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Aging and obesity pose significant threats to public health and are major contributors to muscle atrophy. The trends in muscle fiber
types under these conditions and the transcriptional differences between different muscle fiber types remain unclear. Here, we
demonstrate distinct responses of fast/glycolytic fibers and slow/oxidative fibers to aging and obesity. We found that in muscles
dominated by oxidative fibers, the proportion of oxidative fibers remains unchanged during aging and obesity. However, in
muscles dominated by glycolytic fibers, despite the low content of oxidative fibers, a significant decrease in proportion of oxidative
fibers was observed. Consistently, our study uncovered that during aging and obesity, fast/glycolytic fibers specifically increased
the expression of genes associated with muscle atrophy and inflammation, including Dkk3, Ccl8, Cxcl10, Cxcl13, Fbxo32, Depp1,
and Chac1, while slow/oxidative fibers exhibit elevated expression of antioxidant protein Ngo-1 and downregulation of Tfrc.
Additionally, we noted substantial differences in the expression of calcium-related signaling pathways between fast/glycolytic fibers
and slow/oxidative fibers in response to aging and obesity. Treatment with a calcium channel inhibitor thapsigargin significantly
increased the abundance of oxidative fibers. Our study provides additional evidence to support the transcriptomic differences in
muscle fiber types under pathophysiological conditions, thereby establishing a theoretical basis for modulating muscle fiber types

in disease treatment.
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INTRODUCTION
Skeletal muscle is composed of muscle cells, also known as muscle
fibers due to their long and fibrous shape. Muscle fibers are
heterogeneous and are broadly divided into two major categories
as fast/glycolytic fibers and slow/oxidative fibers, whose differ-
ences involve physiological distribution, contractile properties,
metabolic pathway, and all functional cell compartments [1].
Recent researches highlight the importance of these fibers.
Through muscle-specific knockouts of DP2 or Sox6, enhancements
in endurance and insulin sensitivity are achieved by increasing the
number of slow/oxidative fibers [2, 3]. Additionally, constitutive
activation of Akt elevates fast/glycolytic fibers, promoting muscle
hypertrophy and strength gains [4]. However, the majority of
muscles are made up of a mixture of both slow- and fast-twitch
fibers in vivo, posing challenges for research focusing on specific
fiber types. Soleus (SOL) and extensor digitorum longus (EDL) are
two widely recognized natural slow/oxidative and fast/glycolytic
fibers, offering a foundation to explore biological differences in
skeletal muscle fiber types.

Aging and obesity are prominent contributors to muscle
atrophy, characterized by the reduction in muscle mass due to
the aging process and the accumulation of fat [5, 6]. The essence

of muscle atrophy lies in the atrophy of specific muscle fiber types.
During aging, fast-twitch fibers are vulnerable, as evidenced by
more pronounced atrophy [7, 8]. Therefore, the conventional
perspective believes that aging is associated with a decrease in
fast-twitch fibers and an increase in slow-twitch fibers [9].
However, contradictory findings exist, suggesting that slow-
twitch fibers may also decrease and exhibit marked atrophy
behavior in advanced age [10-13]. In the case of obesity, evidence
indicates that obese individuals had increased fast-twitch fibers
[14]. However, the distribution of different fiber types exhibits
spatial specificity, but most studies analyze local areas rather than
the entire cross-section of fibers [15-18]. Currently, it remains
unclear whether the changes in fiber types are consistent under
different physiological and pathological conditions, and the trend
of these changes is also unclear.

Here, we observed a significant reduction in the proportion
of slow/oxidative fibers and an increasing trend in fast/
glycolytic fibers in the tibialis anterior (TA), regardless of aging
or obese status. Additionally, we performed RNA-seq analysis
on the EDL and SOL, and identified a significant a number of
differentially expressed genes (DEGs) in response to aging and
obesity. Our study uncovered that fast/glycolytic fibers tend to
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upregulated pro-atrophy genes, while slow/oxidative fibers
tend to express genes associated with cellular protection
during aging and obesity. Notably, our analysis indicated the
potential central role of calcium-related signaling pathways in
these processes. Treatment with the sarco/endoplasmic reticu-
lum Ca®"-ATPases (SERCA) inhibitor thapsigargin resulted in a
significant increase in the proportion of oxidative fibers in
mice. Our findings provide novel insights into the mechanisms
of muscle fiber type changes and suggest a potential treatment
strategy.

MATERIALS AND METHODS

Animals

Male were obtained from GemPharmatech Co., Ltd. (Nanjing, China). The
young mice were aged 10 weeks, and the aged mice were 27 months,
aligning with previous aging research [19, 20]. Diet-induced obesity (DIO)
mice were fed a 60% high-fat diet at 6 weeks old, and last for 18 weeks.
Animals were maintained in a specific pathogen-free environment on a 12/
12 h light-dark cycle and fed rodent normal chow diet ad libitum. After
animals were euthanized, TA, quadriceps, EDL, and SOL were harvested for
analysis. Ethics approval was granted by Institutional Animal Committee of
Tongji University. Mice used for this study received care throughout the
experiment following the Guide for the Care and Use of Laboratory
Animals.

Assessment of grip strength

A grip strength meter (ZhongShi Biological Technology Co. Ltd., China) was
used to measure the maximum grip strength. Mice were placed on the
device, ensuring all paws touched the grid, and pulled horizontally until
they released their grip. Five trials were conducted for each mouse.

Glucose tolerance test

Blood glucose was measured using a portable blood glucose meter
(Jiangsu Yuyue Medical Equipment & Supply Co., Ltd.) using mouse tail
vein blood. The glucose tolerance test (GTT) was performed after an
overnight fast by intraperitoneal injection of 2g/kg glucose. Blood
glucose levels were measured at 0, 15, 30, 60, 90, and 120 minutes after
injection.

Transcriptomic analysis

Total RNA was extracted from EDL and SOL using TRIzol reagent
(Invitrogen Life Technologies, USA). RNA quality, concentration, and
purity were assessed using a Nanodrop 2000 instrument (Thermo Fisher
Scientific, USA). Libraries for next-gen sequencing were prepared with
the TruSeqTM RNA Sample Prep Kit (lllumina, USA). Sequencing was
performed by Shanghai Origingene Biopharm Technology Co., Ltd.
(Shanghai, China). High-quality data were obtained after initial quality
control and alignment to the reference genome using HISAT2 [21].
Expression values were calculated using the StringTie tool, and the
differentially expressed genes (fold change=2, adjusted p-value < 0.05)
were identified using the DESeq2 algorithm [22, 23]. GO annotation and
KEGG pathway enrichment analysis were performed based on DAVID
online database [24]. Gene Set Enrichment Analysis (GSEA) software
(version 4.3.2) was used to perform gene set enrichment analysis [25].
Raw sequencing data are available at the NCBI SRA database
(PRJNA1009685 and PRIJNA1108514).

Muscle histology and immunohistochemistry

Muscles were frozen in OCT (Epredia, #11912365), stored at —80 °C, and
sectioned into 10 pm slices for subsequent analysis. Hematoxylin and
eosin (H&E) staining were performed on the cryopreserved muscle
sections. Immunofluorescence staining was conducted to assess myosin
heavy chain (MHC) isoform expression with specific primary antibodies:
anti-myosin | (DSHB, #BA-D5), anti-myosin 1A (DSHB, #SC-71), and anti-
myosin 1B (DSHB, #BF-F3). Additionally, the fiber basal membrane was
visualized using an anti-laminin antibody (Abcam, #ab11575). Alexa-488
or Alexa 594-labeled anti-mouse or anti-rabbit secondary antibodies
were applied, and DAPI (Vector Laboratories, #H-1200) was used for
nuclear staining. Digital images were acquired using the Olympus
VS120 slide scanning system.
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Succinic acid dehydrogenase staining

Cryosections of 10 um thickness were obtained from the muscle samples
and were incubated with succinic acid dehydrogenase (SDH) stain kit
(Solarbio, #G2000) at 37 °C for 20 min. After washed with PBS, the slides are
sealed with glycerine gelatin. Digital images were acquired using the
Olympus VS120 slide scanning system.

Pharmacological treatments

Mice were injected with thapsigargin or normal saline intraperitoneally
(i.p.) every day for 1 month. Thapsigargin was solubilized in normal saline
with finial concentration of 3 mg/kg for injection.

Statistical analysis

Statistical analysis was performed using Graph Pad Prism 9.0 software. All
data are expressed as means + SEM. Student’s t-test was used for statistical
analysis between two groups, with either one-tailed or two-tailed tests as
appropriate. For experiments involving more than two groups, one-way
analysis of variance (ANOVA) followed by post hoc tests was applied to
assess the variation among groups. Differences between groups were
considered statistically significant for P<0.05. All experiments were
independently repeated three times.

RESULTS
Aging and obesity lead to significant muscle atrophy
To investigate the effects of aging and obesity on skeletal muscle, we
established three groups: a control group of 10-week-old wild-type
mice, an aged group of 27-month-old mice, and an obese group of
10-week-old Ob/Ob mice. Aged and Ob/Ob mice had significantly
higher body weight and low relative grip strength (Supplementary
Fig. 1A, B). Besides, Ob/Ob mice exhibited significant glucose
intolerance, while the glucose tolerance of aging mice was
comparable to that of the control group (Supplementary Fig. 1C).
To explore the effects of aging and obesity on muscle fibers,
mice were sacrificed to collect their TA for assessment of atrophy
by H&E staining (Fig. 1A). The results revealed that both aging and
obesity significantly reduced the cross-sectional area (CSA) of
muscle fibers in the TA, without affecting their quantity
(Fig. 1B-D). All three types of fibers experience atrophy during
the aging and obesity (Fig. 1E-G), but the greater size of type IIB
fibers contribute more to overall muscle atrophy. Together, these
data show that aging and obesity lead to significant skeletal
muscle atrophy.

Aging and obesity lead to a reduction in slow/oxidative fibers
and an increase in fast/glycolytic fibers in mixed muscles
Previous studies usually analyze fiber types based on local area. In
this study, we conducted our analysis on the entire muscle cross-
sections. Aging and obesity had significantly decreased SDH positive
area in TA muscle (Fig. 2A, B), suggesting a decline in mitochondrial
function. During aging and obesity, the proportions of type | and lIA
fibers were significantly decreased, whereas the proportion of type IIB
fibers were increased in TA (Fig. 2C-F). Type IIA represents a distinct
fast-twitch fiber subtype, characterized by a metabolic profile
resembling that of type | [1]. Consistent results were obtained for
immunofluorescent staining of type | and type lIA fibers in another
mixed muscle, quadriceps (Supplementary Fig. 2).

Soleus and extensor digitorum longus muscles exhibit distinct
changes in muscle fiber types during the aging and obesity
processes

To investigate the effects of aging and obesity on muscles with
higher proportion of slow- or fast-twitch fibers, we performed
H&E, SDH, and immunofluorescent staining on soleus (SOL) and
extensor digitorum longus (EDL) from control, aged, and Ob/Ob
group. Most of the SOL primarily comprises oxidative fibers, in
contrast to the EDL, which has minimal oxidative fiber content
(Supplementary Fig. 3A). Among them, SOL is primarily composed
of type | (~40%) and type IlA (~50%), while EDL is predominantly
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Aging and obesity result in a significant decline in muscle mass. A Hematoxylin and eosin (H&E) staining of tibialis anterior (TA)

sections. B Statistical results of the number of muscle fibers. C Statistical results of the average cross-sectional area (CSA) of TA fibers.
D Distribution of muscle fiber CSA, data are expressed as percentages. E Average CSA of type | fibers. F Average CSA of type IIA fibers.

G Average CSA of type IIB fibers. n = 3-6; "P <0.05, "P < 0.01,
& indicated control group vs. aged group, P < 0.05.

composed of type IIB (~70%; Fig. 3C-F and Supplementary Fig.
3B, Q). In the SOL, CSA significantly decreased in Ob/Ob mice,
while it remained unchanged in the aged group. In the EDL, both
the aged and obese EDL exhibited a decrease in CSA (Fig. 3A, B).
During aging and obesity, the proportion of type | fibers in SOL
not only did not decrease but showed a slight increasing trend
(Fig. 3C, D). Despite the rarity of type | fibers in EDL, their
proportion reduced significantly with aging and obesity, as type
IIB fibers increased (Supplementary Fig. 3C and Fig. 3E, F).

Characterizing inherent properties of fast/glycolytic and slow/
oxidative fiber using RNA-seq

Considering the distinct trends of fiber type changes in SOL and
EDL during aging and obesity, RNA-seq analysis was conducted on
SOL and EDL samples from the three mouse groups (Supplemen-
tary Fig. 4A). Principal component analysis (PCA) and sample
correlation matrix showed a strong clustering by samples and a
good agreement between mice (Supplementary Fig. 4B, Q),
although the distinction between obese and control groups is

Cell Death and Disease (2024)15:459

P <0.001,

“P <0.0001; * indicated control group vs. Ob/Ob group, P < 0.05;

less prominent. This may be attributed to the similar ages of the
mice in the obese and control groups. Consistent with the
immunofluorescent staining results, SOL predominantly expresses
the marker genes MYH7 and MYH2 for type | and type IIA, while
EDL mainly expresses the marker gene MYH4 for type IIB
(Supplementary Fig. 4D-F).

To investigate the transcriptional differences between fast/
glycolytic and slow/oxidative fibers, we analyzed sequencing data
from SOL and EDL in 10-week-old control mice. The analysis
identified 1155 protein-coding differentially expressed genes
(DEGSs), comprising 594 upregulated and 561 downregulated
genes (FDR < 0.05, log,FC = 1). Four hundred and forty-two DEGs
with an average FPKM > 10 in EDL or SOL were shown in the
Supplementary File 1. Among them, top 10 upregulated and 10
downregulated genes were shown in Supplementary Table 1.
Gene Oncology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA) analysis were
performed (Supplementary Fig. 5A-F). Fast/glycolytic fibers
predominantly employ anaerobic glycolysis with enhanced
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Fig.3 SOL and EDL exhibit different changes in muscle fiber types composition during the aging and obesity processes. A H&E staining of
SOL and EDL in control, aged, and Ob/Ob mice. B Statistical results of the CSA of SOL and EDL fibers. C Immunofluorescence staining of MYH7
for SOL, Scale bar: 200 um. D Statistical results of the proportion of type | fibers in SOL, E Immunofluorescence staining of MYH4 for EDL, Scale
bar: 200 pm. F Statistical results of the proportion of type IIB fibers in EDL. n=5-6; P<0.01, P<0.001, P<0.0001.

sarcoplasmic reticulum and calcium ion transport. Genes govern-
ing glycolysis enzymes are upregulated in fast/glycolytic fibers
(Supplementary Fig. 5G), in line with prior research [1]. Genes
encoding key enzymes involved in aerobic metabolism are
upregulated in slow/oxidative fibers (Supplementary Fig. 5H).

To further validate the stably existing DEGs between fast/
glycolytic and slow/oxidative fibers, we intersected the DEGs
across young, aging, and Ob/Ob mice (Supplementary Fig. 6A). We
discovered 677 protein-coding DEGs consistently present in all
three groups (Supplementary File 2). Notably, each DEG main-
tained a consistent up or downregulation across all groups,
underscoring their muscle fiber specificity and independence from
physiological changes. GO and KEGG analyses of these 677 DEGs
yielded results in line with entire DEGs analysis in control mice
(Supplementary Fig. 6B-F).

Transcriptome changes of fast/glycolytic and slow/oxidative
fibers during obesity

To observe the differential response of fast/glycolytic and slow/
oxidative fibers to obesity, analysis was conducted on DEGs in SOL
and EDL from Ob/Ob mice. After removing 677 fiber-specific DEGs,

Cell Death and Disease (2024)15:459

we conducted a GO analysis on the remaining 417 DEGs. The
results revealed significant upregulation of genes related to
neuroaxonal processes and ion transport, and a downregulation of
lipid metabolic processes in the EDL of obese mice (Fig. 4A, B).
Subsequent GSEA analysis of the entire gene set in obese EDL and
obese SOL revealed the downregulation of amino acid import in
Ob/Ob EDL (Fig. 4C) and the downregulation of immune response
in Ob/Ob SOL (Fig. 4D).

The comparison of obese EDL or SOL to their nonobese
counterparts revealed 194 DEGs in the EDL muscle between Ob/
Ob and control mice, and 253 DEGs in the SOL (Supplementary
File 3. Of these, 50 DEGs were common to both groups (Fig. 4E
and Supplementary File 3). Out of these 50 DEGs, two genes
(Rcan1, Mettl21¢) demonstrated opposite expression trends, while
the remaining genes exhibited consistent expression patterns
(Fig. 4F). After excluding these 50 common DEGs, Table 1 presents
the top 10 upregulated and downregulated DEGs in Ob/Ob EDL or
SOL relative to their nonobese counterparts. In Ob/Ob EDL, Tnmd,
Thbs4, Cilp, Mss51, and Pppiria were specifically upregulated,
while Actc1, Amd1, Smox, Amd2, and Cpeb1 were downregulated.
Ob/Ob SOL exhibited specific upregulation of Emp1, Tecrl, Sin,

SPRINGER NATURE
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Table 1. Top 10 upregulated and downregulated DEGs with an average FPKM > 10 in obese EDL or SOL compared to their nonobese counterparts.

Gene symbol

Gene name

Tnmd Tenomodulin

Thbs4 Thrombospondin 4

Cilp Cartilage intermediate layer protein, nucleotide
pyrophosphohydrolase

Mss51 MSS51 mitochondrial translational activator

Pppiria Protein phosphatase 1, regulatory inhibitor subunit 1 A

Actcl Actin, alpha, cardiac muscle 1

Amd1 S-adenosylmethionine decarboxylase 1

Smox Spermine oxidase

Amd2 S-adenosylmethionine decarboxylase 2

Cpeb1 Cytoplasmic polyadenylation element binding protein 1

Gene symbol

Gene name

Emp1 Epithelial membrane protein 1

Tecrl Trans-2,3-enoyl-CoA reductase-like

SIn Sarcolipin

Atf3 Activating transcription factor 3

Myh3 Myosin heavy chain 3

Myh4 Myosin heavy chain 4

Mybpc2 Myosin binding protein C, fast-type

Actn3 Actinin alpha 3

Ky Kyphoscoliosis peptidase

Mylk4 Myosin light chain kinase family, member 4

Log,FC (Obese_EDL vs. Regulation P value
WT_EDL)
2.169480478 Up 6.07x 10 '
1.932935505 Up 287x10° %
1.556304657 Up 1.87x 107 %
1.520067948 Up 0.0001
1.435062661 Up 5.08x10 "3
—2.431256376 Down 137x10 %
—1.968869587 Down 1.28 x 107%°
—1.952857639 Down 464x10%°
—1.565920011 Down 3.22x 10 %
—1.443776518 Down 1.98x10 %
Log,FC (Obese_SOL vs. Regulation P value
WT_SOL)
2.875011824 Up 0.009
2.272945128 Up 137x10 '8
2.180105104 Up 8.13x 10 %
2.068130876 Up 0.045
1.968983469 Up 3.03x 10 "
—3.304873707 Down 0.02
—2.67345365 Down 0.009
—2.180084625 Down 0.019
—2.112252104 Down 0.043
—1.992926495 Down 0.018

Fifty commonly expressed DEGs were excluded from this table.

Genes with an average FPKM > 10 in either sample were considered, including wild-type EDL, wild-type SOL, obese EDL, and obese SOL.

Atf3, and Myh3, with Myh4, Mybpc2, Actn3, Ky, and Mylk4
downregulated.

Additionally, genes with distinct expression patterns between
EDL and SOL in response to obesity. Figure 4G shows the top 10
genes (FPKM > 10) with the most significant differences. These
genes include Mettl21c, Actcl, Mybpc2, Rabep2, Tomm5, Rcan1,
Tspan8, Ube2g2, Actn3, and Pvalb. Among them, Mettl21¢, RcanT,
Actn3, and Pvalb were associated with calcium homeostasis.
Without FPKM limits, numerous calcium signaling factors were
found, showing divergent expression trends between Ob/Ob SOL
and EDL (Fig. 4H).

To better mimic the physiological state of obesity, diet-induced
obesity (DIO) mice were generated by feeding them a 60% high-
fat diet starting at 6 weeks old, which continued for 18 weeks
(Supplementary Fig. 7A). Immunofluorescence staining of TA
muscles in DIO mice revealed similar trends in type |, type IIA, and
type IIB muscle fibers as observed in Ob/Ob mice (Supplementary
Fig. 7B-C). RNA-Seq and PCA analysis of the glycolytic muscle EDL
and oxidative muscle SOL in DIO mice showed comparable
expression profiles to those of EDL and SOL in Ob/Ob mice at the
overall level (Supplementary Fig. 8A). The muscle atrophy gene
marker Fbxo32 was significantly upregulated in the EDL of DIO
mice, while no significant changes were observed in SOL
(Supplementary Fig. 8B). Two key genes, Mettl21c and Rcani,
identified in Ob/Ob mice were validated in DIO mice (Supple-
mentary Fig. 8C). GSEA results revealed metabolic dysregulation in
both the EDL and SOL muscles of DIO mice and Ob/Ob mice.
Specifically, glycolytic muscle EDL exhibited a relative increase in
oxidative phosphorylation levels, while oxidative muscle SOL
showed a relative decrease in these levels (Supplementary Fig.
8D). However, in terms of immunity and inflammation, both
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glycolytic and oxidative muscle fibers in DIO mice showed
downregulation of immune-related signals (Supplementary
Fig. 8E).

Transcriptome changes of fast/glycolytic and slow/oxidative
fibers during aging

To explore the distinct aging responses of fast/glycolytic and slow/
oxidative fibers, we analyzed DEGs in aged SOL and EDL. Initially,
1377 protein-coding DEGs were identified. Subsequently, we
excluded the 677 muscle fiber-type specific DEGs and further
analyzed the remaining 700 protein-coding DEGs to investigate
age-specific changes (Fig. 5A and Supplementary File 4).

Based on the visualization of the Gene-Concept network, we
observed GO term enrichment predominantly related to iron
transport, lipid metabolism, glycometabolism, chemotaxis, cell
motility, signal transduction, cellular response to stimulus, and
cellular response to hypoxia (Fig. 5B). In the biological process (BP)
and molecular function (MF) categories, aged EDL exhibited
upregulated genes associated with the chemokine-mediated
signaling pathway and apoptosis, along with downregulated
genes related to fatty acid metabolism compared to aged SOL
(Fig. 5C, D). These findings suggest that fast/glycolytic fibers are
more susceptible to inflammation and apoptosis during aging,
potentially explaining the rapid atrophy of fast/glycolytic fibers in
aging. Additionally, GSEA analysis revealed the negative regula-
tion of myofibril assembly in aged EDL (Fig. 5E).

Furthermore, we compared the DEGs between young and aged
fibers. With aging, there are 358 DEGs identified in aged EDL
compared to young EDL, and 346 DEGs identified in aged SOL
compared to young SOL (Supplementary File 5). Among them, 98
DEGs were common to both SOL and EDL, displaying consistent
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G, H GO analysis showing enriched biological
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Table 2. Top 10 upregulated and downregulated DEGs with an average FPKM > 10 in aging EDL or SOL compared to their young counterparts.

Gene symbol Gene name Log,FC (Aged_EDL vs. Regulation P value
WT_EDL)

Dkk3 Dickkopf WNT signaling pathway inhibitor 3 3402647434 Up 133x10°%

Depp1 DEPP1 autophagy regulator 1.978231354 Up 1.64x10 %

Chac1 Chac, cation transport regulator 1 1.936698004 Up 0.013

Mib1 MIB E3 ubiquitin protein ligase 1 1.913180379 Up 0.009

Fam134b Reticulophagy regulator 1 1.674263488 Up 3.03x10°%

Actcl Actin, alpha, cardiac muscle 1 —4.117288784 Down 268x10°"°

Mybph Myosin binding protein H —2.215380324 Down 0.005

Fmod Fibromodulin —1.787429702 Down 0.047

Slc38a4 Solute carrier family 38 member 4 —1.567975323 Down 1.76x10 %

Eif4e Eukaryotic translation initiation factor 4E —1.486826431 Down 0.001

Gene symbol Gene name Log,FC (Aged_SOL vs. Regulation P value
WT_SOL)

Myh3 Myosin heavy chain 3 2.351895152 Up 343x10°Y

Ngo1 NAD(P)H quinone dehydrogenase 1 1.914230606 Up 1.06x 10 %

Dkk2 Dickkopf WNT signaling pathway inhibitor 2 1.774962666 Up 270%x10°%

Cyfip2 Cytoplasmic FMR1 interacting protein 2 1.753302673 Up 2.81x10° %

Serpinel Serine (or cysteine) peptidase inhibitor, clade E, member 1 1.738082375 Up 7.92x 10"

Tfrc Transferrin receptor —2.749256582 Down 2.14x10°%

Gmnn Geminin —1.257822209 Down 0.0003

Clu Clusterin —1.254860483 Down 9.80x 107 °°

Col6a2 Collagen, type VI, alpha 2 —1.241430598 Down 0.006

Aqp7 Aquaporin 7 —1.180129885 Down 0.0003

Ninety-eight commonly expressed DEGs were excluded from this table.

Genes with an average FPKM > 10 in either sample were considered, including wild-type EDL, wild-type SOL, aged EDL, and aged SOL.

expression trends (Fig. 5F and Supplementary File 5). These genes
likely represent a shared aging response in various fiber types. In
addition to these 98 commonly expressed DEGs, the remaining
genes are either specific to aged EDL or specific to aged SOL. After
excluding these 98 common DEGs, Table 2 presents the top 10
upregulated and downregulated DEGs with an average FPKM > 10
in either muscle samples. In aged EDL, Dkk3, Depp1, Chac1, Mib1,
and Fam134b were specifically upregulated, while Actc1, Mybph,
Fmod, Slc38a4, and Eif4e were downregulated. Conversely, aged
SOL exhibited specific upregulation of Myh3, Nqgo1, Dkk2, Cyfip2,
and Serpinel, while Tfrc, Gmnn, Clu, Col6a2, and Aqp7 were
downregulated. Furthermore, GO analysis of aged EDL or SOL
DEGs revealed the extensive involvement of calcium signaling in
age-specific responses (Fig. 5G, H).

Comparing the expression pattern between aged SOL and EDL
muscles, Fig. 51 displays the top 10 genes (Actc1, Dkk3, Mettl21c,
Rrad, Calm1, Tomm5, Rabep2, Dupd1, Pvalb, Tmem37) with an
average FPKM > 10 in either muscle, showing the most significant
expression differences between the two muscle types. Notably,
five (Mettl21¢, Rrad, Calm1, Pvalb, and Tmem37) out of ten genes
were actively involving in calcium-related pathway or calcium
homeostasis. When considering all genes without FPKM restric-
tions, a greater number of calcium-related genes were identified
(Fig. 5J).

To explore the mechanistic insight into the difference between
aged EDL and aged SOL, transcriptional regulatory analyses were
conducted using TRRUST database [26]. Our analysis revealed that
aged EDL in mice exhibited a pronounced inflammatory
phenotype, with NF-KB acting as one of the central transcription
factors, a feature not seen in aged SOL (Supplementary Fig. 9A).
Furthermore, the analysis of secretory factors revealed minimal
overlap between aged EDL and SOL, with aged EDL displaying
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increased expression of various pro-atrophy secretory factors,
including Dkk3 and inflammatory cytokines such as Ccl8, Cxcl10,
and Cxcl13 (Supplementary Fig. 9B, C). Supplementary Fig. 9D lists
the top 5 upregulated inflammatory factors in aged EDL.

Interventions targeting calcium ion transport increase the
proportion of slow/oxidative fibers

Due to the extensive involvement of calcium-related signaling in
the response of fast and slow muscles to aging and obesity, we
investigated whether changes in cytoplasmic calcium concentra-
tion led to alterations in muscle fiber composition. Thapsigargin, a
non-competitive inhibitor of the sarco/endoplasmic reticulum
Ca®"-ATPase (SERCA), was administered via 30-day intraperitoneal
injection (3 mg/kg) to 6-week-old WT mice. After 30 days, TA
muscles were collected and subjected to immunofluorescence
staining of MYH2 and MYH4 (Fig. 6A). Thapsigargin injection
resulted in a significant increase in the proportion of oxidative
fibers while having no impact on CSA (Fig. 6B-G). Additionally, one
month of thapsigargin injections had no adverse effects on mouse
body weight, muscle mass, muscle function, or cardiac function
(Supplementary Fig. 10).

DISCUSSION

Research on muscle fiber type changes in aging and obesity is
limited and inconsistent. Our study explores transcriptome
differences between EDL (rich in glycolytic fibers) and SOL (rich
in oxidative fibers) during aging and obese conditions, revealing
type-specific alterations. We uncovered that in muscles dominated
by oxidative fibers (such as SOL), the proportion of oxidative fibers
remain unchanged during aging and obesity. In contrast, muscles
dominated by glycolytic fibers (such as TA, quadriceps, and EDL)
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experience a significant decrease in oxidative fibers. Mechanism
analysis showed that during aging and obesity, fast/glycolytic
fibers tend to express genes associated with muscle atrophy and
inflammation, while slow/oxidative fibers tend to express genes
involved in cellular protection. Besides, significant differences in
calcium-related pathways were observed during aging and
obesity. Treatment with a calcium channel inhibitor significantly
increased the number of oxidative fibers. These findings shed light
on the unique changes occurring in different fiber types and their
potential implications in the context of aging and obesity.

Our findings provide new explanations for existing researches.
Since the majority of current human studies are based on the
vastus lateralis muscle, which is primarily composed of slow/
oxidative muscle fibers (with fast/glycolytic fibers constituting only
10-20%) [27-29], the upregulation of cellular protective genes in
slow/oxidative fibers may lead to the maintenance or even
increase in the content of slow/oxidative fibers in this muscle with
aging. In contrast, the quadriceps muscle in mice is predominantly
composed of fast/glycolytic fibers, and the secretion of atrophy
and inflammatory signals from these fibers contributes to the
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decline in slow/oxidative fiber content observed in the quadriceps
of aging and obese mice. One exception is that many studies
suggest a decrease in slow/oxidative muscle fibers in the vastus
lateralis muscle of obese humans [30]. We speculate that this
discrepancy may be attributed to the presence of intramuscular
and intermuscular fat, as evidence suggests that the inflammatory
factors secreted by intramuscular and intermuscular fat are more
abundant than those from visceral and subcutaneous fat [31].
Consequently, these fat tissues could substitute the role of fast/
glycolytic fibers, resulting in a reduction of slow/oxidative muscle
fibers in the vastus lateralis muscle of obese humans. Our theory
may also help to explain the inconsistency in the fiber type
composition in muscles from different anatomical locations, as
observed in different studies [10, 11, 32]. Similar to our study,
Sheard et al. examined muscle fiber composition in EDL and SOL,
and found that in aging male mice, the proportion of type | fibers
in EDL decreased from 10% at 6 months to 0.5% at 24 months.
Conversely, in SOL, the proportion of type | fibers increased from
30 to 38% [33]. Crupi et al. reported that fibers expressing type |
myosin were observed in the tibialis anterior muscles of young
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mice, although in limited numbers, and were frequently entirely
absent in aged TA muscles [13].

Our study revealed that fast/glycolytic fibers exhibited an
inflammatory phenotype, with NF-kB acting as one of the central
transcription factors. Besides, fast/glycolytic fibers tend to
upregulate genes such as Dkk3, Ccl8, Cxcl10, Cxcl13, Fbxo32,
Depp1, and Chacl during the aging and obese process, which is
known to promote muscle atrophy [34, 35]. Our study is consistent
with previous studies that fast/glycolytic fibers exhibit higher
expression of Atrogin-1 and MuRF proteins than slow/oxidative
fibers during immobilization [36]. In contrast, slow/oxidative fibers
exhibit specific upregulation of Nqo-1 and downregulation of Tfrc
during aging. Due to the frequently observed iron overload during
aging [37], the downregulation of Tfrc and upregulation of the
antioxidant protein Nqo-1 play a significant role in protecting
oxidative stress.

In our study, we found that Mettl21c is significantly upregulated
in slow/oxidative fibers, but is significantly downregulated in the
fast/glycolytic fibers during both aging and obesity process. This
expression pattern of Mettl21c highlights its specific and unique
role in muscle fibers. A previous study showed that Mettl21c is
exclusively expressed in slow MYH7-positive muscle fibers, and
deletion of Mettl21c has been associated with decreased running
performance and the notable accumulation of autophagic
vacuoles [38]. Besides, previous studies have suggested a
relationship between Mettl21c and calcium signaling [39], and
our research revealed significant differences in calcium-related
genes between fast/glycolytic and slow/oxidative fibers during
aging and obesity. Despite of that, further investigations are
needed to elucidate whether Mettl21c influences fiber composi-
tion through calcium homeostasis.

In conclusion, fast/glycolytic and slow/oxidative fibers exhibit
distinct responses to aging and obesity. Fast/glycolytic fibers tend
to express pro-atrophy genes, whereas slow/oxidative fibers
upregulate cytoprotective genes and downregulate genes that
may mediate cell damage during aging and obesity. Additionally,
we observed significant differences in the expression of calcium-
related genes in response to aging and obesity between fast/
glycolytic and slow/oxidative fibers. Treatment with a calcium
channel inhibitor significantly increased the quantity of oxidative
fibers. Our study provides supporting evidence for transcriptomic
differences in fiber types under pathophysiological conditions and
lays the theoretical foundation for modulating muscle fiber types
in the treatment of diseases.
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