCA were more pronounced than
those between IBTs and CCA. This finding underscores the clinical
importance of distinguishing between IBTs and CCA, as it is often
more challenging to differentiate between these two conditions
than between CCA and NIBTs such as simple biliary stones.
However, while the results of this study suggest that the bile
lipidomic profiles of IBTs and CCA share more similarities than the
bile lipidomic profiles of NIBTs and CCA, the differences between
IBTs and CCA are still significant enough to allow for differentia-
tion. This finding highlights the potential advantage of using bile
lipidomic profiling in the diagnostic process for CCA.
Furthermore, differences in specific lipids across age, BMI,

Child‒Pugh grade, and ECOG-PS persisted between the benign
and malignant groups. This persistence suggests that variations in
biliary lipid profiles are specific characteristics of CCA rather than
effects of demographic or clinical factors.
The integration of biliary lipid groups and clinical phenotypes using

WLCNA revealed significant differences in lipid modules between CCA
patients and benign controls. Module‒trait relationship analysis
revealed key regulatory lipid modules and critical lipids involved in
CCA pathogenesis. These findings highlight the associations between
lipid species regulation and clinical traits. Notably, significant correla-
tions were observed between specific lipid modules and clinical
indicators such as the aCCI, Child‒Pugh grade, hepatic and renal
function parameters (bilirubin, albumin, ALP, creatinine, and uric acid),
blood lipids (total cholesterol, triglycerides, high-density lipoprotein,
and PLIPs), and tumour markers (CA19‒9). This preliminary analysis
supports the hypothesis that unique lipid coexpression patterns are
linked to specific clinical features.
Sexual asymmetries in metabolic homoeostasis, driven by

evolutionary adaptations, result in differential mechanisms for
energy storage and expenditure between men and women. These
differences, which include variations in antioxidant damage
capacity, resistance to starvation, and susceptibility to obesity,
significantly influence the structure of lipid metabolism [45].
Wolrab D et al. reported that TGs were upregulated in pancreatic
cancer patients. Notably, this upregulation was primarily concen-
trated in male patients and not evident in female patients, in
whom some TGs were even downregulated [29]. The results of the
present study similarly demonstrated sex differences in lipid
profiles. These differences between benign and malignant
samples were more evident when the lipid profiles of male and
female patients were compared separately than when they the
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comparison did not control for sex. Our results revealed that the
upregulation of TGs was more pronounced in male CCA patients,
whereas in female CCA patients, the downregulation of LPCs was
more significant. However, the sex differences in the trend of Cer
changes were not consistent across the two cohorts, indicating
that the findings related to sex stratification should be interpreted
with caution and require further validation (Fig. S13-14). Larger
sample sizes and in-depth studies may be needed to further
explore the sexual dimorphism of lipid metabolism in CCA.
Although sex-stratified diagnostic models demonstrated superior

performance—with the female-specific model achieving a higher
AUC than the sex-agnostic 6-feature model and the male-specific
model attaining a comparable AUC with only 3 features—
suggesting a potential enhancement in diagnostic value through
sex stratification, this approach inherently reduces the training data
volume and introduces additional confounders. Moreover, lipid
features that exhibit consistent importance across sexes may hold
broader biological importance. Therefore, we ultimately retained
the sex-agnostic bile lipid classifier for subsequent validation and
translation. In independent Cohort 3, targeted quantitative analysis
was performed on the 6 lipids included in the classifier, further
verifying its diagnostic performance and clinical promotability.
We subsequently reviewed the clinical presentation of the enroled

patients using the probability of CCA incidence predicted by the bile
lipid classifier. We found that this classifier not only plays a valuable role
in the diagnosis and early management of CCA but also aids in
identifying benign cases, helping to avoid the risk of overintervention.
The identification of benign andmalignant bile duct stenosis has always
been a significant challenge for biliary surgeons. Traditionally, clinicians
rely mainly on imaging and endoscopy for diagnosis. The current gold
standard for preoperative diagnosis is cytobrush or clamp biopsy under

ERCP. Despite its high specificity (90–100%), the sensitivity (62–88%)
and accuracy (63–93.7%) of this method are unsatisfactory [46–49]. This
leads to a high rate of resection of benign stenoses [46], highlighting the
need for more sensitive diagnostic methods. Patient 2 in this study
underwent pancreaticoduodenal surgery due to the rapid progression
of obstructive jaundice and suspected biliary tract cancer. If preopera-
tive diagnostic conditions have been clarified, the issue faced by the
patient could have been resolved with less invasive manoeuvres, such
as biliary drainage or stenting, without resorting tomajor surgery. This is
particularly important for the development of patient management
protocols in real-world clinical situations. The bile lipid classifier
proposed in this study may be promising for assisting in addressing
such issues in clinical practice.
As one of the most significantly differentiated classes of lipids in

CCA bile, LPCs were explored in vitro to evaluate their roles and
functions. The results of our cell proliferation and cell cycle assays
demonstrated that LPC inhibits the proliferation of CCA and normal
biliary epithelial cells. Given its significant reduction in CCA bile, we
hypothesise that this class of lipids may play a potential protective
role against the progression of CCA. The perturbation of acyl chains
at the sn-2 site of LPC can affect biofilm fluidity and membrane
protein function, potentially serving as the structural basis for its
mediated biological functions [50]. On the other hand, LPC can act
as a signalling molecule by binding to G protein-coupled receptors
and toll-like receptors, exerting biological effects such as inducing
oxidative stress, promoting inflammatory responses, and triggering
apoptosis [51]. LPC-treated transcriptome analysis in this study
revealed that the G protein-coupled receptor signalling pathway
was similarly enriched. Several clinical lipidomic studies have
reported the downregulation of LPC in cancer plasma, including
in lung cancer [28], hepatocellular carcinoma [52], and pancreatic

Patients with suspected diagnosis

Clinical examination

Final evaluation

High probability of malignancyLow probability of malignancy

Bile lipid assay

Bile lipid classifier

0 1Pcutoff

Benign MalignantDetermining treatment programme

Assessing Disease Risk

Fig. 10 Clinical strategy for bile lipid classifier to assist in the management of biliary tract disorders. The diagnosis of benign and
malignant biliary diseases is typically conducted through CT, MRCP, blood tumour markers, and ERCP. Inconclusive results can lead to
underdiagnosis or delays in the treatment of malignant diseases and unnecessary interventions or overtreatment of benign conditions.
Integrating the bile lipid classifier with clinical diagnostic tools may enhance risk assessment and improve the subsequent management of
biliary diseases.
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cancer [29]. Zhang L and colleagues reported that LPC can inhibit
lung cancer cell proliferation by inducing mitochondrial dysfunc-
tion, altering lipid metabolism, increasing fatty acid oxidation, and
reprogramming the ACSL5/phosphatidylinositol 3-kinase/extracel-
lular signal-regulated kinase-regulated triacylglycerol–LPC balance
[53]. In our study, LPC-treated CCA cells presented significant
alterations in lipid metabolism, with notable changes observed in
fatty acid metabolic processes. Therefore, targeting LPC and lipid
metabolism might be potential therapies for cancer treatment.
However, in vitro experimental validation is only a preliminary
exploration of the function of LPC in our study, and further studies
are needed to verify its specific mechanism of action, biological
function, and relationship with clinical phenotypes. Taken together,
our findings suggest the protective role of LPC against CCA, which,
combined with the findings of previous studies, demonstrates the
value of biliary lipid biomarkers in the clinical management of CCA.
The limitations of this study include potential biases and

constraints inherent to its design. First, the focus of this study was
solely on bile samples without the extension of observations to
blood or tissue samples. As a result, fully elucidating the lipidomic
characteristics of CCA across different biological matrices is not yet
possible. Second, although we employed a three-cohort indepen-
dent analysis to ensure the reproducibility of our results, the
clinical translation of the bile lipid classifier still requires further
validation. To do this, larger sample sizes and multicenter studies
are needed to continuously improve and adjust the diagnostic
model and address the limitations posed by the single-centre
sample. Furthermore, comprehensive clinical data, such as
treatment responses and survival outcomes in patients with
CCA, are lacking, which may warrant further in-depth investiga-
tion. Finally, additional studies are necessary to validate the
current findings and explore the potential clinical implications of
bile lipid profiling in greater detail.
In summary, this study not only identified lipidomic alterations

in CCA on the basis of bile samples but also established and
validated a bile lipid classifier with high specificity and sensitivity
for distinguishing between CCA and benign bile duct diseases.
Additionally, we provide an in-depth evaluation and discussion of
this diagnostic model in real-world clinical conditions. On the
basis of this study, we recommend the use of bile lipid profiling to
assist in the clinical assessment of biliary diseases and propose a
bile lipid classifier-based disease management strategy (Fig. 10).
This classifier has the potential to assist in the clinical manage-
ment of biliary diseases on the basis of ERCP. These findings
highlight the value of bile lipid biomarkers for improving the
differential diagnosis and risk assessment of CCA while preventing
potential overintervention in patients with benign biliary diseases.
The focus of subsequent research may be to develop more
sophisticated detection technologies targeting differentially
abundant lipids and verify their performance in a larger sample
cohort. Additionally, the reprogramming rules of abnormal lipid
metabolism in CCA and the specific mechanisms by which
differentially abundant lipids, such as LPC, affect the occurrence
and development of CCA require in-depth attention.
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