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Skin homeostasis depends on interactions between epithelial cells and the microbiome mediated by molecular and biochemical
factors. Perturbations of this interplay are linked to inflammatory disorders, including wound healing and cancer. While research has
mainly illuminated shifts in microbial community composition, novel computational approaches are starting to reveal the host-
microbe functional interactome in the cutaneous ecosystem. In this review, we specifically focus on known molecular and
metabolic mechanisms linking skin epithelial cells and microorganisms in health and disease. Additionally, we summarise
computational tools available to investigate these interactions integrating omics data. Furthermore, we present potential
applications of this functional crosstalk to advance therapies targeting skin pathologies. Finally, we propose a comparative
interactomics approach to envision the existence of ecological memories in the skin ecosystem, in parallel with the one described
in the gut, hypothesising a link between epithelial and microbial memories in barrier tissues.
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FACTS

® Mounting evidence from low-microbial-biomass epithelia
such as the skin indicates that altered microbe-keratinocyte
crosstalk functionally contributes to inflammatory diseases.

® While skin-associated bacteria are challenging to visualize,
emerging omics technologies facilitate integrated studies that
reveal their molecular crosstalk and overcome the limitations
of prior separate analyses.

® [ncoming computational tools allow to decipher the skin
microbiome composition and its interactions with keratino-
cytes to achieve a system-level resolution by integrating omics
data, network analysis and Al-based approaches.

® Comparative interactomics and omic data suggest potential
links between epithelial and microbial memories in barrier
ecosystems, including skin.

® New tools will reveal epithelial ecological niches and cross-
kingdom interactions, guiding the discovery of novel ther-
apeutic targets for skin diseases.

SKIN MICROBIOME AND ITS ECOLOGICAL NICHES

Mammalian skin, the body’s largest organ, prevents water loss,
regulates temperature, and protects against physical, chemical
and microbial insults. It is composed of three layers: epidermis,
dermis and hypodermis [1]. Epidermis, the outermost layer, is a
stratified epithelium consisting of keratinocytes, the most
abundant cell component, and other cell types, including

melanocytes and Langerhans dendritic cells. Underneath epider-
mis, the dermis provides pliability, elasticity, and tensile strength
to skin, safeguarding the body from mechanical injury. It
accommodates two epidermal appendages: the pilosebaceous
unit, composed of hair follicles (HF) and sebaceous glands, and the
sweat glands. The skin harbors diverse ecological niches that
house a heterogeneity of host cellular constituents [2] and a
plethora of microorganisms, including bacteria, fungi, viruses,
archaea, and mites, collectively forming what we know as the skin
microbiome [3, 4]. The composition of skin microbial communities
shifts across different regions of the body. For instance, face, chest
and back skin are rich in HF and sebaceous glands that secrete
sebum, a lipid-rich substrate promoting the growth of lipophilic
microorganisms, primarily Cutibacterium bacteria and Malassezia
fungi [3]. In contrast, moist regions like axillae are characterised by
numerous sweat glands and are predominantly inhabited by
Staphylococcus spp. and Corynebacterium spp [3]. Dry regions,
including palms, have the lowest microbial abundance but the
greatest diversity, with prominent populations of Cutibacterium,
Corynebacterium, and Streptococcus species [3]. Thus, the skin
bacterial and fungal communities are shaped by physiological and
environmental features unique to each niche, including the arrays
of metabolites that are released in the cutaneous microenviron-
ment. Mammalian skin is also inhabited by viruses that infect host
cells, forming part of the microbiome, specifically referred to as
the virome. Among others, bacteriophages are key components of
the skin microbiome, especially those that target dominant
bacterial species such as Cutibacterium, Corynebacterium, and
Staphylococcus spp [5]. Although viruses are usually regarded as
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harmful, several studies suggest that a commensal viral commu-
nity also exists on healthy skin [5], similar to certain bacteria
known for contributing to skin function by protecting against
external threats such as pathogens. The most common viral
populations in normal human skin are Papillomaviridae, Adenovir-
idae, Anelloviridae, Circoviridae, Herpesviridae and Polyomaviridae
[6]. However, the dynamics and anatomical variations of the skin
virome, as well as its changes in response to pathological
conditions, remain to be thoroughly studied. At each site, all
microbial populations coexist in a dynamic equilibrium through-
out lifetime driven by a multitude of endogenous and external
variables; indeed skin cells produce metabolites and antimicrobial
molecules that limit the overgrowth of other species and help
protect the host from pathogens [7]. Moreover, the microbiome
can enhance epithelial barrier homeostasis by utilizing quorum
sensing mechanisms to inhibit the production of harmful toxins by
pathogens [8]. Additionally, recent studies have emphasized the
importance of interactions between skin commensals and the
immune system [9]. Importantly, these interactions are critical for
the maturation of both innate and adaptive immunity, particularly
during early life [10].

Despite recent advances in decoding overall skin microbiome
composition, our understanding of microbial localisation at the
niche level is currently limited due to technical constraints. Few
studies have attempted to dissect sub-compartment microbial
community structures by imaging techniques and sequencing
strategies, revealing a region-specific bacteriome in HFs [11] and
the presence of bacterial products in deeper layers such as the
dermis [12]. However, whether microbes colonising subepidermal
compartments are live or dead is still debated. Additionally, these
works have not delved into the crosstalk between microbes and
surrounding host cells. Thus, the field of skin microbiome would
greatly benefit from technological advances allowing to visualise
single microbes at microniche level in vivo in order to extend
knowledge on their actual localisation and interaction with
host cells.

DEREGULATED MOLECULAR MECHANISMS OF HOST-MICROBE
CROSSTALK IN PATHOLOGICAL CONTEXTS AND THEIR
APPLICATIONS

Interactions in homeostasis and cutaneous inflammatory
disorders

The epidermal-microbe crosstalk has mainly been analysed with a
focused and hypothesis-driven cellular and molecular perspective.
More recently, the use of unbiased omic approaches has
expanded our knowledge of the microbiome structure and
alterations upon disease states. Although the combination of
the two approaches is powerful, the former methods alone
provided a large amount of data that we will highlight later in this
review. In particular, we will emphasize that the skin is a complex
ecosystem in which regulation of the interactions between host
cells and resident microbes determines the shift from homeostatic
balance to aging or disease.

In contrast with the gut, the skin is a dry, acidic, lipid-rich
environment, and therefore shows low microbial biomass [13].
Nevertheless, resident microbes are critical for cutaneous home-
ostasis, particularly by supporting the skin's essential barrier
functions, preventing water loss and assaults by external agents
[14]. While layers of tightly packed differentiated keratinocytes
represent the physical component of this barrier, the microbiota is
crucial for its integrity and function. This role is mediated by the
aryl hydrocarbon receptors (AHRs) expressed by keratinocytes.
Metabolites produced by skin commensals activate AHRs, thus
sustaining epidermal cell differentiation. Indeed, the restoration of
the microbiota-AHR axis could ameliorate skin barrier repair in
murine disease models characterised by epidermal barrier
impairment [15]. In parallel, the microbiome also supports the
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lipid components of the skin barrier. For example, Staphylococcus
epidermidis secretes sphingomyelinase, an enzyme needed to
produce ceramide, which prevents dehydration [16]. Concerning
the chemical nature of skin barrier, skin commensals can digest
dead keratinocytes and other waste to convert them into several
types of fatty acids. These molecules modulate skin surface pH
making it slightly acidic, thus contributing to the formation of the
permeability barrier and creating an environment that limits
pathogens growth [17]. On the other hand, keratinocytes can
modulate the skin microflora, even at the level of specific
epidermal niches such as the HF [18].

Given the importance of skin microbial balance in maintaining
tissue homeostasis, it was not unexpected that alterations in
microbiome diversity have been implicated in several skin
pathological conditions, including inflammatory disorders (Fig. 1A).
Indeed, several studies have gathered evidence of the intricate
interactions between skin-resident microbes and host cells in
shaping a disease-promoting environment [19, 20]. Notably,
inflammation-related pathways seem to be involved in the vast
majority of these interactions [21-23]. Nonetheless, other biolo-
gical processes such as metabolism [24] and oxidative stress [25]
can take part in this crosstalk. Following pioneer studies focusing
on the gut microbiome both in health and disease [26], there is a
clear path towards integrating omic data from skin microbial
communities. However, despite the increasing amount of
evidence being accumulated for specific skin microbes with a
one-to-one approach, the molecular mechanisms linking micro-
organisms with stem and differentiated cells in skin diseases still
have to be elucidated in more detail at an integrated cross-
kingdom level.

Below we present host-microbe molecular interactions in the
most commonly studied skin inflammatory conditions, providing
also a summary of the main molecular cascades triggered by the
microbiome in keratinocytes (Fig. 1B-D).

Seborrheic dermatitis (SD). It is a chronic inflammatory skin
disease characterised by the accumulation of oily scales and
dandruff in areas rich in sebaceous glands. It is associated with
cutaneous dysbiosis, mainly involving the fungal commensal
Malassezia spp. [27] (Fig. 1B). A critical factor that determines the
beneficial or detrimental effects of these fungi in skin is the pH.
Indeed, this parameter can deeply influence the growth and
metabolic activity of Malassezia spp [28]. In physiological state, the
skin pH is around 6, thus creating a slightly acidic environment.
Under these conditions, M.furfur, M.japonica and M.yamatoensis
release lipids that counteract the IL-6-mediated pro-inflammatory
environment, therefore preserving tissue homeostasis. In SD, the
pH is altered and Malassezia spp. display an impaired metabolism.
In particular, Malassezia fungi colonize lipid-rich skin sites where
they metabolize fatty acids producing oleic acid, a type of
unsaturated fatty acid that causes fatty acid imbalance, thus
disrupting the skin barrier function. Moreover, Malassezia spp. can
directly interact with epidermal cells by activating inflammatory
pathways and their effectors such as mitogen-activated protein
kinase (MAPK), NF-kB, and nuclear factor of activated T cell (NFAT)
[19]. In addition, Malassezia metabolites are able to activate AHRs
in keratinocytes, thus altering skin barrier integrity [29]. The
functional role of Malassezia spp. in SD is further confirmed by
effective treatments based on probiotics and antifungal com-
pounds, which were shown to improve symptoms in SD patients
[30]. Alterations of the abundance of other microorganisms in SD-
affected skin are also reported. For instance, in SD bacteria such as
Staphylococcus and Propionibacterium spp. and fungi including
Candida, Aspergillus, and Filobasidium are enriched [31], even
though their causal role remains to be clarified. Finally, dsRNA
Totiviruses that infect fungal cells have been isolated from clinical
specimens containing Malassezia species, suggesting a role of this
interkingdom interaction in promoting fungal pathogenicity [32].
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Acne vulgaris. Acne is a common inflammatory skin disease

Immunomodulation

human populations, acne pathogenesis has also been widely

affecting the pilosebaceous unit. It results from a combination of
increased sebum production by sebaceous glands and hyperker-
atinization, with a known role for transcription factor GATA6
deregulation in its pathogenesis [33]. Due to its high prevalence in
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studied in relationship with skin microbiome perturbations
(Fig. 10). Notably, Cutibacterium acnes (formerly known as
Propionibacterium acnes) is described as a driving force leading
to acne [19]. Indeed, by activating toll-like receptor 2 (TLR2), it
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Fig. 1 Epidermis-microbiome molecular and metabolic crosstalk in skin inflammatory disorders. A Schematic diagram showing the
complex network of molecular and metabolic interactions among the components of an inflamed cutaneous ecosystem. B Molecular and
biochemical crosstalk between keratinocytes and microbes in seborrheic dermatitis. Three major components of the skin microbiome are
represented: viruses, bacteria and fungi. C Graphical summary reporting key interactions between skin-resident bacteria and keratinocytes in
distinct cutaneous inflammatory diseases. Shifts in microbiome composition with respect to homeostasis are also indicated. (D) Diagram of
key signaling pathways that determine microbial influence on keratinocytes behavior and functions. The draft of the figure was created with
BioRender.com. Abbreviations. TLR Toll-like Receptors, MyD88 myeloid differentiation primary response 88, NF-kB nuclear factor-kB, KLK5
kallikrein 5, AMP anti-microbial peptides, NLRP3 NOD-, LRR- and pyrin domain-containing protein 3, IL interleukin, AMPK 5" AMP-activated
protein kinase, SCFAs short-chain fatty acids, MMP9 Matrix metalloproteinase-9, EVs extracellular vesicles, TNF Tumor Necrosis Factor, NLRs
NOD-like Receptors, CLRs C-type Lectin Receptors, MAPK mitogen-activated protein kinase, NFAT nuclear factor of activated T cell, AHRs aryl
Wdrocarbon receptors, PSMa phenol-soluble modulin alpha, UV ultraviolet, HF hair follicle, IFN interferon.

promotes keratinocyte proliferation via interleukin-1 alpha (IL-10),
resulting in comedogenesis (i.e. cornification of HF infundibulum).
Moreover, TLR2 pathway also activates NOD-, LRR- and pyrin
domain-containing protein 3 (NLRP3) inflammasome and caspase
1, driving the secretion of IL-1B, thus causing inflammation.
However, metagenomic studies carried out on healthy vs acneic
skin suggest that the imbalance in C.acnes strains diversity, and
not in the absolute density of C.acnes, is responsible for acne
pathogenesis [34]. Indeed, Cacnes is the most abundant
commensal bacterium in healthy HFs, where it contributes to
regulating homeostasis. For instance, C.acnes secretes propionic
acid, a short-chain fatty acid that induces autophagy in
keratinocytes via 5' AMP-activated protein kinase (AMPK) activa-
tion and mitochondrial alteration [35]. This mechanism protects
against pathogenic microorganisms. Additionally, C.acnes pro-
duces an antioxidant enzyme, called radical oxygenase of P.acnes
(RoxP), which decreases oxidative damage in keratinocytes [25]. A
study performed on several skin cell types in vitro revealed that
pathogenic C.acnes strains release extracellular vesicles (EVs) with
a specific cargo that activates inflammation-related factors such as
IL-8, IL-6 and tumor necrosis factor (TNF) [36]. On the contrary,
other C.acnes phylotypes produce EVs that contain protective
proteins. Therefore, depending on the specific C.acnes subtype,
the effect on skin cells might be beneficial or detrimental.

Hidradenitis suppurativa (HS). Also known as acne inversa, it is a
chronic inflammatory disorder affecting moist skin areas rich in
apocrine glands [18]. HS arises upon HF occlusion caused by
hyperkeratosis, followed by inflammation, leading to the forma-
tion of subcutaneous nodules and abscesses. Its pathogenesis is
thought to be related to altered immune responses and auto-
inflammatory events [37]. However, several studies point out that
there might be a close association between follicular dysbiosis and
HS [18]. Particularly, alterations in microbial species have been
observed in HS lesions such as a decrease of Propionibacterium
spp. [18]. In addition, HS patients show a dominance of S.aureus
and anaerobic bacteria belonging to Corynebacterium, Porphyr-
omonas, and Peptoniphilus spp. [38, 39]. Increased colonization by
these microbes promotes secretion of antimicrobial peptides
(AMPs) like psoriasin, LL-37 and B-defensin 2, which have a pro-
inflammatory action, thus initiating inflammation. These mole-
cules recruit innate immune cells to HFs, that secrete TNF and
activate nuclear factor-kB (NF-kB). It has also been reported that a
set of mutations in the y-secretase genes is associated with HS in
cases of familial transmission. Functional impairment of y-
secretase has been demonstrated to alter HF development and
function, which might result in follicular occlusion and HS
pathogenesis through its impact on keratinocyte differentiation
and proliferation, and T cells impairment [40]. Another important
interaction between epidermal cells and skin microbiome in HS
pathogenesis is described at the metabolic level [24]. Specifically,
increased degradation of tryptophan (trp) by skin microbes seems
correlated with the early stages of the disease, as its depletion
promotes colonization by trp-independent S.aureus. On the other
hand, reduced trp levels lead to a lower production of AHR
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agonists by trp-dependent skin commensals. Therefore, the
epidermal AHR pathway is less active and cannot counteract
chronic inflammation. HS mouse models for studying this process
in vivo are still limited, as early efforts reproduced only some
clinical features in mouse xenograft [41].

Rosacea. It is a chronic inflammatory skin disease characterised
by facial redness. Its pathogenesis is associated with alterations in
the innate immune system and neurovascular dysregulation [42].
Bacterial products are recognised by higher levels of TLR2 in
keratinocytes [43], leading to the activation of the inflammasome,
ultimately resulting in the increased secretion of kallikrein 5
(KLK5), a serine protease that promotes the maturation of
antimicrobial peptides such as cathelicidin. This causes an
inflammatory response mediated by type | interferons and a shift
in skin microbiome and promotes disease progression (Fig. 1C).
For instance, higher abundance of S.epidermidis is linked to
rosacea-inflamed skin [20]. Moreover, rosacea-affected skin is
associated with higher infestation by Demodex folliculorum and
Demodex brevis, two commensal parasitic mites [20]. Mechan-
istically, increased local skin temperature - a common symptom of
rosacea patients - favors mobility and survival of these arthropods.
These microbes can exacerbate the disruption of skin barrier
function via the above-mentioned TLR2 pathway, activated by cell
membrane components of Demodex mites. Interestingly, the
bacterium Bacillus oleronius, isolated from Demodex mites
infesting the HFs of rosacea patients, has been shown to stimulate
an inflammatory response in the skin, thus contributing to disease
flares. Furthermore, gut microbiome involvement in rosacea needs
to be clarified, despite several studies proposing a correlation
between Helicobacter pylori and rosacea as treatment with fecal-
derived oral probiotics ameliorated rosacea symptoms in a
rosacea mouse model [43].

Atopic dermatitis (AD). It is a chronic inflammatory skin disease
characterised by relapsing pruritic flares, which strongly affect
patients’ life. A clear relationship was demonstrated between AD
onset and severity, and alterations of cutaneous flora (Fig. 1Q).
Specifically, microbial diversity is reduced in untreated flares [20].
Of note, AD pathogenesis has commonly been associated with
imbalance in a single microbe, S.aureus [21], even though other
variations are emerging, such as a reduction of P.acnes in AD
patients [44]. S.aureus overcolonization of the skin surface is
favoured by local AD-specific properties such as reduced skin
acidity, eased bacterial adhesion and decreased antimicrobial
peptide production [45]. In this context, S.aureus secretes a set of
proteases, such as aureolysin metalloprotease, V8 and SspA serine
proteases, ScpA and SspB cysteine proteases, that induce
endogenous serine proteases activity in keratinocytes, leading to
degradation of proteins essential for barrier integrity, such as
filaggrin, kallikrein and desmoglein [23]. Thanks to its increased
proteolytic activity, S.aureus also penetrates in the dermis, where it
triggers pro-inflammatory cytokines release, thus exacerbating the
disease [46]. An increase in S.aureus can boost AD development
also via its antigen phenol-soluble modulin alpha (PSMa), which
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promotes production of inflammatory cytokines by keratinocytes
[20]. Interestingly, PSMs by overgrown S.epidermidis can also
induce skin inflammation and are highly present in AD both in
cultured human keratinocytes and in AD mouse models [23]. This
demonstrates that even commensal microbes can exert detri-
mental functions when the overall microbiome balance is lost.
Since oxygen levels are higher in AD-inflamed skin than in healthy
conditions, the whole bacteriome shifts towards an aerobic
signature. This change can impair barrier function and hamper
danger signaling in keratinocytes, where it is usually triggered by
anaerobic cocci such as Finegoldia, Anaerococcus and Peptoniphilus
[21]. Moreover, a correlation between microbial dysbiosis and host
transcriptome changes has been described in AD, in which
differentially regulated host genes in AD lesional skin samples
containing S.aureus are functionally enriched for mainly three
activities: skin barrier function, immune activation and tryptophan
metabolism [21]. This finding suggests that host-microbiome
interactions in skin diseases require omics integrated analyses in
order to gain insights into their underlying molecular mechanisms,
as we will illustrate more in detail in the following sections of this
review. Finally, the host virome could also play an important role
in causing AD. A recent study exploiting shotgun metagenomic
sequencing of bacteriophages in human healthy skin and
inflamed AD, revealed an increase of phages infecting S.aureus
in AD-affected patients [44]. This result could be explained by
increased fitness of the prokaryotic host conferred by the virus.
Notably, this discovery could inform phage-based therapies to
treat AD skin. This finding suggests phage-based therapies for AD,
pending clarification of viral involvement and the RNA
phageome’s role.

Psoriasis. It is a chronic inflammatory skin disease of unclear
etiology, with both local and systemic symptoms, that displays
hyperproliferation and altered differentiation of keratinocytes. It is
characterised by genetic and autoimmune components, with
hyperactivation of the immune system and an inflammatory cycle
that self-sustains developing around the TNF/IL-23/IL-17 axis [47].
Psoriasis has been associated with keratinocyte production of LL-
37 antimicrobial peptide able to trigger the release of pro-
inflammatory cytokines and sustaining proliferation [47]. An
abnormal composition of skin microbiome is observed in psoriatic
skin [19] (Fig. 1C). This could contribute to immune cell
hyperactivation and inflammatory responses. Indeed, antibiotic
treatment in adult mice has been shown to ameliorate skin
inflammation in imiquimod (IMQ) psoriatic model [48]. Several
studies reported alterations in microbial diversity associated with
the psoriatic plaque [49-51]. For instance, psoriasis-affected skin is
associated with increased Corynebacterium spp. and decreased
Propionibacterium spp. [49] along with abnormal colonization by S.
aureus that promotes inflammation via Th17 polarization [50]. The
disease also correlates with loss of S. epidermidis and P. acnes,
community instability linked to C. albicans [19, 51] and potential
alterations of new Malassezia species [51]. Overall, psoriatic skin
displays reduced microbial diversity compared to healthy subjects
[20, 52]. Interestingly, psoriatic keratinocytes can present bacterial-
derived antigens to T cells, thus activating host immune response.
In particular, the M protein of Streptococcus pyogenes, that inhabits
psoriasis-associated lesions, displays molecular similarities with
keratin 17. This could explain the autoimmune component of
the disease, characterised by T cell activation against keratinocyte
autoantigens [52]. Concerning the gut-skin microbiome axis, a
real similarity between gut and skin microbes has been
demonstrated for the first time in the context of psoriasis [53].
For example, S.lentus abundance in both psoriatic skin and faecal
samples from patients differs from healthy individuals. Accord-
ingly, oral probiotic treatments were successful in addressing
psoriasis symptoms, thus confirming gut dysbiosis role in
psoriasis [54].
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Skin microbiome in wound healing: friends or foes?

Wound healing is a complex, multi-step process that recruits
various cell types to restore skin homeostasis, through coordi-
nated inflammation and tissue remodeling [55]. Injured skin is
vulnerable to microbial contamination; although pathogens may
be present in non-infected wounds, only some establish infections
that can progress locally or systemically [56]. As the epidermal
barrier is re-established, also the microbiome in acute wounds
seems to gradually revert to its homeostatic composition [55].

Distinct types of acute trauma, from burn wounds to surgery-
related lesions, are each associated with characteristic wound
microbiota compositions. Studies revealed that the most common
pathogens in burns are S.aureus, Escherichia coli, Pseudomonas
aeruginosa and coagulase-negative Staphylococci. Instead, com-
mon after-surgery microbes that can induce wound infection
include S.epidermidis, S.aureus and Clostridium difficile [57].

After injury, the microbiome interacts with keratinocytes to
favor or impair wound healing. For example, S.aureus triggers an
inflammatory phenotype of keratinocytes with inflammatory
cytokine release, inflammasome activation and AMP production,
also causing keratinocyte death [55]. On the other hand, skin
commensals, such as S.epidermidis, are known to promote wound
healing by interacting with immune cells and keratinocytes via IL-
1B and the keratinocyte-dependent IL-1 receptor (IL-1R) / myeloid
differentiation primary response 88 (MyD88) signaling [55].

When inflammation persists and healing is not resolved in a
short time, skin wounds become chronic. They are characterised
by histopathological features such as excessive exudate, absence
of granulation tissue and failure to epithelialise. Compared to
acute wounds, the chronic wound microbiota generally contains
more microbes than acute wounds, therefore, they often present
microbial infections that can hamper proper healing [57]. A typical
feature of chronic wounds is the formation of microbial biofilms
[55, 58]. They consist of complex microbial communities growing
in three dimensions and containing bacteria and fungi surrounded
by polymeric matrices. In general, chronic wounds display reduced
microbial diversity compared to healthy skin [55]. Despite the
specific peculiarities of chronic wounds, bacterial genera detected
in this type of wounds are similar to those found in acute injuries
such as Staphylococcus spp., Pseudomonas spp., Corynebacterium
spp., Streptococcus spp. and Gram-positive anaerobes [56]. Inter-
estingly, anaerobic bacteria like Enterobacter spp. correlate with
poor healing outcomes [56]. Concerning other components of
microbiome, the most abundant fungal members associated to
chronic wounds are Ascomycota and Basidiomycota, whereas
unhealed wounds are associated with phages that infect
Enterococcus, Enterobacter, Veillonella and Streptococcus species
[56]. Not only microbiota composition, but also its stability over
time, can contribute to the non-healing status of chronic wounds.
Indeed, diabetic foot ulcers, the most studied chronic wounds,
with more dynamic microbiota were shown to heal faster than
those with less dynamic microbial communities [59]. In line with
this, antibiotic treatments—that disrupt microbial communities’
structure - can be employed as a first-line strategy to cure infected
chronic injuries.

Skin cells-microbiome interactions in basal cell and squamous
carcinoma

A seminal review by Dvorak proposed cancer as a wound that
never heals [60], a concept later supported by multiple studies
establishing a tight connection between chronic tissue injury and
tumorigenesis [61]. Whether the skin microbiome exerts a
functional role in linking these two biological processes is still
unclear. Nevertheless, it has been shown that bacterial products
found specifically in chronic wounds, i.e. proteins deriving from
flagellates, can trigger innate immune responses via TLR5 in the
skin of chronically-inflamed mouse models, thus pushing towards
tumour formation [62]. Therefore, in line with the established
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correlation between dysbiosis and inflammatory pathways, it is
not surprising that a tight association between the host
microbiota and tumor initiation and progression has recently
emerged in distinct cancer types [63]. In particular, bacterial
species can contribute either directly or indirectly to cancer
initiation and/or progression, by mechanisms ranging from the
production of toxins and dietary metabolites to biofilm formation
and inhibition of anti-tumoral immune responses [64]. For
instance, microbial dysbiosis was reported to affect lung cancer
development and progression [65]. In the context of colorectal
cancer (CRQC), its onset is shaped in part by the gut microbiome,
which initiates inflammation and alters key signaling networks.
Importantly, the emerging bacterial signatures in CRC might
enable early detection as well as offer insight into likely clinical
outcomes [66]. Moreover, an intriguing debate is ongoing since a
number of studies identified intracellular bacteria in tumor cells
where they are proposed to influence several cancer-related
processes [67].

Focusing on epidermal tumors, sebaceous carcinoma repre-
sents a rare epidermal malignancy [68], in contrast to basal cell
carcinoma (BCC) and squamous cell carcinoma (SCC), which are
the most frequent epidermal carcinomas and constitute the bulk
of global skin cancer incidence. Although no direct microbiome
data are currently available for sebaceous neoplasms, the
established role of the sebaceous gland in shaping skin microbial
communities and the growing evidence of tumor-microbiome
interactions suggest that sebaceous neoplasms are likely to harbor
distinctive microbial associations.

In contrast, genome-wide association studies have already
pointed out correlations between BCC and skin microbiome
composition. For instance, it was reported an increase in
Staphylococcus spp. and a decrease in Cutibacterium spp [69].
Another analysis further indicated the increased risk of developing
BCC in association with S.aureus, and suggested a causal relation-
ship between BCC and the bacterial class Gammaproteobacteria in
moist skin areas [70]. Nevertheless, deeper investigation is still
necessary to characterise the functional interplay between host
microbiome and BCC development. Interestingly, it has been
hypothesized that Malassezia fungi might promote BCC progres-
sion via Hedgehog (Hh) pathway [71] producing AHR ligands that
can boost the growth of UV-initiated BCC. However, this still does
not provide a causal relationship between skin dysbiosis and BCC.
Moving towards a more systemic view, gut dysbiosis can correlate
with cutaneous BCC formation in both a positive and a negative
fashion [72]. For instance, bacteria belonging to the genus
Turicibacter are thought to promote BCC via lipid metabolism,
although further research is required to gain more insights into
this relationship. On the other hand, gut bacteria of the genus
Ruminococcaceae might exert a protective role against BCC
growth via production of short-chain fatty acids such as
pentanoate and butyrate, which in turn activate cytotoxic T cells
against skin tumor cells [73]. These findings support once again
the theory of a gut-skin axis, which could regulate not only skin
homeostasis but also cutaneous oncogenesis.

Actinic keratosis (AK) is commonly considered a pre-tumoral
lesion precursor of human cutaneous SCC. In addition to acquired
genetic mutations, alterations in skin microbiota are known
contributors to AK/SCC formation and progression (Fig. 1C).
Microbial dysbiosis mainly consists of augmented S.aureus, both in
relative abundance and in total load, and reduced P.acnes, caused
by the decrease in sebum production associated with AK [70].
From a molecular perspective, S.aureus alters human beta-
defensin 2 (hBD-2) expression by keratinocytes, thus impairing
its function as tumor growth suppressor [74]. Furthermore,
functional analysis of altered metagenomes revealed that in
healthy skin a number of genes are associated to antioxidant
activity, such as glutathione metabolism, protecting UV-exposed
skin from ROS and oxidative stress; while in SCC samples, more
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genes correlate to S.aureus-specific functions. For instance,
affected pathways control cell lysis and death, leading to the
release of genomic DNA that can be exploited as a structural
component of biofilms [75]. The role of S.aureus gene products in
SCC tumorigenesis was also tested in vitro by exposing human
keratinocytes to S.aureus secretome. Transcriptomic and proteo-
mic changes revealed a downregulation of cell cycle and DNA
repair, and induction of oxidative stress markers [76]. In light of
recent findings on bacterial dysbiosis in SCC, new treatment
strategies target skin flora. For example, abrogation of the
microbiome by antibiotic treatment reduced the tumour burden,
suggesting a functional role of the microbiome in SCC therapy
response [77]. Finally, besides the detrimental role of microbial
imbalance in SCC, it has been hypothesised that Malassezia spp.
could represent a protective component of the skin microbial
community, since it was detected mainly in perilesional healthy
skin [78].

Although multiple data support a functional role of distinct
cutaneous microbes in modulating epidermal tumor formation,
the involvement of the skin microbiome in tumorigenesis remains
relatively underexplored despite increasing research efforts.
Indeed, data addressing the full spectrum of cross-kingdom
interactions remain very limited in the field of skin oncology.
Therefore, a deeper understanding of the molecular and
biochemical crosstalk underlying skin tumorigenesis will be
important to identify potential new targets for cancer therapy.

Therapeutic approaches based on host-microbe functional
crosstalk

Several therapeutic strategies based on microbiome modulation
are currently employed, in particular on inflammatory diseases as
their host-microbiome association is more understood [56].
Antibiotic treatment has been the frontline choice for medication
of skin wounds and other cutaneous disorders for a long time,
including both oral and topical administration. However, its lack of
selectivity and the inability to reach deeper regions of microbial
biofilms make this strategy less efficacious. Moreover, antimicro-
bial resistance has emerged as an increasing threat to human
health. Strikingly, novel therapies leveraging a target-specific
approach are being developed and seem to represent effective
treatments also in severe chronic wound infections [79]. For
instance, phage therapy consists in delivering bacteriophages to
the patient. These viral entities that selectively infect and Kkill
bacteria have shown success in fighting Staphylococcus aureus and
Pseudomonas aeruginosa skin infections [80]. Another promising
approach is represented by the use of probiotics, i.e. live
microorganisms with beneficial effects on the recipient individual,
as in the case of probiotic preparations derived from Lactobacillus
spp. that reduce bioburden in burn wounds [81]. A novel
therapeutic option is genetic and/or metabolic engineering of
live bacteria. For instance, engineered C.acnes strains have been
successfully tested in vivo as a platform to modulate sebum
production in acne models [82]. Finally, microbial transplantation
represents a valuable tool to ameliorate skin dysbiosis through
selected skin commensals as well as diverse microbial consortia.
Of note, since the gut-skin microbiome axis can contribute to
cutaneous homeostasis and pathogenesis, the use of fecal
microbiota transplantation represents a potential innovative
strategy to cure skin inflammatory conditions [83]. For instance,
AD-related inflammatory responses could be attenuated after
fecal transplantation in mouse models of AD, by modulating the
release of inflammatory cytokines [84].

As illustrated, current microbiome therapies mainly focus on
bacteria, but the skin virome and mycobiome are likely to emerge
as targets for future dermatological treatments due to their roles
in skin homeostasis. However, deeper functional characterization
of skin commensals, including the identification of interindividual
variations and their interactions, is needed. Integrating meta-
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omics with host transcriptomics in skin microbiome research
offers opportunities even for personalized dermatology. Linking
microbial functions to host gene expression can uncover
biomarkers and therapeutic targets, while machine learning and
computational biology enable analysis of complex datasets,
prediction of interaction networks, and discovery of key microbial
drivers. Such multi-omics approaches will be central to under-
standing how to restore skin homeostasis and to translating basic
research into clinical applications. Nevertheless, translating
computationally predicted therapies into practice remains limited
by difficulties in establishing causality, highlighting the need for
more robust datasets linking dysbiosis to cutaneous pathogenesis
and for direct functional validation.

OMICS TECHNOLOGIES AND ANALYTICAL TOOLS

Studying the microbiome composition

Omic-based microbiome studies provide insights that fall into two
main, often separated categories: community composition and
interaction with host cells. In terms of composition, research
focuses on comparing microbial community composition across
healthy and diseased skin sites or between different anatomical
regions. Traditional culture-based methods to study the cutaneous
microbial landscape miss many host-adapted microbes, whereas
culture-independent approaches like sequencing and metage-
nomics reveal a broader, more complete view of microbial
communities directly from samples [85]. The most common
approach involves the targeted amplification of molecular
fingerprints specific to certain microbial groups. For bacterial
communities, the 16S ribosomal RNA (rRNA) gene is targeted, as it
is highly conserved across all bacteria, with variable regions
allowing for species differentiation [86]. In the case of fungi, the
internal transcribed spacer 1 (ITS1), a non-coding DNA region
located in the rRNA gene cluster is used [87]. After amplification,
nucleic acid sequencing of these regions is performed to
accurately identify species or even strains. Unlike bacteria or
fungi, viruses lack universal markers, so shotgun metagenomic
sequencing is used. This approach sequences all genetic material
present in a sample, enabling the detection of both known and
novel viruses. Despite their advantages, sequencing methods have
limitations, including amplification biases, challenges in species
resolution and difficulty in understanding functional roles [88]. In
particular, despite being less expensive and robustly validated, the
16S amplicon sequencing cannot always resolve microbes to the
species or strain level. On the contrary, shotgun metagenomics
has improved taxonomic resolution power, but requires higher
costs and its sensitivity is still not optimised for low abundant
strains in mixed communities.

To decipher microbiome composition from these data, several
bioinformatics tools have been developed, each focusing on
specific aspects of microbial community profiling. Table 1 provides
a comparative overview of these tools, detailing their primary
functions, applications, output and distinctive features to analyse
shotgun metagenomics and 16S rRNA sequencing [89-98]. For
example, MetaPhlAn [89] and Kraken [90] enable taxonomic
classification from shotgun metagenomic data, while QIIME2 [91]
(Quantitative Insights into Microbial Ecology), RDP (Ribosomal
Database Project) Classifier [98] and Phyloseq [92] provide
pipelines for analyzing 16S rRNA sequencing data. Databases
such as SILVA [93] and Greengenes2 [94] support taxonomic
assignment, while MGX [95], EasyMap [96] and EasyMetagenome
[97] offer user-friendly tools for quality control analysis, data
visualization and functional analysis (Fig. 2B, C).

Omics integration and single cell omics for deep insights

By integrating omics data, researchers are exploring microbiome-
host molecular interactions and composition differences in
pathological contexts affecting epithelial barrier tissues. For
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instance, by combining the transcriptomic analysis RNA-seq of
host bronchial epithelial cells and 16S rRNA gene sequencing, an
oral microbial signature in lung cancer patients was linked to
phosphatidylinositol 3-kinase (PI3K) signaling activation [99].
Specifically, a positive correlation was reported between oral
commensal bacteria such as Megasphaera and Veillonella, identi-
fied through QIIME (Table 1), and lung cancer-related signaling
pathways, including ERK/MAPK and PI3K/AKT [99]. In another
study, RNA-seq data of intestinal biopsies from ulcerative colitis
patients were analysed with QIIME, revealing an inverse correla-
tion with the abundance of Akkermansia and Bifidobacteria,
microbes known for their anti-inflammatory properties [100].
While these studies illustrate the potential of omics to connect
microbiome dynamics with host health in other epithelia, gaps
remain in understanding skin microbiome-cell interactions.
Several powerful tools like CellChat [101] have been developed
to analyze cell-cell communication between keratinocytes and
other cell types in skin, but their application to the crosstalk with
the microbiome still needs to be explored. However, combining
transcriptomics data from RNA-seq with paired metagenomic
analysis allows the identification of specific host pathways that are
activated or suppressed in response to microbial interactions.

For instance, shifts in the microbial community, driven by
environmental changes [102], skin disorders [21, 103], or
therapeutic interventions [104, 105] have been correlated with
alterations in keratinocyte gene expression, affecting processes
such as differentiation, metabolism, cytokine production, and the
release of metabolites and antimicrobial peptides that defend
against pathogens.

This integrated approach is particularly valuable in studying skin
conditions where microbial dysbiosis and changes in keratinocyte
function are strongly linked, such as AD. In this context, for
example, S.aureus dysbiosis was shown to induce increased
proteolytic activity in human keratinocytes at mRNA and protein
levels [46], resulting in a disruption of the skin barrier and
abnormal host immune responses [106]. In colorectal cancer
studies, similar multi-omics approaches have revealed correlations
between host metabolites and microbial taxa. Specifically,
metabolites like 5-aminovalerate were associated with Adlercreut-
zia, while cholesteryl ester correlated with Staphylococcus, Blautia,
and Roseburia, relationships linked to tumorigenesis in colorectal
adenomas [107]. Moreover, integrating host transcriptomic data
with gut microbiome profiles obtained by QIIME has uncovered
genes and pathways related to inflammation, gut barrier
protection, and energy metabolism [108]. Although focused on
gut microbiome, these studies highlight that RNA-seq data can
provide insight into the expression of key inflammatory mediators,
such as cytokines and chemokines, by epithelial cells, helping to
establish direct links between microbial dysbiosis and inflamma-
tory pathways.

Recent advances in spatial omics have also provided new
insights into the organization of microbial communities within the
skin and their interactions with host cells. For example, spatial
transcriptomics and metagenomics revealed how spaceflight-
induced stressors impact both the skin microbiome and host
inflammatory responses [109]. Frameworks such as MicrobioLink
[110] (Table 2), which integrates host and microbial molecular
interaction networks, and MicroCart [111] (Table 2), which
supports spatial and temporal multi-omics data integration,
further expand the ability to capture host-microbiome crosstalk.
Omics integration has also enabled the identification of location-
specific microbes, such as the distinct microbial signatures
associated with different regions of the HF microbiota [112].
Furthermore, spatial diversity of the skin bacteriome has been
characterised across different body sites, highlighting distinct
microbial communities that correlate with physiological and
pathological states [113]. Moreover, longitudinal studies examin-
ing temporal and spatial variation in the skin microbiome have
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demonstrated differences in microbial composition between
healthy individuals and patients with AD [114].

By integrating omics approaches, researchers are beginning to
unravel the intricate molecular dialogue between the skin
microbiome and its host, moving beyond correlations towards
mechanistic insights. These analyses could be further enhanced by
the resolution of recent and upcoming technologies that allow to
perform single cell omics of epithelial cells but also bacteria
[115-117].

The convergence of transcriptomics, including expression
profile analysis at single cell resolution, metagenomics, and spatial
omics not only is enhancing our understanding of skin health and
disease but is also opening paths for precision diagnostics and
targeted therapies.

Host-microbe interactions and network analysis

As previously discussed, host-microbe interactions are crucial for
maintaining skin immunity, barrier function, and overall home-
ostasis, and defending against pathogens. Decoding and predict-
ing these interactions is possible through a computational
intersection of data from omics within functional networks.
Therefore, metagenomic sequencing, in combination with meta-
transcriptomic, metabolomic, and metaproteomic approaches,
enhances the functional interpretation of microbial communities
and their interactions through network-based analysis that
enables visualization and interpretation of how microbes interact
with each other and with host cells (Fig. 2B,D; Table 2). By
constructing correlation networks, interaction patterns can be
uncovered to investigate structural changes in microbial commu-
nities in response to disruptions, such as environmental stress or
disease [118, 119]. These networks provide a map of relationships
within microbial ecosystems, capturing both direct interactions
(such as physical contacts or metabolite exchange between
microbes and host cells) and indirect interactions (mediated by
environmental changes or other community members). Addition-
ally, they can incorporate metabolites produced by microbes or
clinical traits linked to host health, creating a more comprehensive
understanding of the system complexity and microbiome balance.
Understanding the changes from skin health to dysbiosis via
network analysis can help identify new targets for therapies by
detection of microbial and molecular biomarkers. For example, co-
occurrence networks of microbiome sequencing and metabolo-
mics data from healthy adult subjects and AD patients were
calculated with MMVEC [120] (Table 2), a QIIME2 plugin for
estimating microbe-metabolite interactions. [121] This revealed
higher co-occurrence of certain metabolites and bacteria in
healthy individuals and non-lesional skin compared to AD-
lesional skin [121].

Microbiome cross-kingdom interactions and system-level
insights

As the skin is a dynamic environment where bacteria, fungi, and
viruses coexist and interact, investigating cross-kingdom relation-
ships and their collective effects on host cells is a complex but
promising direction in skin microbiome research. Through
integrated metagenomic analyses, researchers can explore how
different microbial kingdoms cooperate or compete, and how
these interactions shape the skin immune system and keratino-
cyte behavior. For example, fungal species such as Malassezia spp.
are known to coexist with bacteria on the skin, and changes in
their abundance may affect keratinocyte responses differently
from bacterial shifts alone [122]. In particular, Malassezia spp. can
produce enzymes that limit S.aureus virulence and biofilm
formation, suggesting a protective role in maintaining skin health
[123]. As mentioned above, the virome strongly influences the
microbiome, as certain viruses—such as mycoviruses infecting
Malassezia spp.—can alter fungal physiology and host interactions,
thereby affecting pathogenicity and skin health [32, 124].
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Cﬁ Host-Microbe separation Patient cohorts.
and mapping. ¢
Computational & Statistical Analysis —_ hlostimiciobe Blological Insighis

Interaction Modeling

i.e. Pathway analysis,
Systems biology models,
Protein—protein interactions.

& Application

Mechanistic understanding,
Biomarkers (diagnostic,
prognosis), Therapeutics

and Microbiome interventions.

- Community profiling: diversity, taxa abundance.

- Differential expression analysis: host and microbes.

- Network inference: host-microbe protein/metabolite interaction networks.

- Machine learning: identify signatures predicting host phenotype or disease.
- Causal inference: disentangle host vs microbe contributions.

Fig. 2 Omic approaches to characterise the host microbiome composition and interactions in the skin. A Diagram of the skin cellular
components, showing epidermal and dermal layers, and associated surface microbiota. B Schematic workflow illustrating how omics can be
integrated through computational methods to study host-microbe interactions. These steps include the acquisition of omics from host cells
and microbes to map their composition and individual features (light orange rounded rectangles, later expanded with details in (C)), the data
integration to decipher the host-microbiome functional interactions (pink rounded rectangles, later expanded with details in (D)). C Overview
of omic techniques applied to both microbes (e.g., amplicon sequencing and shotgun metagenomics, metatranscriptomics, metaproteomics
and metabolomics) and host cells (e.g., bulk and single-cell RNA-seq, metabolomics and spatial transcriptomics), enabling taxonomic,
functional, and activity-based profiling. D Integration of omic data using computational tools supports network analysis, dimensionality
reduction, and visualization of host-microbe associations. Conceptual models illustrate dynamic interactions between microbial taxa (M1, M2)
and epidermal cell states (EpC1, EpC2) across homeostasis and disease, including transitions, imbalances, and state switches. Node size and
color indicate relative abundance and identity, respectively.

Although most of these studies rely on descriptive or
correlation-based analyses, integrative bioinformatic frameworks
hold great potential for advancing the field. Tools such as QIIME2,
MetaPhlAn, and HUMANN [125] (Tables 1 and 2) enable
reproducible and high-resolution functional profiling of microbial

SPRINGER NATURE

communities, while multivariate integration platforms like MixO-
mics [126] (Table2) and MTD (Meta-Transcriptome Detector) [127]
(Table 2) or matrix factorization approaches such as PLIER [128]
(Table 2) and HONMF [129] (Table 2) have been developed to
integrate heterogeneous omics data and uncover cross-kingdom
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associations. For example, the HONMF framework has been
applied to microbiome multi-omics datasets to jointly analyze
bacterial, fungal, and viral profiles, enabling clustering, feature
selection, and the discovery of interaction patterns across
kingdoms. In the context of skin, combining metagenomics and
metabolomics allowed the identification of three distinct
metabolite-microbe clusters, linking specific bacterial taxa such
as Cutibacterium and Staphylococcus to metabolite signatures
associated with skin barrier and metabolic features [130]. Applying
such approaches to skin microbiome research could help
move from pairwise observations toward a true systems-level
understanding of how bacteria, fungi, and viruses collectively
influence keratinocyte biology, immune responses, and barrier
functions.

Artificial Intelligence and machine learning tools to unravel
microbiome-host molecular and metabolic interactions
Artificial intelligence (Al) represents a recent powerful tool in
advancing our understanding of the intricate interplay between
and within epithelial cells and the skin microbiome. Machine
learning algorithms, such as those implemented in QIIME [91],
rapidly analyze large-scale metagenomic data, identifying shifts in
microbial communities that impact epithelial barrier functions and
immune responses. While QIIME primarily relies on statistical and
sequence alignment methods, it also integrates machine learning
approaches, such as Naive Bayes classifiers [131], for taxonomic
assignment. These features help map out the dynamics of
microbial diversity on the skin surface, crucial for studying
conditions like eczema or acne where the microbiome-epithelial
balance is often disrupted.

These methods, although simple, remain widely used because
they are reproducible and easy to interpret, qualities that are
sometimes missing in more complex Al models.

In contrast, through machine learning and deep learning, Al
allows the development of predictive modeling tools targeted to
skincare and therapeutic interventions. TensorFlow [132] and
PyTorch [133], two open-source deep learning frameworks, have
been applied to build models predicting associations between
microbial compositions and epithelial health [134, 135]. PM-CNN
[136] (Phylogenetic Multi-path Convolutional Neural Network) is a
model that enables the classification of multiple microbiome
states and the detection of disease signatures using microbial
composition data. Another powerful tool, MicroKPNN-MT [135],
predicts human phenotypes based on microbiome data and
additional metadata, such as age and gender, facilitating multi-
disease prediction.

Deep learning approaches are also increasingly applied to
histological and imaging data. Tools like CellProfiler [137] and
DeepCell [138] enable high-throughput image analysis of epithe-
lial tissues. While DeepCell leverages neural networks to
distinguish cellular features and model spatial organization,
CellProfiler focuses on feature extraction and can be combined
with machine learning models for downstream analysis. These
platforms can quantify changes in cellular morphology and
epithelial responses to microbial interactions, providing insights
into how microbial populations might influence epithelial integrity
and inflammation over time. The complexity of these models can
come at the cost of transparency and reproducibility, particularly
in small or heterogeneous cohorts.

Explainable Al (XAl) [139] represents an emerging solution to
the need for transparency and user confidence in decision-making
processes, while also supporting reproducibility by highlighting
the microbial and host features that consistently drive model
predictions across cohorts. An XAl model was used to predict
phenotypes like skin hydration, age, menopausal status, and
smoking status based on previously available skin microbiome
data, identifying microbial signatures linked to these traits and
explaining their relationships with phenotypic variations [140].

Cell Death & Differentiation



As Al tools continue to evolve, their capacity to integrate omics
data combining genomics, transcriptomics, and metabolomics will
be important for a holistic understanding of the skin complex
ecosystem. By revealing how microbial interactions shape
epithelial cell responses at a molecular level, Al-driven research
holds transformative potential for advancing dermatology and
microbiome-related therapies.

Advancements in Al have catalyzed new methods for studying
the interaction between the skin microbiome and epithelial cells,
enabling researchers to decode the complex symbiotic and
pathogenic relationships at the cellular and molecular levels,
including metabolic insights (Fig. 2). Tools like MIMOSA [141]
(Microbial Metabolic Interactions in the Microbiome), Microbio-
meAnalyst2.0 [142] and PICRUSt [143] (Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States) are
widely used in microbiome research to predict the functional
potential of microbial communities and their impact on the host
(Table 2). For instance, MIMOSA applies machine learning to
metabolic network models to identify how specific microbial
metabolites interact with host cells, potentially affecting epithelial
barrier integrity or immune responses. For the analysis of host-
microbiome gene expression interactions, platforms like MaAsLin
[144] (Multivariate Association with Linear Models) offer a data-
driven approach to link microbial community composition with
host transcriptomic data (Table 2). iHMP Data Portal [145]
(Integrative Human Microbiome Project) provides access to a
wide range of multi-omics datasets, which can be used to study
microbiome-host interactions across various body sites, including
the skin. Meanwhile, HUMAnN [125] (HMP Unified Metabolic
Analysis Network) is used to reconstruct host-microbiome
metabolic interactions at high resolution, linking microbial path-
ways with host metabolic responses (Table 2). MICOM [146]
(Microbial Community Modeling) is a computational tool for
modeling microbial communities and predicting their metabolic
interactions with the host (Table 2). Metabolic modeling tools like
MAGMA [147] (Microbiome analysis with Global Metabolic Models)
combine metabolic modeling with omics data to predict how
microbial metabolism impacts the host (Table 2). Cytoscape, a
widely used bioinformatics software for visualizing molecular
interaction networks, can be enhanced with plugins like MetScape
[148] to explore microbiome-host interactions at a network level
(Table 2).

Looking ahead, such models could drive personalized skincare
and treatments by tailoring interventions to individual micro-
biome profiles. They may also enable non-invasive health
monitoring, using skin microbiome data to detect broader health
indicators such as immune responses or metabolic conditions and
support predictive dermatology by anticipating skin issues and
allowing for customized preventative care. Additionally, skin-
specific platforms such as SkinCom [149] (Table 2) and SkinBug
[150] (Table 2) illustrate how computational models can simulate
microbial-host interactions and predict responses to external
exposures, offering opportunities for pharmaceutical and cosmetic
industries to develop microbiome-targeted products informed by
bacterial signatures tied to skin health and aging. Future
innovations might even include real-time feedback systems, like
wearables or smart patches, that track microbiome shifts and
provide instant insights into how lifestyle factors affect skin health.

In summary, these tools should be applied selectively, guided
by the research question. While QIIME-like frameworks are best for
reproducible and interpretable surveys, deep learning models
provide strong predictive power but require careful validation,
and metabolic modeling uniquely links microbial alterations to
host functional pathways. The choice of tool should therefore
reflect the biological question: reproducibility for clinical contexts,
prediction for hypothesis generation, or mechanistic depth for
systems biology.
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MICROBIOME AND EPITHELIAL MEMORIES

The concept of microbe ecological memory has been proposed by
recent studies showing that microorganisms inhabiting the gut
can remember previous exposure to dietary compounds, thus
reshaping their community structure and function [151]. Specifi-
cally, metabolic enhancement was observed soon after exposure
to the carbohydrate inulin in a restricted number of intestinal
bacteria, followed by a more widespread transcriptional adapta-
tion of neighboring microbes. This phenomenon is defined as an
ecological memory, given that past events affecting the gut
microbial ecosystem can impact on its future response to
environmental stimuli. In addition to dietary oscillations, host
microbes can also undergo community adaptation after antibiotic
treatment, as shown in pneumococcal disease [152], or after
infections by pathogens causing acute diarrhea [153]. These
adaptive behaviors improve the response to subsequent pertur-
bations in a similar way as for the immune system. In line with
these discoveries, intestinal stem cells were shown to retain
epigenetic marks of their past encounters with harmful stimuli,
such as bacterial infections [154, 155] and inflammation [156]. This
long-lasting memory affects the ability of gut epithelial cells to
adapt to subsequent challenges, in both beneficial and detri-
mental ways (Fig. 3A). Interestingly, epigenetic memories of an
assault can also be stored in multiple epidermal cells [157, 158]
and shared by damaged and tumor-forming cells across several
epithelia, including the skin [159, 160]. Indeed, previous work
revealed that epithelial stem cells of the skin are able to acquire
wound memory also distally from the lesion site, that predisposes
to skin cancer [161]. However, the mechanism by which cells
located far from the wound sense tissue damage and establish a
persisting memory is still unknown. Therefore, the intriguing
question arises whether the microbiome and epidermal cells carry
a reciprocal memory of previous injurious events. Further
investigation is needed to reveal whether skin microbes
contribute to this process via altered community composition
and dysregulated interactions with surrounding epidermal cells
(Fig. 3B). We also hypothesize that by harnessing these putative
skin ecological memories, new therapeutic approaches could be
designed in order to improve tissue repair potentially also in
chronic wounds.

A further layer of complexity is represented by the hetero-
geneity of host-microbe molecular and metabolic responses in
distinct epithelial niches (Fig. 3C-G). Indeed, previous work
highlighted that epithelial wound memory is lineage-specific,
with a well-defined HF stem cell population undergoing a peculiar
adaptation after injury [161]. Additionally, AMP and metabolic
gene expression by keratinocytes differs depending on the skin
compartment [161-163] (Fig. 3D-G). Consequently, it is difficult to
avoid hypothesising the existence of niche-specific host-microbe
interactions that are functional for tissue memories in epithelial
barriers such as skin. In addition, as a gut-lung-skin axis is reported
[164, 165], there might be an inter-tissue crosstalk influencing
cellular and microbial memories (Fig. 3H).

CHALLENGES AND OUTLOOK

A comprehensive analysis of the host-microbiome molecular and
biochemical interactions is essential to advance our understand-
ing of the mechanisms underlying barrier epithelia homeostasis
and skin disease. While the gut environment has been more
widely explored, research in the field of skin biology only started
to unveil a limited fraction of the whole host-microbe interactome
and their functional interplay. State-of-art studies now provide
insights into the crosstalk involving specific microorganisms in
selected pathological conditions, but fail in framing the bigger
picture. Nonetheless, an ever-growing toolbox of omics and
computational methods is now available to expand our
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knowledge. Therefore, a more widespread use of these
approaches is required to reveal fundamental aspects of epithelial
barriers biology. We anticipate that the combination of these tools
to integrate omic data will allow the identification of new
potential targets to develop future therapies, even though
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inferring causality will be challenging due to the current gap
between in silico predictions, in vivo spurious co-occurrence
correlations and cause-effect relationships. Also, the taxonomic
resolution of microbiome datasets in the cutaneous ecosystem is
currently limited, thus suggesting a crucial need for improvement
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Fig. 3 Ecological memories in barrier epithelia. Epithelial and microbial memories in the gut (A) and in the skin (B). A potential reciprocal
crosstalk is hypothesised between epithelial cells and tissue-resident microbes. C UMAP visualization of scRNA-seq data [161] highlighting
differentiated interfollicular epidermal cells (IFE) in blue and differentiated upper hair follicle cells (uHF) in green. D Heatmap of AMP genes
across different time points and distinct epidermal differentiated cells regions (IFE and uHF) at baseline (Ow), 1 week post first wound
(Tw_pw1), 8 weeks post first wound (8w_pw1, established memory), and 1 week post second wound (1w_pw?2). E Gene expression maps
projected onto UMAP embeddings, showing expression dynamics of a representative AMP gene in uHF (green) and IFE (blue) differentiated
compartments across time. F Heatmap of metabolic genes across different time points and epidermal differentiated cells in distinct areas (IFE
and uHF). G Z-score average of the three gene clusters highlighted in grey in (F). H The gut-lung-skin axis is reported to connect three
epithelial barrier tissues. Interactions are known to be bidirectional, but evidence is still lacking for some of the links, particularly to cellular

memories. The draft of (A, B, H) were created with BioRender.com.

of current sequencing methods to gain insights at strain level.
Indeed, more precise identification of pathogenic and beneficial
strains is emerging as fundamental to bridge the existing gap
between predictions and clinical applications. Together with
exhaustive experimental validation, strain-level detection and
culturing will finally allow the development of biotechnological
drugs able to reach dermatological use. Yet, examples of
successful treatments based on the host-microbe interaction
studies already exist, as illustrated in this review [56, 79-84].
Concerning the use of Al to identify new diagnostic markers and
targets for therapies, training of existing models is still necessary
before landing to the clinical field. For instance, even efficient
tools such as AlphaFold are able to predict protein folding but still
fail in RNA structure prediction, because the molecular constraints
followed by RNA molecules are not fully known yet [166]. Similarly,
host-microbe interactions are based on a code that is far from
being deciphered, highlighting the need to persist with a wet
approach. Nevertheless, in parallel with technical advances in Al-
based algorithms, we recently started to collect results of clinical
trials using drugs predicted by such tools. Moreover, advance-
ments in imaging methodologies applicable in vivo will be crucial
to overcome present constraints in identifying the precise sub-
compartment localisation of live microorganisms in skin layers.
This will enable the field to better understand the distinct crosstalk
occurring in different epithelial niches, validate interactions
between the cutaneous microbiome and stem or differentiated
keratinocytes, and provide a clearer identification of endogenous
intracellular bacteria. Of course, although high-demanding in
terms of resources, longitudinal studies with multiple time points
will also be important to highlight specific stages of functional/
dysfunctional host-microbe interactions and the dynamic evolu-
tion of the microbiome upon therapeutic interventions.
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GLOSSARY

MICROBIOME The ensemble of microorganisms existing in a tissue/
organ. They include bacteria, viruses, fungi and other
mites, but also their genetic and metabolic products.

INTER-KINGDOM The crosstalk between organisms belonging to distinct

(or  CROSS-KING- taxonomic groups. This involves multiple types of

DOM) organisms at the same time (e.g. mammal host-fungus-

INTERACTION virus).

INTERACTOME The whole set of functional interactions within a cell or
organism (or between host and its microbiome).

META-OMICS The analyses of the whole genetic material (metage-

nomics), RNA (metatranscriptomics), proteins (metapro-
teomics), metabolites (metabolomics) of an entire
biological community or environment, rather than
focusing on a single selected organism.

NETWORK A computational method to analyze and represent the

INTEGRATION interactions within complex systems, where each object
is modeled as a node and interactions are depicted as
arrows.
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FUNCTIONAL
CROSSTALK

DYSBIOSIS

ECOLOGICAL
MEMORY

MICROBIAL  MEM-
ORY OF EPITHE-
LIAL CELLS

EPITHELIAL MEM-
ORY OF
MICROBIOME

Moving beyond descriptive compositional data, it refers
to the biological roles of molecular and metabolic
interactions between microorganisms.

Any imbalance in the composition of homeostatic
microbial communities. It is characterised by potentially
harmful microbes taking over commensal ones, some-
times leading to pathological states.

The ability of an epithelial ecosystem, that includes a
community of skin cells and the epithelial microbiome, to
adapt to environmental stresses and remember previous
exposures, in order to better cope with subsequent
perturbations. Indeed, in this Review we propose that, in
epithelial barriers, the concept of ecological memory
includes both the epithelial memory of microbial
variations and the microbial memory of epithelial cell
adaptations to stimuli, representing an ecological and
reciprocal  adaptation  through  host-microbiome
crosstalk.

The ability of tissue-resident microbiomes to remember
alterations affecting an epithelium such as gut and skin,
possibly resulting in an adaptive response upon subse-
quent stimulations.

The ability of epithelial cells in barrier tissues to acquire
memory of antecedent variations of microbial commu-
nities. This ability might result in adaptive response upon
subsequent perturbations.
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