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Senescence-related gene signature predicts prostate cancer
progression and identifies PCNA as a therapeutic target via
multi-omics machine learning integration
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BACKGROUND: Senescence plays a critical role in prostate cancer, influencing disease onset and progression. However, the
alterations of senescence-associated genes during prostate cancer progression and their potential value in predicting disease
advancement remain to be further elucidated.
METHODS: 117 machine learning methods were applied to construct the senescence-related gene signature (SRGS). Temporal
trajectory analysis based on bulk and single-cell transcriptomic datasets was performed to link SRGS with prostate cancer
progression. Functional validations of PCNA were conducted both in vitro and in vivo to support our analytical findings.
RESULTS: Using 117 machine learning methods, we developed the SRGS, which demonstrated robust predictive capability across
multiple cohorts, including our own cohort of 90 patients. The SRGS also showed strong potential in predicting overall survival in
patients treated with second-generation AR inhibitors. Temporal trajectory analysis of bulk RNA-seq and single-cell data revealed
the biological significance of SRGS and identified Proliferating Cell Nuclear Antigen (PCNA) as a potential driver of PCa progression.
Pharmacological inhibition of PCNA with AOH1996 significantly suppressed tumor growth and enhanced the efficacy of androgen
deprivation therapy.
CONCLUSION: We developed the SRGS that effectively predicts prostate cancer prognosis and progression. Moreover, our findings
highlight PCNA as a promising therapeutic target in PCa.
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INTRODUCTION
Prostate cancer (PCa) remains a major contributor to cancer-
related mortality among men globally [1], with ~2.9 million new
cases projected by 2040 due to an aging global population [2].
While genetic predisposition and family history contribute to PCa
risk, advancing age is a primary driver, strongly associated with
both increased incidence and more aggressive disease pheno-
types [3, 4]. Aging is also a significant risk factor for various other
diseases, as it encompasses cellular senescence, genomic instabil-
ity, and disrupted tissue homeostasis [5].
Recent studies have revealed a strong association between

senescence phenotypes and PCa progression [6, 7]. In the context
of tumor progression, senescence is believed to suppress tumor
growth, potentially explaining the relatively slow development of
PCa [8, 9]. However, a subset of patients experience biochemical
recurrence (BCR), which refers to disease relapse following radical
prostatectomy, and this is often followed by rapid progression to
lethal metastases [10]. Although current risk stratification includ-
ing clinical parameters are used to estimate the likelihood of BCR
in PCa, several studies have demonstrated that molecular

biomarkers, such as Decipher, GPS, and Prolaris tests, exhibit
superior predictive performance compared with clinical parameter
[11–13]. Moreover, early identification of BCR risk and timely
therapeutic intervention have been recognized as effective
strategies to improve patient outcomes [14]. Androgen depriva-
tion therapy (ADT) is generally effective as a first-line treatment for
PCa following BCR. However, in some patients, the disease
progresses to the castration-resistant prostate cancer (CRPC)
stage, where it no longer responds to conventional ADT [15]. This
transition is associated with a poor prognosis and remains a major
challenge in PCa management. Previous studies have demon-
strated that the primary cellular response to ADT in PCa may be
senescence-associated growth arrest [16, 17]. However, emerging
evidence shows that senescent cells can regain proliferative
capacity, contributing to disease recurrence and progression [18].
Therefore, from both progression and resistance perspectives,

there is a critical need for reliable clinical prognostic models to
guide precision medicine. Developing predictive models based on
senescence-related gene signatures to assess disease progression
and treatment resistance, along with strategies to prevent the
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reactivation of proliferative potential in senescent cells, may
represent a promising therapeutic approach to prevent or delay
the progression of CRPC.
To decode the dynamic role of senescence in PCa progression,

we integrated transcriptomic data from six independent cohorts
and applied 117 machine learning methods to construct a robust
senescence-related gene signature (SRGS) predictive of BCR. The
predictive power of the SRGS was further validated in our own
sequencing cohort. In addition, temporal trajectory analysis of
bulk and single-cell RNA-seq data confirmed the association of
SRGS with disease progression and identified Proliferating Cell
Nuclear Antigen (PCNA) as a potential driver of the tumor
progression. We further validated through in vitro and in vivo
experiments that pharmacological inhibition of PCNA may block
this transition, offering a novel therapeutic strategy for high-
risk PCa.

MATERIALS AND METHODS
Data processing
PCa transcriptomic datasets with BCR-free survival information were
obtained from six publicly available sources: TCGA-PRAD, Stockholm,
Cambridge, CancerMap, GSE54460, and Taylor (retrieved on January 12,
2023), along with corresponding clinical annotations (see Supplementary
Table 1). Inclusion criteria required: (1) primary PCa tissue samples; (2)
available RNA-seq data; (3) documented radical prostatectomy (RP); and (4)
at least 30 days of postoperative follow-up. The normal prostate tissue data
from GTEx were obtained via https://xenabrowser.net/.
Our study did not involve any clinical research. For our in-house cohort

(SYSU-PRAD cohort), informed consent was obtained from all participants.
The study was approved by the Research Ethics Committee of the First
Affiliated Hospital of Sun Yat-sen University ([2022] No. 101). Fresh radical
prostatectomy specimens were collected from patients with primary PCa.
Samples with available bulk RNA sequencing, whole-exome sequencing
(WES), and proteomic data were included to constitute our in-house
cohort. The transcriptomic, proteomic, and WES sequencing were
performed by Shanghai Zhongke New Life Biotechnology Co., Ltd.
Single-cell RNA sequencing (scRNA-seq) was conducted on the 10x
Genomics platform by Lianchuan Biotechnology Co., Ltd.
Normalization strategies were applied according to data type: TCGA and

SYSU-PRAD RNA-seq data were converted to FPKM values; SRA datasets
were normalized using the trimmed mean of M-values (TMM) method
through the edgeR package; and microarray data from CancerMap and
Taylor were normalized using robust multi-array average (RMA) through
the oligo package. Preprocessed expression data from cBioPortal and GEO
was used without additional processing. All expression data were log2-
transformed to ensure uniformity prior to downstream analyses.

Collection of senescence-related genesets
Human senescence-related genesets were obtained from five manually
curated and publicly available resources, namely AgingAtlas [19], KEGG
[20], and Reactome [21], Human Ageing Genomic Resources (HAGR) [22]
and GO [23], by retrieving keyword “senescence”.

Weighted correlation network analysis (WGCNA)
The WGCNA package was used for generating co-expression networks of
TCGA-PRAD [24], with an optimal soft threshold (β) determined to ensure
compliance with the scale-free network criteria. In addition, the weighted
adjacency matrix was transformed into a topological overlap matrix (TOM)
before computing the corresponding dissimilarity (1TOM). Gene modules
were then identified through the dynamic tree cutting approach, with the
red module exhibiting the most significant correlations with clinical index.
Genes with both high GS and MM were used for further study.

Construction of SRGS model
A consensus SRGS with high levels of stability and accuracy was developed
by integrating 10 machine learning algorithms using Mime package. These
included partial least squares regression for Cox (plsRcox), survival support
vector machine (Survival-SVM), generalized boosted regression modeling
(GBM), random survival forest (RSF), least absolute shrinkage and selection
operator (LASSO), stepwise Cox, Ridge, CoxBoost, elastic network (Enet),

and supervised principal components (SuperPC) for model construction.
Additionally, Harrell’s concordance index (C-index) was determined in five
datasets for validation, with the model having the highest average C-index
subsequently selected.

Bulk pseudo-time analysis of prostate cancer disease
progression
Human RNA-Seq datasets were obtained from Bolis et al. [25]. We
calculated the pseudotime score for each sample using the ProstateCan-
cerAtlas (https://prostatecanceratlas.org/app/home). The pseudotime tra-
jectory was derived by applying slingshot, with principal components (PC1
and PC2) from PCA as input, assigning each sample a pseudotime value
ranging from 0 to 250. GSEA analysis was used to quantify GSEA score for
nine genes which constructing SRGS. Pearson’s correlation analysis was
used to analyze the GSVA scores and disease progression (pseudotime).
The detailed computational methodology can be referred to in the
previously published study by Bolis et al. [25].

Single cell RNA-seq
Single cell transcriptomic data were acquired from our own single-cell
datasets comprising 5 primary PCa samples and GSE137829 comprising 5
CRPC samples [26]. Cells were discarded if they expressed more than 6000
genes, less than 500 genes or less than 300 UMI counts. Those where the
ratio of mitochondrial expression to endogenous gene expression
exceeded 15% were also discarded. Using the NormalizeData function, a
log2 transformation was then applied to the raw data for normalization
prior to scaling with the ScaleData function. Additionally, the FindVaria-
bleFeatures function (selection.method= “vst”) was used for computing
the top 2000 genes having the highest standardized variance, with
principal component analysis (PCA) also conducted using the default
parameters in the RunPCA function. We performed batch correction by R
package Harmony (version 0.1.0). Putative doublets were identified and
discarded using scDblFinder R package (v 1.4.0). Potential doublets,
identified based on the coexpression of different well-known cell-type
markers, were filtered out, leaving 50992 cells with identified subsets. The
SRGS score of single-cell was calculated by AddModuleScore. The infercnv
package in R (v 1.14.2) was utilized to infer single-cell copy number
variants. The CNV score for each cell was calculated using ∑(CNVᵢ− 1)²,
where CNVᵢ represents the inferred CNV level for region i.

Differential expression and enrichment analyses
Differentially expressed genes were computed using FindAllMarkers
functions (test.use= “wilcox”, min.pct= 0.25). In this case, genes were
considered as being differentially expressed using an absolute log2(fold
change) of >0.25 and an adjusted P value of <0.05 as threshold. For
enrichment analysis, KEGG terms were identified using enrichCluster, with
results considered to be statistically significant at a P-adjusted value of
<0.05, following Benjamini–Hochberg (BH) correction.

Single-cell trajectories
We utilized Monocle (v 2.24.1) to order epithelial cells in pseudotime based
on their transcriptomic similarity. Cell states, groups and gene expression
in pseudotime were plotted with plot_cell_trajectory.

Cell proliferation assay
To each well of a 96-well plate, 2000 PC3 or DU145 cells were added. After
treatment with a small molecule PCNA inhibitor AOH1996 (Abmole,
M40519, China) for 24 h, CCK-8 solution (Abmole, M4839, China) was
introduced to the wells for 2 h, and absorbances at 450 nm were read to
assess cell viability.
The colony formation assay involved adding 1000 PC3 or DU145 cells to

each well of 6-well plates, and after adhesion, a 24-h treatment was
performed using AOH1996. After ~7 days of incubation, cell colonies were
washed with 1x PBS prior to a 20-min staining with crystal violet. The
colonies were subsequently imaged and quantified to assess colony
formation ability.
Apoptosis Assay To each well of six-well plates, 2 × 105 PC3 or DU145

cells were added along with 2 mL of complete medium. The next day, cells
in the combined pan-apoptosis inhibitor and PCNA inhibitor group were
pretreated with 40 μM V-ZAD-FMK (MCE, HY-16658B, China) for 30min.
Following pretreatment, 500 nM AOH1996 was added to both the pan-
apoptosis inhibitor group and the PCNA inhibitor group, after which a 24-h
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incubation was performed. The recommended protocol of an Annexin V-
FITC/PI staining kit (Biosharp, BL110A, China) was then followed to assess
apoptosis levels. Fluorescence signals were detected by flow cytometry
before quantifying the proportion of apoptotic cells.

Immunohistochemistry
Orthotopic tumor tissues were collected from mice for immunohistochem-
istry staining. After fixing the tumor samples for 12 h in 4% paraformalde-
hyde (PFA), they were paraffin-embedded and sectioned (4 μm). The
sections were boiled in Tris-EDTA for antigen retrieval, after which, 3%
H2O2 was added to block peroxidases and nonspecific binding of
antibodies. Additional blocking was then performed using 20% goat
serum before overnight treatment (4 °C) with the primary antibody. The
sections were then washed, and after a 30-min incubation with the
secondary antibodies, they were stained with DAB (Aglient, K5007),
followed by hematoxylin staining. A KF-PRO-020 Digital Slide Scanner
(KFBio, China) was eventually used to scan the slides.

TUNEL assay
The TUNEL assay was carried out as instructed in the 1-step TUNEL in situ
apoptosis kit (Elabscience, E-CK-A325, China). Briefly, after deparaffinization
of the slides, permeabilization was performed with Proteinase K solution
for 20min at 37 °C. The slides were then equilibrated with TdT Equilibration
Buffer at 37 °C for 20min. Next, the labeling solution was applied and
incubated at 37 °C for 2 h. Finally, the cells were stained with DAPI solution
for 5 min at room temperature. The result of cells showing TUNEL positivity
was then examined and recorded using a fluorescence microscope.

Animal models
All animal experiments complied with the ethics of animal experiments in
the Experimental Animal Center of Sun Yat-sen University ([2025] no. 011).
In each mouse model, five mice were randomly assigned to each group,
and outcome measurements were performed without blinding. The
Animal Experiment Center of Sun Yat-sen University provided 4-week-old
C57BL/6 male mice for orthotopic injection. After anesthesia and lower
abdominal incision, we exposed prostate to inject 1 × 106 RM1 cell, n= 5
per group. Then we use 6–0 silk sutures to close the abdominal wall and
skin. Enzalutamide (20mg/kg, MCE, HY-70002, China) was orally adminis-
tered five times per week for 2 weeks. AOH1996 (40mg/kg, Abmole,
M40519, China) was given daily through the oral route for 2 weeks. The
animals were euthanized via rapid cervical dislocation and subsequent
decapitation, with the tumor tissues rapidly extracted for analysis. For
subcutaneous injections, 4-week-old male nude mice were inoculated with
5 × 106 PC3 cells, n= 5 per group. Calipers were used to measure the
length and width of tumors in two dimensions before calculating the
tumor volume as follows: 0.5 × (length × width2).

Statistics
Clinical data were analyzed using standard statistical tests, including the
Log-rank test, Kruskal-Wallis test, Wilcoxon test, and Student’s t test.
Spearman’s correlation was also used to analyze variables with a
continuous distribution. All statistical tests were two-sided, with P < 0.05
indicating significance. To account for multiple-testing, the P value was
adjusted based on the Benjamini-Hochberg FDR method. We used the
survminer package to determine the optimal cut-off point for each cohort.
The cohort-specific optimal cut-off point stratified patients into high- and
low-risk groups. BCR-free survival was described using Kaplan–Meier plots
(Log-rank test). The same analytical approach was also applied to evaluate
the prognostic value of individual proteins. R (version 4.2.2) was used to
analyze all clinical data, presented as the mean and standard deviation
(SD) of at least three independently-replicated experiments, while
GraphPad Prism (version 9.0.0) was utilized for statistical analyses.

RESULT
Identification of senescence-related genes associated with
PCa prognosis
Figure 1 presents this study’s overall design. First, we collected
aging-related genes from five publicly available databases (Fig. 2a,
Supplementary Data 1). Gene modules linked with clinical features
were then identified via co-expression network analysis, with a β
value of 7 (R2= 0.84) considered to be optimum for network

construction (Fig. S1A). Overall, 29 distinct modules were
identified, each represented by a unique color (Fig. 2b, Fig. S1B)
and the eigengene (representing the first principal component of
expression in specific modules). Correlations between the gene
modules and clinical traits, such as T stage, Gleason score, age,
and BCR, were subsequently calculated. Among all module-trait
relationships, the red module showed the strongest correlation
with clinical traits (Fig. 1c). Additionally, genes were selected as
hub prognosis-related genes if they exhibited a module member-
ship (MM) > 0.5 as well as a gene significance (GS) > 0.2 (Fig. 2d–f).
Finally, we intersected the 316 genes identified from the WGCNA
red module with senescence-related genes from the public
databases, resulting in 38 overlapping genes that were considered
key candidates for further analysis (Fig. 2g, Supplementary Data 2).

Construction of the prostate cancer senescence-related gene
signature (SRGS)
Based on the 38 genes identified in the previous analysis, a
consensus SRGS was constructed using machine-learning integra-
tion. Using the TCGA-PRAD cohort, 117 predictive models were
trained using the LOOCV framework before calculating the
C-index for the individual models in the validation cohorts (Fig. 3a)
with the optimal model combining LASSO regression and SuperPC
(Fig. 3a, Supplementary Data 3). The optimal λ\lambda value for
LASSO regression was determined when the partial likelihood
deviance was minimal under the LOOCV framework (Fig. 3b),
resulting in a nine-gene signature (Fig. 3c).
After calculating risk score for each patient, we employed the

survminer package to determine the cohort-specific optimal cut-
off value using BCR as the risk event. This threshold was
subsequently used to stratify patients into high- and low-risk
groups. Overall, high-risk cases showed markedly worse BCR
outcomes relative to those with low-risk in the TCGA-PRAD
training dataset and the six independent validation cohorts (all
P < 0.05) (Fig. 3d–i).

Evaluation of the SRGS model and comparison with other
gene expression-based prognostic signatures
The predictive performance of SRGS was further assessed
according to area under the curve (AUC) values for six cohorts:
TCGA-PRAD (0.709), Stockholm (0.693), Cambridge (0.68), Cancer-
Map (0.714), GSE54460 (0.6551), and Taylor (0.747) (Fig. S2A).
Time-dependent ROC analysis showed AUCs for SRGS at 1, 3, and
5 years of 0.791, 0.738, and 0.664 in TCGA-PRAD; 0.787, 0.756, and
0.7 in Stockholm; 0.83, 0.716, and 0.705 in Cambridge; 0.624, 0.692,
and 0.745 in CancerMap; 0.735, 0.66, and 0.634 in GSE54460; and
0.818, 0.773, and 0.783 in Taylor (Fig. S2B).
Additionally, the prognostic significance of SRGS was compared

with clinical information across all six cohorts. Notably, SRGS
achieved the highest C-index in all cohorts, demonstrating its
superior predictive accuracy and stability (Fig. S2C).
In recent years, advances in big-data technologies and next-

generation sequencing enabled the application of machine learning
for developing various prognostic and predictive gene expression
signatures. To benchmark SRGS against existing signatures, we
systematically retrieved 60 published signatures (Supplementary
Data 4), representing different biological processes, including
androgen biosynthesis and catabolism, autophagy, ferroptosis,
cuproptosis, immune response, and DNA damage repair. Univariate
Cox regression analysis of these signatures across all datasets
revealed that SRGS demonstrated significant associations with
prognosis (Fig. S3A), underscoring its robustness.
Furthermore, SRGS outperformed the other signatures in terms

of C-index across all datasets (Fig. S3B). Unlike many other models,
SRGS, reduced to nine genes through LASSO regression and
SuperPC, exhibited better extrapolation potential and reduced the
risk of overfitting, achieving consistently strong predictive
performance across multiple cohorts.
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Validation using an in-house clinical cohort
The clinical applicability of the SRGS model was further validated
by evaluating its performance in the SYSU-PRAD cohort, compris-
ing RNA sequencing data of 90 PCa patients (Supplementary
Data 5). Kaplan–Meier survival analysis indicated significantly
worse BCR outcomes for patients with high SRGS scores in
comparison with those having low SRGS scores (P < 0.0001;

Fig. 4a). Time-dependent ROC analysis demonstrated the pre-
dictive effectivness. of SRGS, with AUC values of 0.6969, 0.7559,
and 0.7869 for predicting BCR at 1, 2, and 3 years, respectively
(Fig. 4b).
SRGS was found to be independently predictive of BCR in PCa

based on univariate and multivariate Cox analyses (Fig. S4A, B).
Furthermore, when comparing the predictive performance of
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SRGS with other clinical features, SRGS consistently exhibited
superior performance (Fig. 4c).
To investigate the biological pathways linked to SRGS, ssGSEA

was undertaken to calculate the enrichment scores of 50 hallmark
pathway. It revealed a positive correlation between SRGS and
pathways related to apoptosis and DNA damage (Fig. 4d),
consistent with findings in the TCGA cohort (Fig. S5A). These
results align with previous studies suggesting that markers of
cellular senescence may promote DNA damage while simulta-
neously inhibiting apoptosis [5].
As expected, SRGS was positively correlated with both tumor

mutational burden (TMB) and somatic copy number alteration
(SCNA) in our cohort (P < 0.05, Fig. 4e, f). Within the TCGA-PRAD
cohort, significantly higher mutation rates in TP53 and an overall
higher TMB were noted for patients in the high SRGS group
(Fig. S5B, C). Collectively, these findings suggest that tumors with

higher SRGS scores are likely to harbor more extensive genetic
alterations, potentially driving further tumor progression.

SRGS promotes prostate cancer disease progression
Given the potential of SRGS to promote PCa progression, we analyzed
RNA-seq profiles from over 1000 human prostate samples to
characterize its dynamic role across different disease stages. Patients
were first stratified based on their progression from normal epithelial
tissue to primary tumor, and subsequent CRPC, and neuroendocrine
(NE) PCa, using a previously published tool [25] (Fig. 5a). Notably, we
observed that SRGS was significantly upregulated throughout PCa
progression (Fig. 5b, c), and positively correlated with bulk tumor
pseudotime analysis (P < 0.0001, Fig. 5d). Importantly, we found that
the SRGS also effectively predicted overall survival in patients with
CRPC (Fig. 5e). These results highlight the potential utility and clinical
relevance of SRGS in advanced PC and CRPC.
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Fig. 2 Identification of prostate cancer prognosis-associated senescence marker genes. a Senescence-related genes were collected from
five databases. b Module genes were constructed using bulk RNA-sequencing data from TCGA-PRAD. c Correlation analysis was performed
between module genes and clinical phenotypes. d Scatter plot illustrating correlations between Gene Significance (GS) and Module
Membership (MM) under the T stage phenotype in the red module genes. Red points represent genes highly associated with the T stage.
Statistical test: Pearson’s correlation analysis and two-sided unpaired t-test. e Scatter plot showing the correlation between GS and MM under
the Gleason Score phenotype in the red module genes. Red points represent genes highly associated with the Gleason Score. Statistical test:
Pearson’s correlation analysis and two-sided unpaired t-test. f Scatter plot showing the correlation between GS and MM under the Biochemical
Recurrence (BCR) phenotype in the red module genes. Red points represent genes highly associated with BCR. Statistical tests: Pearson’s
correlations and two-tailed unpaired t-tests. g The overlapping RNAs between WGCNA results and all senescence-related genes.
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Since bulk RNA-seq data does not provide detailed information
on the tumor cell expression profiles, single-cell RNA sequencing
was conducted on data from five in-house primary PCa patients
and five CRPC patients from public databases [26]. After
annotation, we identified nine distinct cell subpopulations. NK
cells and T cells were combined into the NK_T cell group, resulting
in a total of eight subpopulations: Epithelium, Endothelial,
Fibroblast, NK_T, B, Plasma, Myeloid, and Mast cells. Tumor
epithelial cells represented the largest proportion of the single-cell
population (Fig. S6A–C). Although epithelial cells remained the
predominant cell type across different disease stages, we
observed significant heterogeneity within tumor epithelial cells
(Fig. 5f, g, Fig. S6D), which is consistent with prior study [27].
We next evaluated the expression of SRGS in epithelial cell

subpopulations and found that clusters 2 and 4 exhibited higher
SRGS expression (Fig. 5h). Notably, clusters 2 and 4 were more
prevalent in CRPC. Additionally, we observed that epithelial cluster
4 was significantly enriched in metabolism-related pathways,
while epithelial cluster 2 showed increased expression of
ribosomal pathways (Fig. S7A). The results align with previous
ones suggesting that subpopulations with high expression of
aging-related genes, despite being in a relatively quiescent G1
phase, are still metabolically active [28]. This metabolic state may
serve as a protective mechanism, promoting further tumor
progression.
Further analysis with inferCNV revealed that clusters 2 and 4

had significantly higher copy number variations (CNVs) compared
to other clusters (Fig. S7B, C). This finding supports the idea that
tumor cells with high SRGS expression may harbor greater genetic
instability, potentially driving tumor progression (Fig. 4e, f).
Interestingly, when the expression of individual genes within the
SRGS was examined, we found that PCNA was highly expressed in
clusters 2 and 4 (Fig. 5i), indicating that PCNA could be involved in
promoting PCa progression.

PCNA as a potential therapeutic target for high-risk PCa
PCNA’s role in promoting PCa was investigated by analyzing PCNA
expression in TCGA and GTX datasets. It was found that PCNA
levels were significantly higher in PCa tissues in comparison with
normal ones (Fig. 6a). We further validated this finding in the
SYSU-PRAD cohort, comprising 90 PCa patients, using protein
expression data. In patients with a gleason score >7, PCNA protein
expression was notably elevated (Fig. 6b). Moreover, high PCNA
expression correlated with poorer BCR outcomes (Fig. 6c).
Interestingly, we also observed significant upregulation of PCNA

during PCa progression, with its expression being positively
correlated with pseudotime analysis of bulk tumor progression
(P < 0.0001, Fig. 6d–f). Additionally, single-cell monocle analysis
revealed two distinct ways in tumor epithelial cells, one of which
progressed toward CRPC. During this progression, PCNA expres-
sion gradually increased, whereas the other SRGS genes showed
relatively low contribution (Fig. 6g–i, Fig. S8A–C). These findings
further support PCNA’s role in promoting PCa progression and
present it as a promising target for therapy.

PCNA as a therapeutic target for high-risk PCa
We inhibited PCNA with PCNA inhibitor AOH1996 in PC3 and
DU145 cells to further validate its role in PCa. We confirmed the
expression of PCNA in PC3 and DU145 cells using Western blotting
and qPCR (Fig. S9A, B). In addition, consistent results were
observed in the CTPC dataset and in our previously published
study [29, 30] (Fig. S9C, D). Given the previously suggested
involvement of PCNA in regulating cell proliferation and
apoptosis, we performed CCK-8 and colony formation assays. It
was found that treatment with AOH1996 markedly reduced the
proliferation of PC3 and DU145 cells (Fig. 7a, b). Additionally,
apoptosis assays revealed that PCNA inhibition significantly
increased the proportion of apoptotic PC3 and DU145 cells, while

treatment with Z-VAD-FMK, a pan-caspase inhibitor, effectively
reduced the proportion of apoptotic cells. (Fig. 7c).
The role of PCNA in vivo was also validated by inducing

subcutaneous tumors in nude mice (Fig. 8a). Consistent with the
in vitro findings, tumors treated with PCNA inhibitor exhibited
markedly slower growth relative to the controls. On day 5, tumors
were harvested, with analysis revealing a marked decrease in both
tumor volume and weight for the PCNA-inhibited groups in
comparison with the control (Fig. 8b–d).
To better mimic the PCa microenvironment, we established

orthotopic tumor models in 4-week-old C57BL/6 mice (Fig. 8e).
After treatment with AOH1996, tumor weight measurements
demonstrated that orthotopic tumor growth was significantly
attenuated. Notably, the combination of AOH1996 with enzaluta-
mide further enhanced this effect (Fig. 8f). IHC staining revealed
increased caspase-3 expression but reduced Ki67 expression in
tumors following treatment with the PCNA inhibitor alone or in
combination with enzalutamide. TUNEL assay results further
demonstrated that treatment with the PCNA inhibitor alone or
in combination with enzalutamide, significantly increased the
proportion of apoptotic tumor cells (Fig. 8g).
Altogether, the findings confirmed that PCNA inhibitors can

lower resistance to ADT while enhancing enzalutamide’s efficacy
in treating PCa.

Ethics approval
All animal experiments complied with the ethics of animal
experiments in the Experimental Animal Center of Sun Yat-sen
University ([2025] no. 011).

DISCUSSION
Cellular senescence plays a pivotal role in cancer pathogenesis.
While early-stage senescence can suppress tumor growth, tumor
cells often acquire mechanisms to evade immune surveillance and
develop treatment resistance at later stages [31]. In PCa, a
malignancy with slow progression, the shift from a senescent state
to a proliferative one may drive tumor progression [6, 32]. To
identify this transition, we developed a SRGS that effectively
stratifies high-risk PCa patients and predicts BCR, a critical clinical
event that markedly accelerates disease progression [10]. Through
temporal trajectory analysis of bulk RNA-seq data, we found that
SRGS, an independent prognostic factor, was significantly
associated with ADT resistance. This unveils a previously
unexplored biological relevance of senescence in PCa progression
that earlier models based solely on senescence-related genes
failed to capture. Thus, unlike other gene signatures, SRGS may
function not only as a prognostic indicator but also as a valuable
tool for the early identification of patients at risk for ADT
resistance and disease progression. Furthermore, SRGS demon-
strated significant predictive value for clinical outcomes in
patients received second-generation androgen receptor inhibitors.
Although ADT remains the first-line therapy for advanced PCa,

its efficacy diminishes over time due to androgen receptor (AR)
reactivation and disruption of proliferative signaling pathways
[33]. Furthermore, patients with CRPC often exhibit poor tolerance
to chemotherapies like docetaxel, due to severe adverse effects
[34]. To further investigate potential therapeutic targets in high-
risk and CRPC populations, we examined the biological implica-
tions of SRGS and observed its strong association with genomic
instability and DNA damage repair pathways. This suggests that
SRGS may mark the senescence-to-proliferation transition, con-
tributing to genetic alterations and malignant progression.
The nine genes constituting the SRGS include those closely

associated with cell cycle regulation and proliferation (CCNE1,
CCNE2, CHEK1, BMP6, CBX2, LMNB1, and UBE2C), as well as genes
involved in DNA damage repair (PCNA and POLD2), all of which
are functionally linked to the process of senescence progression
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[35]. Notably, BMP6 has been reported to be markedly upregu-
lated during senescence and to play a crucial role in advanced PCa
and CRPC bone metastasis [36, 37]. CBX2 and CHEK1 have been
implicated in the development of NEPC [38, 39]. Furthermore,
genes related to proliferation and DNA repair have been
previously demonstrated to contribute to PCa initiation, progres-
sion, and transition to CRPC [40–43]. These molecular character-
istics may underlie the ability of the SRGS to predict overall
survival in patients with CRPC.
Moreover, through temporal trajectory analyses of both single-

cell and bulk transcriptomic data, PCNA was identified among

SRGS as a key driver of PCa progression. PCNA is a critical
regulator of the cell cycle, cellular proliferation, and apoptosis
[44, 45]. Elevated PCNA expression has been observed across
various cancers and is often correlated with poor clinical outcomes
[46]. Our findings indicate that high PCNA expression may enable
senescent tumor cells to escape growth arrest and re-enter the
cell cycle, driving tumor progression.
Loss or mutation of p53, which is a common alteration in

patients with high SRGS scores and a frequent event during PCa
progression, may also drive the transition from hormone-sensitive
PCa (HSPC) to castration-resistant PCa (CRPC) [47]. Previous
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research has demonstrated that p53 regulates PCNA to maintain
genomic stability during DNA replication [48, 49]. Our results also
support a potential biological mechanism by which targeting
PCNA may enhance the efficacy of other DNA-damaging agents in

the treatment of PCa [50]. In addition, it has shown that PCNA
regulated by FOXM1, can promote PCa cell proliferation through a
p53-independent mechanism [51]. We observed that elevated
PCNA levels were associated with increased mutational burden
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and enhanced cell proliferation, further supporting its role in
disease advancement. Furthermore, it has been reported that
Y211 phosphorylation of PCNA is a frequent event in advanced
PCa [52]. These findings suggest that early detection of PCNA
overexpression could aid in identifying patients at higher risk for
progression.
Recent studies have introduced AOH1996, a novel small-

molecule inhibitor that selectively targets PCNA and has shown
significant efficacy in various tumor cells [53]. AOH1996 promotes
the interaction between PCNA and RPB1, disrupts PCNA binding
to active chromatin, and induces transcription-dependent DNA
double-strand breaks. However, it is worth noting that establishing
the structural basis for targeting such a highly flexible and
dynamic protein–protein interface remains a major challenge.
Therefore, future studies are needed to further investigate the
potential adverse effects of AOH1996, including possible hepatic
and renal toxicities. Notably, AOH1996 has been shown to exhibit
low toxicity both in vitro and in vivo, and has been approved by
the FDA to enter Phase I clinical trials in the United States for the
treatment of refractory solid tumors [54]. In our study, AOH1996
effectively inhibited PCa cell proliferation and induced apoptosis.
In vivo experiments further validated its capacity to suppress
tumor growth. Importantly, combining AOH1996 with the AR
inhibitor enzalutamide produced synergistic effects, highlighting
the potential of this combination strategy in clinical settings.
Future studies should explore the integration of PCNA inhibitors
like AOH1996 with existing treatments, including immunotherapy,
chemotherapy, and radiotherapy, to improve clinical outcomes
and quality of life for PCa patients.
In conclusion, we developed a robust SRGS using 117 machine

learning methods, enabling accurate prognostication and identi-
fication of patients at risk for disease progression. Our findings
emphasize the translational potential of SRGS in clinical decision-
making and underscore PCNA as a promising therapeutic target,
especially in high-risk and CRPC patients.
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