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BACKGROUND: Obesity is a risk factor for several cancers, but the mechanistic basis is poorly understood. We sought to identify
circulating metabolites mediating the effect of obesity on the risk of eight common cancers.

METHODS: Using European ancestry data, we applied two-sample Mendelian randomisation (25-MR) to screen 856 plasma
metabolites for associations with body mass index (BMI) and waist-hip ratio (WHR). Metabolite GWAS data were sourced from
INTERVAL, and obesity traits from the GIANT consortium and UK Biobank. We assessed the impact of obesity-associated metabolites
on cancer risk (384,738 cases across eight cancer types and 799,908 controls) and conducted mediation analyses to identify

potential mediators of obesity-driven cancer risk.

RESULTS: MR analysis yielded 107 BMI-driven metabolites and 126 WHR-driven metabolites. The strongest relationships with
cancer risk were between levels of obesity-driven 1-linoleoyl-GPC, 2-linoleoyl-GPC, 1,2-dilinoleoyl-GPC, 1-arachidonoyl-GPA, and 1-
pentadecanoyl-2-linoleoyl-GPC and colorectal cancer (CRC). Additional associations were found between obesity-driven
metabolites and breast cancer risk. Mediation analysis implicated multiple metabolites as potential mediators of obesity-driven CRC

and breast cancer risk.

CONCLUSIONS: As well as these findings highlighting how obesity-related metabolic changes influence cancer risk, our

observations suggest potential interventional targets.
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BACKGROUND

Obesity is a growing global health challenge, contributing not
only to several major chronic conditions such as diabetes mellitus
and cardiovascular disease, but increasingly is recognised as a risk
factor for cancer [1]. The relationship between obesity and cancer
is, however, complex and multiple pathways have been proposed
as an underlying basis, including systemic inflammation and
alterations in gut microbiota [2-4]. For example, in colorectal
cancer (CRQ), inflammation-related metabolic pathways have been
implicated in mediating risk, such as the conversion of linoleate-
containing phosphatidylcholines into arachidonate - a precursor
of pro-inflammatory eicosanoids — a process regulated by the
FADS gene cluster. In colorectal cancer (CRC), for instance, the
FADS gene cluster has shown evidence of mediating cancer risk by
metabolising linoleate-containing phosphatidylcholines into ara-
chidonate [5-7].

A central challenge in studying obesity-related cancer risk lies in
the accurate characterisation of obesity itself. Body mass index
(BMI), a commonly used measure based on height and weight [8],
does not differentiate between fat and lean mass. In contrast,

waist-hip ratio (WHR) serves as a marker of central (abdominal)
adiposity, capturing a distinct aspect of obesity associated with
visceral fat accumulation [9]. Interpreting the causal role of obesity
in cancer is further complicated by confounding lifestyle factors,
such as alcohol consumption and smoking, which may co-occur
with obesity and independently affect cancer risk.

One approach to gain insight into the mechanistic basis of
obesity-related cancer risk is to identify circulating metabolites
mediating the effects of obesity. The identification of mediator
metabolites has the potential to provide insights into causal
pathways and potentially provide targets for therapeutic inter-
vention. While studies have supported the influence of obesity on
levels of several plasma metabolites [10], since levels reflect
complex biological processes, observational studies can be
biassed by confounding factors and reverse causation. While the
risk of several cancers have also been associated with levels of
circulating metabolites [11], these associations are also subject to
similar biases.

Mendelian randomization (MR) is an analytical approach which
seeks to address these biases [12]. MR uses genetic variants as
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instrumental variables to evaluate the causal effects of exposures
(risk factors) on outcomes. Since genetic variants are randomly
allocated at conception and hence precede onset of disease, they
are not influenced by reverse causation, and in the absence of
pleiotropy (i.e. associations between genetic variants and disease
through alternative pathways), they are largely independent of
confounders.

Here, we have used MR (adhering to STROBE-MR best practices
[13]) in conjunction with mediation analysis to identify plasma
metabolites mediating the effect of obesity on the risk of eight
common cancers (including 23 subtypes) - breast, prostate, CRC,
lung, endometrial, oesophageal, renal cell carcinoma (RCC),
ovarian - using data on 384,738 cases and 799,908 controls. By
analysing both BMI and WHR, we have aimed to explore whether
overall and central obesity exert differential effects on cancer risk
through distinct metabolic pathways.

METHODS

Figure 1 shows the study design [14]. Firstly, we estimated the effect of BMI
and WHR on 856 plasma metabolites using MR. Secondly, we estimated
the effect of BMI/WHR-driven metabolites on cancer risk, again using MR.
Thirdly, statistically significant associations between metabolites and
cancer risk were prioritised by Bayesian colocalisation and we performed
mediation analyses to elucidate the metabolic mediators of the relation-
ship between obesity with cancer risk.

Stage 1: BMI and WHR to plasma metabolites

We estimated the effect of BMI and WHR on circulating plasma metabolite
levels (BemiwHR-to-metabolite IN Fig. 1) using two-sample MR (25-MR) [15].
Two-sample MR can estimate the causal effect of the exposure on the
outcome using summary statistics from genome-wide association studies
(GWAS) when three core assumptions are made about the instrumental
variables (IVs) - the IVs are associated with the exposure, there are no
confounders of the IV-outcome associations, and the IVs only influence the
outcome through the exposure.

GWAS were selected to maximise sample sizes whilst avoiding sample
overlap. For BMI and WHR, we used GWAS meta-analysis data on
individuals of European ancestry from the GIANT consortium and the UK
Biobank (BMI, 681,275 samples; WHR, 697,734 samples) [16, 17]. Con-
sortium details are provided in Supplementary Table 1 and post-hoc power
calculations [18] provided in Supplementary Tables 2 and 3. For the GWAS
of plasma metabolite levels, we used data from the INTERVAL study [19],
which quantified 867 plasma metabolites in individuals of European
ancestry using Metabolon (726 metabolites) and Nightingale (141
metabolites) assays that measured plasma abundances in 8153 and
37,359 individuals, respectively [20].

The effect of BMI and WHR on plasma metabolite levels was estimated
using the inverse variance weighted random-effects (IVW-RE) model [21]. The
IVs for BMI/WHR were found using PLINK v.1.9 [22, 23] (P < 5x107%
r? < 0.01, within a 0.5 Mb region) to clump genome-wide significant single
nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.01
referenced to the 1000 Genomes Project European panel (phase 1 integrated
release 3 March 2012) [24] (Supplementary Tables 4 and 5). For each linkage
disequilibrium (LD) block, the IV was chosen as the SNP with the smallest P-
value. SNPs in the human major histocompatibility complex region
(chr6:28,477,897-33,448,354; GRCh37) were removed from the datasets
before clumping, due to the likelihood of horizontal pleiotropy. Data
harmonisation and MR analyses were conducted using TwoSampleMR v.0.5.9
[25, 26], with SNPs not present in both the exposure and outcome GWAS,
with ambiguous alleles, or palindromic with a MAF >0.42 removed. For
metabolites present in both Metabolon and Nightingale assays, data from the
Nightingale GWAS was used due to its larger sample size. A Bonferroni-
corrected P-value threshold was used to define statistical significance,
adjusting for the number of harmonised metabolites. Many of the
metabolites within the datasets were non-independent, making this
correction excessively strict; however, we sought to minimise false positives.
We used F-statistics [27], which is a measure of the strength of the
association of Vs to test for weak instrument bias. In accordance with
previously published work [28] we considered a F-statistic <10 as being
indicative of weak instrument bias. Using Cochran’s Q statistic, we considered
a P-value < 0.05 as reflecting significant heterogeneity. To ensure robustness
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of any associations, MR analyses using the inverse variance weighted fixed-
effects, maximum likelihood, simple median, weighted median, simple mode,
and weighted mode were also performed [29, 30]. Leave-one-out analysis
was also performed to detect outlying and pleiotropic SNPs [31]. By
removing each SNP from the MR analysis sequentially, if the association is no
longer nominally significant (P> 0.05) with the SNP removed, this indicates
that a particular SNP is driving the association. The MR-Egger intercept test
[32] was used to evaluate directional pleiotropy when three or more IVs were
available. We considered non-negligible directional pleiotropy to be present
when the MR-Egger intercept was not null (i.e. Pegger-intercept < 0.05). We also
assessed reverse causation, wherein the effect of cancer may influence
plasma metabolite levels, using bidirectional MR. Bidirectional MR was
undertaken following the same steps as above, with the exposure and
outcome switched. If significant associations were detected by both forward
and reverse MR analysis of an exposure-outcome pair, reverse causation
could not be discounted. Exposure-outcome pairs that failed any of the
sensitivity tests were excluded from further analysis.

Stage 2: Obesity-driven metabolites to cancer risk

Next, we performed 2S-MR to estimate the causal effects of the obesity-
driven metabolites on the risk of each of the eight cancers (Bmetabolite-to-
cancer in Fig. 1). For this analysis, we used summary cancer GWAS effect
estimates from: (1) Online consortia resources, for breast (BCAC; https://
bcac.ccge.medschl.cam.ac.uk/, accessed July 2022) and prostate cancer
(PRACTICAL; http://practical.icrac.uk/; accessed July 2022); (2) GWAS
Catalog (https://www.ebi.ac.uk/gwas/), for ovarian, CRC, endometrial, and
lung cancers (accessed September 2022); (3) Investigators of published
work, for RCC and oesophageal cancer (Supplementary Table 6). Since the
UK Biobank was used to obtain genetic instruments for obesity traits, the
CRC and oesophageal GWAS association statistics were recalculated from
primary data excluding UK Biobank samples to avoid sample overlap bias.
IVs of the metabolite levels were defined as in Stage 1 (Supplementary
Table 7). SNPs were harmonised and proxy SNPs (r* > 0.8, within a 0.5 Mb
region) were used for obesity-driven metabolites that had no suitable IVs
after harmonisation. Proxy SNPs were identified using the 1000 Genomes
Project European panel (phase 1 integrated release 3 March 2012) [24].
Cancer subtype summary statistics were available for lung, breast, and
ovarian cancers. FinnGen GWAS cohort data (https://www.finngen.fi/en;
release R10) were used for the discovery phase of CRC subtypes and
validation of CRC, breast, and prostate cancer associations. Where
available, metabolite GWAS data from the Canadian Longitudinal Study
of Aging (CLSA) [33] were used for validation of metabolite and cancer risk
associations, as per Stage 1. Associations between metabolites and cancer
risk that failed validation were not taken forward.

Using these data, we carried out 2S-MR to investigate the effects of
obesity-driven plasma metabolite levels on cancer risk. The effects were
estimated as odds ratios (OR) per standard deviation (S.D.) increase in a
metabolite level (ORsp), with a 95% confidence interval (Cl). We used the
IVW-RE method for metabolites with two or more instrumental variables
and the Wald ratio method [34] for those with a single IV. The same
sensitivity analyses as per Stage 1 were used to detect directional
pleiotropy and heterogeneity, with metabolite-cancer pairs failing any of
the sensitivity analyses excluded from further analysis.

We performed colocalisation analysis using the coloc R package v.5.2.3
[35] to examine whether the genetically predicted metabolite level and
cancer risk shared the same causal variant. In particular, we performed
enumeration colocalisation analysis using approximate Bayes factors
assuming there was, at most, one causal variant per trait. This method
calculates the posterior probability of: Ho, neither trait has a genetic
association in the region; H,, only the exposure has a genetic association in
the region; H,, only the outcome has a genetic association in the region;
Hs, both traits are associated, but with different causal variants; H,, the
exposure and outcome are associated and share a single causal variant. In
this analysis, all SNPs within a +/—0.5 Mb region around the SNP acting as
an IV for the metabolite were included. To adjust for the number of SNPs
within each locus [36], the prior probabilities were chosen as p; =p,=1/
(10x number of SNPs) and p;, = p;/10, where p;, p,, and p;, are the prior
probabilities that a particular SNP within the locus is only associated with
trait 1, trait 2, or both traits, respectively. The posterior probability of H, or
PPghared (two traits sharing a single causal variant) > 0.8 was considered to
provide evidence of colocalisation. Sensitivity analysis was performed by
observing how PPg,.eq Varies as the value of p,; is changed; however, no
exposure-outcome pairs were removed from further analysis as a result of
the sensitivity analysis.
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Objective: To investigate whether plasma metabolites mediate obesity-related cancer risk
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Fig. 1 Study design. Stage 1: Metabolites associated with BMI/WHR are identified using univariable MR; Stage 2: Obesity-driven metabolites
associated with cancer risk are identified using univariable MR; Stage 3: The effect mediated through metabolites is estimated using
multivariable MR. Created with BioRender.com.

Stage 3: Mediation analysis estimates the combined mediated effect of the metabolites on the obesity-
We undertook mediation analysis to calculate the proportion of the effect driven cancer risk. The obesity and metabolite IVs must be reclumped
of each of the obesity traits on cancer risk, potentially mediated by the together; however, if the sample sizes of the obesity and metabolite GWAS

obesity-driven metabolites, using the difference method [37, 38]. This were significantly different, it is possible that only IVs from the GWAS with
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Fig. 2 Volcano plot of potentially causal associations between BMI and plasma metabolites. The dashed horizontal line indicates the
Bonferroni-corrected significance threshold (P=5.84x 107>) and all metabolites significantly associated with BMI in the MR analysis are
coloured. Metabolites that are negatively associated with BMI are coloured blue, whilst those positively associated with BMI are coloured red.
The dashed vertical line indicates a null effect. Solid lines are used to connect labels to data points. The total number of significant
metabolites is shown in the bottom-right corner. Created using the EnhancedVolcano (v1.20.0) R package [59]. HDL high-density lipoprotein,

VLDL very-low-density lipoprotein, GPC glycero-phosphatidylcholine, GPE glycero-phosphatidylethanolamine.

the larger sample size were retained, leading to weak instrument bias in
the IVs of the other trait. Where weak instrument bias prevented
estimation of the combined mediated effect, we used the product method
[39], whereby the metabolite’s mediated effects were estimated individu-
ally, using the same IVs from Stages 1 and 2. However, this precluded
estimation of the combined mediated effect for non-independent
mediators. The same exposure and outcome GWAS from Stage 1 and
Stage 2 were used for both univariable and multivariable MR analyses.

The World Cancer Research Fund and the American Institute for Cancer
Research have concluded that there is strong evidence that alcohol intake,
obesity, physical activity, and diet affect the risk of developing cancer [40].
Therefore, the IVs of the metabolite mediators were manually checked for
these pleiotropic associations using data from the GWAS Catalog [41]. If a
pleiotropic association was present, the IV was removed and the analysis
repeated. Potential obesity-mediating metabolites that did not have the
same direction of effect as the total effect of BMI/WHR on cancer risk (i.e.
Sgn(BBMINVHthofmetabolite X ﬁmetaboliteftofcancer) * Sgn(ﬁBMI/WHthofcancer)) were
also excluded from mediation analysis.

For the difference method, we used univariable MR to estimate the total
effect of BMI/WHR on cancer risk (BgmiwHr-to-cancer in Fig. 1) and
multivariable MR to estimate the direct effect of BMI/WHR on cancer risk.
IVs for the univariable MR analysis were selected as in Stage 1. IVs for the
multivariable MR analysis were selected by reclumping the union of the
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obesity measure and metabolite from Stages 1 and 2. The reclumping used
the same method and values as in Stage 1 but chose the IV as the SNP with
the smallest P-value in any of the GWAS. The metabolite-mediated effect
(i.e. the effect of BMI/WHR on cancer risk accounted for by the associated
metabolites) was calculated as the difference between the total and direct
effects. The proportion of the total effect of BMI/WHR on cancer risk
mediated by the metabolite was estimated by dividing the metabolite-
mediated effect by the total effect. Multivariable MR data harmonisation
and clumping was performed using the mv_extract_exposures_local and
mv_harmonise_data functions in TwoSampleMR v.0.6.2 using the 1000
Genomes Project European reference panel (phase 1 integrated release 3
March 2012) [24], whilst multivariable MR analyses were performed using
the ghet_mvmr function in MVMR v.0.4 [42]. To estimate the 95%
confidence interval for the multivariable MR analysis of BMI and breast
cancer risk, 100 bootstrap iterations were used as this was the maximum
number of iterations feasible with available computational resources. The
confidence interval for BMI and CRC risk could not be calculated using
ghet_mvmr due to computational constraints. Therefore, for BMI and CRC
risk the direct effect estimate and confidence interval were also calculated
using the ivw_mvmr function, which does not attempt to correct for weak
instrument bias and pleiotropy. Conditional F-statistics and horizontal
pleiotropy estimates were calculated using strength_mvmr and pleiotro-
py_mvmr, respectively, within MVMR v.0.4. The threshold for weak
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Fig. 3 Forest plot of obesity-driven metabolites associated with cancer risk. Odds ratios and 95% confidence intervals were estimated
using MR utilising either the IVW-RE method or Wald ratio (depending on the number of IVs). The names of the metabolites are given in the
left column, stratified by the associated cancer risk. The vertical dashed line indicates a null effect. The error bars show 95% confidence
intervals around the estimated odds ratio. NnSNP number of SNPs. Created using the forester (v0.3.0) R package [60]. HDL high-density
lipoprotein, VLDL very-low-density lipoprotein, GPC glycero-phosphatidylcholine, GPE glycero-phosphatidylethanolamine, GPA glycero-

phosphate.

instrument bias was defined as conditional F-statistic <10 [42], and we
considered a P-value < 0.05 from the modified form of Cochran’s Q
statistic as being indicative of significant heterogeneity. If weak instrument
bias or pleiotropy was detected, we instead used the product method.
Phenotypic correlation matrices were calculated using the estimateSyy
function in metaCCA v.1.13.2 [43], and genetic covariance matrices were
calculated using the phenocov_mvmr function in MVMR v.0.4.

For the product method, the metabolite-mediated effect was instead
calculated using the univariable MR results from Stage 2 as BemywHr-to-
metabolite X Bmetabolite-to-cancer- 1€ proportion mediated was estimated as in
the difference method. An additional constraint of non-overlapping IVs
between the exposure and mediator must be fulfilled when using univariable
MR in mediation analysis. Any SNP that is used as an instrument for both the
exposure and mediator will be pleiotropic when estimating BsmiwHR-to-
metabolite [44]. Therefore, the IVs for the exposure and mediators were checked
to ensure no overlapping IVs (defined as r* < 0.01, within 0.5Mb of each
other) were present. Overlapping IVs were removed from the GWAS with the
larger sample size to minimise the loss of power.

We contextualised metabolites into their biological pathways by
referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [45]. To examine the relationship between IV genotype and gene
expression we performed an expression quantitative trait loci analysis
using the Genotype-Tissue Expression (GTEx) Portal [46, 47].

RESULTS

Stage 1: BMI and WHR to plasma metabolites

After harmonisation, 856 plasma metabolite levels were used as
outcomes. The F-statistics of the obesity measures were greater
than 59.8 for BMI and 45.8 for WHR; hence there was no evidence
of weak instrument bias [28] (Supplementary Tables 2 and 3).
Furthermore, we had >80% power to detect a relationship for all
the BMI/WHR-metabolite pairs, provided ORsp was at least 1.05. Of
the metabolites screened, 108 were estimated to be influenced by
BMI and 128 by WHR, using a Bonferroni-adjusted threshold of
P<584x107° (0.05/856), highlighting the For influence of BMI
and WHR on levels of plasma metabolites (Fig. 2 and Supplemen-
tary Fig. 1 and Supplementary Tables 8 and 9). We did not find
significant heterogeneity for Bonferroni-significant metabolites
(P < 0.05), apparent directional horizontal pleiotropy using the MR-
Egger test (Pegger-intercept < 0.05), or a single SNP driving any of the
associations from the leave-one-out analysis. One BMI-associated
metabolite and two WHR-associated metabolites showed signifi-
cant bidirectional effects and were removed from further
investigation (Supplementary Tables 10 and 11). After performing
these analyses, 107 BMI-driven metabolites (28 unique to BMI) and
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TwoSampleMR (v0.5.9) R package [25, 26].

126 WHR-driven metabolites (48 unique to WHR), for a total of 154
obesity-driven metabolites, were identified with no apparent
heterogeneity, directional pleiotropy or reverse causation.

Stage 2: Obesity-driven metabolites to cancer risk

For 81% of the metabolites carried forward from Stage 1 we had
>80% power to detect a relationship, provided ORsp was >1.25.
Based on a Bonferroni-adjusted threshold, MR revealed that a per
S.D. reduction in genetically predicted levels of three BMI-
associated metabolites: 2-linoleoyl-GPC, 1,2-dilinoleoyl-GPC, 1-
pentadecanoyl-2-linoleoyl-GPC, and BMI- and WHR-associated 1-
linoleoyl-GPC were associated with increased risk of CRC (Fig. 3
and Supplementary Tables 12 and 13). One S.D increase in BMI-
associated 1-arachidonoyl-GPA was also associated with increased
risk of CRC. Three BMI-associated metabolites were identified as
significantly associated with reduced risk of rectal cancer: 1-
linoleoyl-GPE, 2-linoleoyl-GPE, and 1-pentadecanoyl-2-linoleoyl-
GPC. One S.D increase in BMl-associated 1-arachidonoyl-GPA was
also associated with increased risk of rectal cancer. One S.D.
increase in genetically predicted levels of BMI-associated 1-oleoyl-
GPC and WHR-associated X-11444 were associated with increased
breast cancer risk. One S.D. reduction in WHR-associated
concentration of small HDL particles, total lipids in small HDL,
and phospholipids in small HDL were also associated with breast
cancer risk. All the BMI/WHR-driven metabolites associated with
breast cancer (excluding phospholipids in small HDL) were also
found to be significantly associated with, and have the same
direction of effect in, at least one subtype of breast cancer.
Furthermore, a per S.D. reduction in multiple genetically predicted
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measures of very-low-density lipoprotein levels were associated
with increased luminal-A breast cancer risk. Finally, one S.D.
decrease in levels of WHR-associated X-12846 was associated with
increased lung cancer risk in never-smokers and one S.D. increase
in levels of BMl-associated butyrylcarnitine was associated with
increased prostate cancer risk. WHR-associated X-11905 was
nominally associated with increased endometrial cancer risk;
however, a single outlying SNP driving the association was
identified during the leave-one-out analysis and this metabolite-
cancer pair was not considered for further analysis. None of the
obesity-driven metabolites were found to be significantly asso-
ciated with RCC, oesophageal, or ovarian cancer.

All significant associations had consistent direction of effect
under the different MR methodologies (Fig. 4 and Supplementary
Table 12). To further test whether plasma levels of the obesity-
driven metabolites were causal for CRC, breast cancer, and
prostate cancer risk, we performed validation MR analyses using
cancer GWAS data from the FinnGen cohort. Estimates were
consistent with a causal effect of each of the five obesity-driven
metabolites on CRC risk (Bonferroni-adjusted threshold
P<1.00x107%) (Supplementary Fig. 2 and Supplementary
Table 14); however, using the breast cancer GWAS from the
FinnGen cohort, four of the obesity-driven metabolites were not
validated and the final metabolite had no instruments post
harmonisation of data. The association between butyrylcarnitine
and prostate cancer was not validated in the FinnGen cohort.
Although there was potential sample overlap between the
independent cancer GWAS and the GWAS of the FinnGen cohort
for breast and prostate cancers, the metabolites were sufficiently
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Fig. 5 Omega-6 polyunsaturated fatty acid metabolic pathway.
An illustration of the omega-6 polyunsaturated fatty acid metabolic
pathway with information taken from the KEGG database [45]. The
arrows show individual metabolic reactions. The enzymes for each
reaction are shown in italics. The dotted lines show reactions that
produce linoleate as a by-product. The dashed lines show the
processes by which inflammatory mediators are produced. The
metabolite abbreviations are shown in bold. The enzymatic process
catalysed by A-5-desaturase (FADST) mediates the ratio of pro- to
anti-inflammatory lipids present. PC phosphatidylcholine, LPC
lysophosphatidylcholine, GPC glycero-phosphatidylcholine, FA fatty
acid, COX cyclooxygenase, LOX lipoxygenase.

powered (all F-statistics >100; Supplementary Table 13) after
harmonisation with the FinnGen cancer GWAS to avoid inflated
weak instrument bias [48]. Validation MR analyses were not
performed for the other metabolite-cancer associations due to
lack of appropriate endpoints in the FinnGen cohort. Validation
MR analyses were also performed for metabolites with GWAS data
available from the CLSA cohort using both the independent and
FinnGen cancer GWAS (Supplementary Table 15). The association
between 1-oleoyl-GPC and breast cancer reached significance in
the independent cancer GWAS (BCACQ), but not in the FinnGen
cancer GWAS. The lack of a significant association in the FinnGen
cancer GWAS may be explained by the limited power to detect an
association as compared with analysis based on the CLSA and
BCAC GWAS. Hence, we did not preclude this metabolite-cancer
pair from further analysis. None of the associations showed

significant bidirectional effects (Supplementary Table 16). We also
performed colocalisation analysis on the 27 metabolite-cancer
pairs, finding 14 pairs with at least one IV that met the H,
threshold (PPghareq > 0.8; Supplementary Figs. 4-17). A total of 12
metabolite-cancer associations passed all sensitivity analyses and
were taken forward to Stage 3 (Supplementary Table 17).

Stage 3: Mediation analysis

The associations between BMI/WHR and luminal-A breast cancer
and BMI and rectal cancer did not meet the Bonferroni threshold
(P<833x1073) and were not taken forward in the mediation
analysis (Supplementary Table 18).

We used both mediation methods (see Methods) to estimate
the metabolite-mediated effect. All mediation analyses using the
difference method suffered from weak instrument bias in the
multivariable MR analysis (Supplementary Table 19). This was due
to all but one of the metabolites being reliant on a single IV during
initial clumping, compared to the hundreds of IVs for BMI/WHR.
During reclumping of the combined BMI/WHR and metabolite IVs,
all but one of these single metabolite IVs were removed, with
most remaining Vs only weakly associated with the metabolites.
Horizontal pleiotropy was also detected for all multivariable MR
analyses. Using the ghet_mvmr function within the MVMR R
package, direct effect estimates can be calculated, adjusted for the
violated MR assumptions; however, this analysis provided no
evidence of any significant metabolite-mediated effect (Supple-
mentary Table 20).

For the product method, estimates for the mediated effect of
each individual metabolite were calculated; however, a combined
effect could not be calculated as the metabolites are all localised
in the omega-6 polyunsaturated fatty acid (PUFA) metabolic
pathway (Fig. 5) and are therefore not independent. Each
metabolite’s mediated effect will therefore also contain contribu-
tions from associated metabolites and summing all metabolites’
mediated effects will lead to counting contributions more than
once [44]. All mediators had a significant mediated effect after
Bonferroni correction (P<1.25x 1072 (0.05/4)) (Supplementary
Table 21). For CRC risk, three BMIl-associated metabolites: 2-
linoleoyl-GPC, 1,2-dilinoleoyl-GPC, and 1-pentadecanoyl-2-lino-
leoyl-GPC, showed a mediated effect of at least 13%. Similarly,
for breast cancer, BMI-associated 1-oleoyl-GPC showed a mediat-
ing effect in excess of 29%. No IVs for metabolites mediating
either CRC risk or breast cancer risk showed pleiotropic associa-
tions in the GWAS Catalog [41] (Supplementary Table 22).

Role of fatty acid desaturase genes in obesity-driven CRC risk
Accepting the limitations of the mediation analysis and although
speculative, the omega-6 polyunsaturated fatty acid metabolic
pathway may explain the CRC risk associations found by the MR
analyses. We found that genetically predicted lower levels of 2-
linoleoyl-GPC, 1,2-dilinoleoyl-GPC, and 1-pentadecanoyl-2-lino-
leoyl-GPC were associated with an increased risk of CRC, which
expanded the causal evidence of linoleate-containing phosphati-
dylcholine (PC) metabolites with decreased CRC risk [5, 6].
Furthermore, all nominally significant linoleate-containing PC
metabolites were negatively associated with CRC risk and all
nominally significant arachidonate-containing PC metabolites, as
well as arachidonate itself, were positively associated with CRC risk
(Supplementary Fig. 3). These two omega-6 PUFAs are found on
opposite sides of the FADST A-5-desaturase enzymatic step within
the omega-6 PUFA pathway (Fig. 5), implicating FADST expression
as the underlying factor determining CRC risk.

The single IVs for 2-linoleoyl-GPC and 1-pentadecanoyl-2-
linoleoyl-GPC are all located in, or near to, the FADS gene cluster,
whilst one of the two IVs for 1,2-dilinoleoyl-GPC is located in
FADS1. Furthermore, these IVs are significant FADS1/2 cis-
expression quantitative trait loci (eQTLs) in colon tissue [46], with
opposite direction of effect for each gene. Where gene expression

British Journal of Cancer (2025) 133:1344-1353



data for a particular IV was unavailable, a SNP in strong LD
(* > 0.9) was used as a proxy. Colocalisation analysis found that all
three metabolites showed evidence of a shared causal variant
(PPghareq > 0.8) with FADST in sigmoid colonic tissue, but not
transverse colonic tissue (Supplementary Table 23 and
Figs. 18-20). The reported most likely causal variant for all but
one metabolite was rs1535, which was also significantly associated
with CRC risk in the cancer GWAS. However, none of the GWAS
significant SNPs for BMI/WHR showed evidence of a shared causal
variant (PPshareq > 0.8) with any FADS gene in colon tissue
(Supplementary Tables 24 and 25).

DISCUSSION

To advance our understanding of obesity-mediated cancer risk, we
performed a discovery metabolome-wide MR analysis for eight
common cancers. To our knowledge, our study is the first to
comprehensively evaluate potential causal associations from
plasma metabolites for multiple cancers. A major strength of our
study has been the adherence to the three core assumptions of
MR. Assumption 1 (relevance) was addressed by including only
exposures with F-statistics >10 to minimise weak instrument bias.
While this is conservative approach and reduces false positives it
may have excluded biologically relevant metabolites. Assumption
2 (independence) was addressed by restricting analyses to
individuals of European ancestry to reduce population stratifica-
tion. Hence, future studies are required to establish whether the
same metabolites mediate the effect of obesity in populations of
non-European ancestries. Furthermore, we were unable to explore
sex-specific effects due to the lack of sex-stratified data.
Assumption 3 (exclusion restriction) was satisfied by excluding
exposure—-outcome pairs failing sensitivity analyses and removing
IVs with known pleiotropic associations from the GWAS Catalog.

Accepting these caveats, we identify potential mediators of
obesity-driven cancer risk, with three plasma metabolites from
univariable MR that were associated with both BMI and CRC risk
and one metabolite associated with BMI and breast cancer. While
mediation analysis was consistent with the effect of obesity on
CRC and breast cancer being potentially mediated by these
metabolites we highlight, inevitably, the wide confidence intervals
reflect the limited predictive power of the metabolite IVs.
Furthermore, mediated effect estimates for a single metabolite
may be overinflated because of indirect contribution from other
associated factors [44].

A contemporaneous study investigating the causal effect of
plasma metabolites on CRC risk found evidence to support a
relationship between linoleate- and arachidonate-containing PC
metabolites and CRC risk [5]. Furthermore, 1,2-dilinoleoyl-GPC and
1-linoleoyl-2-linoleoyl-GPC, another precursor of 2-linoleoyl-GPC,
were found to be mediators of obesity-driven CRC risk. Although
using multivariable MR for the mediation analysis, no conditional
F-statistics or pleiotropy estimates were reported. Hence, our
observations are in broad agreement with this study’s findings,
which reported a metabolite-mediating effect of 61% for BMI-
driven CRC risk.

Increased levels of oleate, a downstream product of 1-oleoyl-
GPC, have shown a conflicting effect on breast cancer risk and
evolution, depending on subtype and menopausal status [49, 50].
Furthermore, obesity is known to be protective for premenopausal
women, but a risk factor for postmenopausal women [4, 51]. This
makes it difficult to speculate on potential pathways by which
obesity-driven breast cancer risk is mediated by the metabolome,
due to the lack of menopausal-stratified breast cancer GWAS
available for this study. A study using a menopausal-stratified
breast cancer GWAS may therefore detect other mediators, which
we unfortunately were not empowered to identify.

Although further research is needed to verify our findings and
elucidate the underlying biological mechanism, our results are
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consistent with a model by which obesity mediates CRC risk by
generating a proinflammatory state [2, 52]. Specifically, arachido-
nate is metabolised by COX-2 to produce inflammatory mediators
including prostaglandin E2, which affects CRC carcinogenesis [53].
Moreover, this accords with FADS2 being a risk locus for CRC [54]
and the ability of aspirin to irreversibly inhibit COX-1 and COX-2
and lower proinflammatory signals for CRC chemoprevention [55].
The FADS1/2 genes are also overexpressed in colon adenocarci-
nomas [56], further emphasising the role of the FADS genes in CRC
risk. While plasma levels of arachidonate have been reported to be
associated with an increased risk of CRC [6, 7], the FADS gene
cluster is known to be a region of high LD [57], hence the
pleiotropy makes it difficult to definitively resolve which PUFA
metabolites are driving the genetically predicted association with
CRC risk.

Using both BMI and WHR to assess obesity, we compared their
effects on the plasma metabolome. WHR was associated with a
greater number of, and more unique, metabolite associations than
BMI, despite fewer IVs and similar sample sizes. Since both metrics
showed comparable proportions of Metabolon-assay associations
this excludes assay heterogeneity and suggests WHR may better
capture obesity-related metabolic changes and disease risk, in
keeping with previous findings [9].

Herein we have been able to provide evidence for potential
mediation of obesity-driven CRC and breast cancer risk by
performing a metabolome-wide MR analysis. Considering that
obesity is a highly polygenic trait with more than 500 associated
loci influencing over 150 metabolites, it is unlikely that any single
metabolite will explain a high proportion of the effect of obesity-
related traits on risk of any specific cancer. Moreover, while the
risk of several cancers have been documented to be strongly
influenced by obesity, notably CRC [58] and breast cancer [51], it is
not necessarily the case that mediators of obesity-related cancer
risk will be consistent across cell lineages. Furthermore, in the case
of breast cancer, obesity has been documented to be both
protective or a risk factor depending upon menopausal status [4].
Hence, further MR-based analyses using additional omics data in
conjunction with larger cancer GWAS datasets have the potential
to definitively ascertain which metabolites mediate obesity-driven
cancer risk.
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Instrumental variables are given in Supplementary Tables 4, 5, and 7. Summary GWAS
BMI/WHR data are available from https://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files. Summary GWAS metabolite data are
available from https://www.omicspred.org/. Summary GWAS cancer data are
available from: https://bcac.ccge.medschl.cam.ac.uk/bcacdata/ (breast cancer);
http://practical.icrac.uk/blog/?page_id=8088 (prostate cancer); GWAS Catalog ID:
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