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Hepatitis B surface antigen hijacks TANK-binding kinase 1 to
suppress type I interferon and induce early autophagy
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There are close links between innate immunity and autophagy. However, the crosstalk between innate immunity and autophagy in
host cells infected with hepatitis B virus (HBV) remains unclear. Here, we reported that HBsAg suppressed type I interferon
production and induced the accumulation of autophagosomes. HBsAg boosted TANK-binding kinase 1 (TBK1) phosphorylation and
depressed interferon regulatory factor 3 (IRF3) phosphorylation ex vivo and in vivo. Mechanistic studies showed that HBsAg
interaction with the kinase domain (KD) of TBK1 augmented its dimerization but disrupted TBK1–IRF3 complexes. Using the TBK1
inhibitor, BX795, we discovered that HBsAg-enhanced TBK1 dimerization, promoting sequestosome-1 (p62) phosphorylation, was
necessary for HBV-induced autophagy and HBV replication. Moreover, HBsAg blocked autophagosome–lysosome fusion by
inhibiting the synaptosomal-associated protein 29 (SNAP29) promoter. Notably, liver tissues from HBsAg transgenic mice or chronic
HBV patients revealed that IFNβ signaling was inhibited and incomplete autophagy was induced. These findings suggest a novel
mechanism by which HBsAg targets TBK1 to inhibit type I interferon and induce early autophagy, possibly leading to persistent HBV
infection.
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INTRODUCTION
Approximately 350 million people worldwide are chronically
infected with the hepatitis B virus (HBV), which puts them at risk
of developing liver cancer [1]. The HBV contains partially double-
stranded DNA of 3.2 kb. This DNA encodes a DNA polymerase
(HBp), the surface antigen (HBsAg), the core antigen (HBc), and the
X protein (HBx) [2]. The HBV surface protein is essential for the life
cycle of HBV. This protein assembles the viral envelope and
attaches to the functional receptor, sodium taurocholate cotran-
sporting polypeptide (NTCP), which mediates cell entry [3]. It also
allows mature HBV particles and subviral particles to be secreted
[4]. There are three types of HBsAg: L (large), M (medium), and S
(small); LHBs proteins have PreS2 and PreS1 structural domains at
their N-terminus; MHBs proteins have a PreS1 at their N-terminus;
and SHBs proteins lack the PreS domain. The three HBsAg proteins
differ in their N-terminus but share a common S domain [5].
The host’s first defense against microbial invasion is the innate

immune response. Studies have shown that pattern recognition
receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-
inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP
synthase (cGAS), recognize HBV [6–8]. Upon viral infection, PRRs
recruit adapters such as the TIR domain-containing adapter
molecule 1 (TRIF), mitochondrial antiviral signaling protein (MAVS),
and stimulator of interferon response cGAMP interactor 1 (STING) to
facilitate the assembly of TRAF3–TBK1–IRF3 complex to induce type

I and type III interferons (IFNs) expression [9]. IFNs then induce the
expression of interferon-stimulated genes (e.g., ISG15, ISG56) to
exert antiviral activity [10, 11]. HBsAg is associated with HBV
immune escape. Mutations in the second loop of the ‘a determinant
of HBsAg are the most commonly detected and are responsible for
vaccination and immune escape [12]. A recent study shows that
HBV surface antigen particles deliver hepatocyte microRNA to
regulate monocyte activity and promote persistent viral infection
[13]. In addition, studies have shown that HBV employs an
aggressive strategy with multiple viral proteins to evade the innate
immune response, including HBe, HBp, and HBx [14].
There is a close link between innate immunity and autophagy.

Some innate immune signaling proteins are involved in autop-
hagy, such as STING-mediated endoplasmic reticulum (ER)-golgi
autophagy and MAVS-mediated mitochondrial autophagy [15, 16].
Many viral infections trigger autophagy to evade innate immunity.
HSV-1, IAV, SARS-CoV-2, and porcine reproductive and respiratory
syndrome viruses exploit autophagy to weaken immune defenses.
They promote the autophagic degradation of innate immunity
adapter proteins to diminish the immune response and maintain
persistent infection [17–20]. Although HBV infection of liver cells
has been reported to induce autophagy [21, 22], it is unclear
whether autophagy is utilized to evade innate immunity.
TANK-binding kinase 1 (TBK1) is a protein kinase tightly

regulated by dimerization, ubiquitination, and phosphorylation
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[23–25]. It plays a crucial role in innate immunity and autophagy
[26]. When a pathogen invades, TNF receptor-associated factor 3
(TRAF3) ubiquitinates TBK1 to activate it, and activated TBK1
phosphorylates interferon regulatory factor 3 (IRF3) to induce type
I interferon expression or sequestosome-1 (p62) to induce
autophagy [27, 28]. P62 is a selective cargo receptor for
autophagy-degrading misfolded proteins. It accumulates when
autophagic degradation is suppressed. A study reported that
TRIM23 promotes the dimerization of TBK1 during viral infection,
which in turn facilitates the phosphorylation of serine at site 403
of p62 to initiate autophagy [27]. We hypothesized that the
interaction between HBV and TBK1 might be associated with
autophagy. To confirm this, we examined the effects of TBK1
activity on HBV autophagy and replication by knocking out TBK1
or treating it with BX795, a TBK1 inhibitor [29]. Several studies
have shown that HBV-induced autophagy is incomplete [30, 31].
Lin et al. found that overexpression of synaptosomal-associated
protein 29 (SNAP29) leads to HBV degradation [32]. The late stage
of autophagy leads to HBV degradation, but silencing of late
autophagy favors viral replication [33, 34]. Hence, HBV may
employ specific tactics to impede autophagic degradation, aiding
replication.
This study identified HBsAg as an immune escape protein that

suppresses type I interferon production in vitro by targeting TBK1.
We also discovered that HBsAg stimulates the accumulation of
autophagosomes through TBK1. Our results reveal a novel
mechanism by which HBV infection regulates the host’s innate
immune response and early autophagy, possibly contributing to
persistent viral infection.

MATERIALS AND METHODS
Statement of ethics
Ten HBV-infected patients and ten controls were recruited from Tongji
Hospital (Wuhan, China). All patients and controls were selected for three
independent replicated experiments without age or gender differences.
This study was approved by the Institutional Review Board of Wuhan
University approval and was conducted following the principles of the
Declaration of Helsinki. Informed consent was obtained from the
volunteers. Detailed information is provided in Table S1.

Mice
The HBsAg transgenic mice C57BL/6J-TgN (AlblHBV) 44Bri (namely HBs-Tg
mice) were kindly provided by Professor Jieliang Chen (Fudan University),
who obtained the mice from Jackson Laboratory (Bar Harbor, ME), which
contain a sequence encoding the HBV large envelope polypeptide
(subtype, ayw) was placed downstream of the mouse albumin promoter.
Age- and sex-matched wild-type (WT) C57BL/6 mice were purchased from
the Center for Animal Experiments of Wuhan University. Mice were
randomly allocated to experimental groups, and the investigator was
blinded to the group allocation during the experiment. WT and HBs-Tg
mice were injected with poly (I:C) (5 mg/kg body weight, dissolved in 1 ml/
kg body weight of PBS) or PBS (1 ml/kg body weight) into the tail vein, and
then the mice were sacrificed 24 h later for the corresponding
experiments. Three transgenic and control mice were used for each
experiment, and three experiments were conducted independently. All
animal experiments followed the NIH Guide for the Care and Use of
Laboratory Animals. Mice were housed in the specific pathogen-free
animal facility at Wuhan University. HBs-Tg mice were performed with the
following primers, and bands (250 bp) were shown in transgenic but not
WT mice:
forward primer: 5′-AACATGGAGAACATCACATC-3′;
reverse primer: 5′-AGCGATAACCAGGACAAGTT-3′.

Cell culture and transfection
Human-hepatoma cell lines (Huh7, HepG2, HepG2-hNTCP, and HepAD38)
were purchased from the China Center Type Culture Collection. Huh7 is
sensitive to interferon signaling pathways. It was extensively used to study
the functional regions of viral proteins and virus-induced changes in
signaling pathways in this study. HepG2 cells efficiently support cccDNA

formation and HBV replication [35]. It was mainly used to harvest HBV
(HepAD38) and infect HBV (HepG2-hNTCP) in this study. All media were
supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco,
10099141C), 100 U/ml penicillin, and 100mg/ml streptomycin in a
humidified incubator with 5% CO2 maintained at 37 °C. HepAD38 cells
were supplemented with 10% heat-inactivated FBS, 100 U/ml penicillin,
100mg/ml streptomycin, and 1mg/ml adriamycin (Dox) in a humidified
incubator with 5% CO2 maintained at 37 °C. According to the manufac-
turer’s instructions, HEK293T cells were transfected with polyethyleneimine
(Sigma, 9002-98-6). THP-1, Huh7, and HepG2 cells were transfected with
Lipofectamine 2000 (Invitrogen, 11668030).

Plasmids, antibodies, and reagents
Mutant TBK1 (TBK1-D1(1-309), TBK1-D2(310-386), TBK1-D3(310-729), TBK1EE,
TBK1HIF, TBK1EE+HIF, TBK1K30R+k401R, TBK1S172A) were generated using a pair of
primers or primers containing a point mutation, and the products were
subsequently enzymatically attached to the corresponding expression vector.
The SNAP29 promoter region (−2000 to +200) was subcloned directly into
the luciferase pLG3-basic vector, and the expression region was subcloned
directly into PKH3-3×HA vectors. DsRed-HBs and DsRed-HBc were subcloned
directly into the pDsRed-Monomer-N1 vector. All constructs were confirmed
by DNA sequencing. Primers used for PCR are listed in Table S2. GFP-LC3,
mCherry-GFP-LC3, GFP-TBK1, GFP-IRF3, 3HA-TBK1, 3HA-TRIF, 3HA-STING, 3HA-
MAVS, 3HA-IRF3, 3HA-IRF3-5D, Myc-TBK1, Myc-TRAF3, Myc-IRF3, 3HA-LHBs
(large), 3HA-MHBs (middle), 3HA-SHBs (small), 3HA-PreS, 3HA-HBe, 3HA-HBc,
Flag-HBs, Flag-TBK1, and IFNβ promoter plasmids were previously cloned by
our laboratory [36–39]. A plasmid carrying a 1.3-fold length of HBV genome
(pHBV-1.3; genotype D) was obtained from Dr. Robert Schneider (Baylor
College of Medicine, Houston, Texas) and is maintained in our laboratory [37].
pHBV1.3-ΔHBs was constructed on the pHBV1.3 plasmid with the three
translation initiation codons ATG mutated to ACG in the S region, resulting in
the deletion of all HBsAg expression but not affecting polymerase expression.
pHBV1.3-ΔHBs was a gift from Professor Hongzheng Yuan (Fudan University).
Antibodies against Flag (M185-3L), HA (M180-3), and Myc (M192-3) were

purchased from Medical & Biological Laboratories. Antibodies against TBK1
(A3458), p-TBK1 (AP1418), IRF3 (A19717), p-IRF3 (AP1412), p62 (A19700), LC3B
(A19665), BiP (A4908), ATF4 (A0201), ATG7 (A19604), SNAP29 (A4290), and
LAMP1 (A21194) were purchased from ABclonal. Antibodies against GAPDH
(60004-1-Ig), GFP (66002-1-Ig), and Lamin A/C (10298-1-AP) were purchased
from ProteinTech. Antibodies against p-p62 (YP1505) were purchased from
ImmunoWay. Antibodies against HBsAg (bs-1557G) were purchased from
Bioss. Anti-Goat IgG-Cy3 (abs20028), anti-Mouse IgG-CY3 (abs20142), anti-
Mouse IgG-FITC (abs20012), and anti-Rabbit IgG-FITC (abs20023) were
purchased from Absin. Anti-Mouse IgG-HRP (BF03001), anti-Rabbit IgG-HRP
(BF03008), and anti-Goat IgG-HRP (BF03015) were purchased from Biodragon.
Lipopolysaccharide (LPS; L2880), EBSS (E7510), and poly (I:C) (31852-29-

6) were purchased from Sigma Aldrich, and HT-DNA (D8050) and
Bafilomycin A1 (BafA1; A8510) were purchased from Solarbio. HT-DNA
and poly (I:C) were used at a final concentration of 10 μg/ml. LPS was used
at a final concentration of 4 μg/ml. BX759 (A8222), Rapamycin (RAPA;
A8167), Chloroquine (CQ; A8628), and 3-MA (3-methyladenine; A8353)
were purchased from APExbio. RAPA, CQ, and BafA1 induced or inhibited
autophagy at the indicated concentrations. RAPA-stimulated cells were
subjected to fluorescence analysis after 12 h, and immunoblotting analysis
after 24 h, and CQ- and BafA1-stimulated cells were subjected to the
corresponding analyses after 24 h. The China Center provided the SeV and
IAV/PR/8/34 (H1N1) strains for the Type Culture Collection. Recombinant
VSV (VSV-GFP) and recombinant HSV carrying the GFP gene (HSV-GFP)
were provided by Professor Mingzhou Chen of Wuhan University.

Generation of knockout cell lines
As described previously, Huh7 IFNAR1 knockout cell lines were generated
via CRISPR-Cas9. The following sequences targeting the IFNAR1 gene were
used [39]:
oligonucleotide1, 5′-CACCGACCCTAGTGCTCGTCGCCG-3′;
oligonucleotide2, 5′-AAACCGGCGACGAGCACTAGGGTC-3′.
The following sequences generated a Huh7 TBK1 knockout cell line:
oligonucleotide3, 5′-AAACGCCAAGATGCAGAGCACTTC-3′;
oligonucleotide4, 5′-CACCGAAGTGCTCTGCATCTTGGC-3′.

RNA interference
Oligonucleotides targeting ATG7 sequences were cloned into the AgeI and
BamHI sites of the pLKO.1 puro cloning vector with short hairpin RNA
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(shRNA) construct. The following target sequences were designed to target
ATG7 mRNA:

1) 5’- GCCTGCTGAGGAGCTCTCCAT -3’;
2) 5’- GCTTTGGGATTTGACACATTT -3’;
3) 5’- CCCAGCTATTGGAACACTGTA -3’;

RNA quantification
Total RNA was extracted with TRIzol reagent according to the manufac-
turer’s instructions (Invitrogen, 15596026). The cDNA was synthesized with
TRUEscript H Minus M-MuLV Reverse Transcriptase (Aidlab Biotechnolo-
gies, PC1703). qRT-PCR assays were performed using the Bio-Rad CFX
connect system with Universal SYBR Green Fast qPCR Mix (ABclonal,
RK21203). The relative abundances of indicated mRNA were normalized by
the level of GAPDH expression in each sample. Primers used for qPCR
assays are listed in Table S3.

Luciferase assays
Huh7 cells were seeded into 12-well plates and co-transfected with pRL-TK
and IFNβ or SNAP29 reporter and other indicated plasmids using matching
transfection reagents described above. Luciferase activity was measured
with the Dual-Luciferase Reporter Assay system according to the
manufacturer’s instructions. Data were normalized for transfection
efficiency by division of firefly luciferase activity by that of Renilla
luciferase (Promega, E2920).

Preparation of HBV from HepAD38 cells and infection with
HepG2-hNTCP cells
HepAD38 cells were cultured for three days in DMEM/F-12 medium
(Gibco, 11320033) supplemented with 10% heat-inactivated FBS, 100 U/
ml penicillin, and 100 mg/ml streptomycin in an incubator at 37 °C. A 5%
CO2 humidified incubator was used, and the supernatant of HepAD38
cells was concentrated 100-fold by ultracentrifugation as HBV inoculum.
HBV storage titers (genome equivalent multiplicity) were determined
by qPCR.
HepG2-hNTCP cells were cultured in primary hepatocyte maintenance

medium (PMM) for 6 h, then inoculated with 1000-fold genomic
equivalents of HBV and incubated in PMM containing 4% PEG 8000
(Sigma -Aldrich, 89610) at 37 °C for approximately 16 hours. The medium
was changed every other day. Cells were harvested for study 7 days after
infection.

Immunoprecipitation (IP) and immunoblot
Cells or tissues were lysed with RIPA lysis buffer supplemented with a
protease inhibitor cocktail (MedChemExpress, HY-K0012) for immunoblot.
Bio-Rad Protein Assay measured the total protein concentration, and
immunoblot analysis was performed with the indicated Abs. For IP, whole-
cell extracts were collected and lysed in IP buffer containing 1.0% (v/v)
Nonidet P-40; 50mM Tris-HCl, pH 7.4; 50 mM EDTA; 150mM NaCl; and a
protease inhibitor cocktail. After centrifugation for 10min at 12,000×g at
4 °C, the supernatants were collected and prewashed by adding protein A/
G agarose (Pierce, 20421) before incubation for 2 h at 4 °C. Then IgG or
indicated antibodies (2 μg) were added to supernatants for 4 h at 4 °C,
captured by adding the protein A/G agarose (Pierce, 20421) before
incubation for 4 h at 4 °C and the beads were washed five times with IP
buffer containing 500mM NaCl. Immunoprecipitates or whole-cell lysates
were loaded and subjected to SDS-PAGE, transferred onto nitrocellulose
membranes, and then blotted with indicated antibodies for immunoblot
analysis.

Native page
Huh7 cells were seeded into a 12-well plate, cultured overnight, treated as
indicated, and then harvested with 50 μL of ice-cold lysis buffer (50mM
Tris-HCl, pH 7.5; 150 mM NaCl; and 0.5% NP-40 containing protease
inhibitor cocktail). After centrifugation at 12,000×g, 4 °C for 10min, the
supernatant protein was quantified and loaded with 5× loading buffer
(Servicebio, G2034-1ML), and 30 μg total protein was applied to 8.0%
native gel (Servicebio, G2042-50T) for separation. After electrophoresis,
proteins were transferred onto a nitrocellulose membrane for
immunoblotting.

Confocal microscopy
Huh7 or HepG2 cells were plated on collagen, incubated in 14-mm
confocal dishes, transfected with indicated plasmids, and treated with
indicated reagents. Cells were washed with 1× PBS three times, fixed with
4% paraformaldehyde, permeabilized with 0.3% Triton X-100, and blocked
with PBS containing 3% BSA for 1 h at room temperature. Then, the cells
were immunostained with the indicated primary Abs overnight at 4 °C,
followed by incubation with the relevant dye-conjugated secondary Abs at
37 °C for 1 h. The nuclei were stained with 4’,6-diamidino-2-phenylindole
for 3 min at 37 °C. The cells were imaged using a fluorescence microscope
(Leica, Germany) with a 100× objective lens. To quantify the number of
LC3-positive puncta and AO-red fluorescence intensity, 30 cells were
recorded in randomly selected fields of view by fluorescence microscopy,
and the average fluorescence values were analyzed by Image J. For protein
co-localization, nine randomly selected fields of view were recorded under
a fluorescence microscope, and protein co-localization was analyzed by
ImageJ.

Immunohistochemistry and immunofluorescence
Liver tissues were collected from patients or mice, as mentioned above.
The expression of p-TBK1, p62, p-p62, p-IRF3, SNAP29, IRF3, and LC3 in liver
tissue was visualized using immunohistochemical staining or immuno-
fluorescence staining of thin liver tissue sections using the indicated
antibodies. The analysis of the protein’s expression was conducted with
ImageJ.

Evaluation of autophagy flux
For the autophagy flux analysis using mCherry-GFP-LC3 fusion protein, 30
cells were randomly selected, and the percentage of yellow-positive
puncta was equal to that of the ratio of yellow puncta to all LC3 puncta
(yellow puncta and red-only puncta). Fluorescence values and number of
puncta per cell were analyzed using ImageJ software. For the autophagy
flux index measured with BafA1, the autophagy flux index was calculated
as the ratio of the LC3-II expression level in the presence of BafA1 to the
LC3-II expression level in the absence of BafA1. The LC3-II expression level
was corrected by the expression level of each GAPDH using Image J. The
autophagy flux index of the control group was corrected to 1.

Transmission electron microscopy (TEM)
Huh7 cells were inoculated into 6-well plates for 12 h, then transfected
with a plasmid expressing HBsAg and treated with or without inhibitors or
with isolated mouse liver tissue. Cells or tissues were fixed with 2.5%
glutaraldehyde overnight. It was then fixed with 1% aqueous OsO4 and 2%
aqueous uranyl acetate. Uranyl acetate. After dehydration with ethanol and
propylene oxide and embedded in polybed 812 resin (Polysciences,
025950-1), ultrathin (80 nm) sections were sectioned with 2% uranyl
acetate and stained with 0.3% lead citrate and subjected to preparation for
TEM (JEM-1400plus, Japan) observation. To quantify autophagosome-like
vesicles, TEM was performed at a magnification of 15000 times in
randomly selected fields of view, and the number of double-membrane
autophagosomes was recorded for ten cells.

Statistical analysis
All data were expressed as mean values ± standard deviation. Statistical
analyses were performed using GraphPad Prism 8 (GraphPad, USA). The
two-tailed Student’s t-test was used to determine significant differences.
Differences were considered statistically significant at P < 0.05.

RESULTS
HBsAg negatively regulates IFNβ through TBK1
To assess the role of HBsAg in the innate immune response, we
stimulated or infected human monocytic leukemia (THP-1) cells
with LPS, poly (I:C), HT-DNA, or with SeV, HSV-1. A trend of down-
regulation of INFB1 mRNA with HBs (unspecified; most of the
experiments used LHBs) expression gradient was found (Fig. S1A,
B). Subsequently, we found that three types of HBsAg (LHBs,
MHBs, and SHBs) decreased the SeV-triggered promoter activity
and mRNA of IFNB1 (Fig. S1C). TRIF, RIG-I, or cGAS and STING-
induced IFNB1 promoter activity and mRNA were also repressed
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by HBs (Fig. S1D), while the pHBV1.3-ΔHBs (HBsAg expression
deletion) did the opposite (Fig. S1E). To further confirm HBs
inhibition of IFNβ expression, WT and IFNβ receptor 1 (IFNAR1)
knockout Huh7 cells were infected with recombinant HSV-GFP or
VSV-GFP viruses. HBs increased the replication of the recombinant
HSV-GFP or VSV-GFP viruses (Fig. S1F). However, these effects
disappeared in IFNAR1 knockout Huh7 cell lines (Fig. S1F). These
data demonstrate that HBsAg negatively regulates IFNβ
production.
To investigate how HBsAg inhibits IFNβ production, we

examined the effects of HBsAg on IFNβ promoter activation
mediated by various adapters. HBs strongly inhibited IFNβ
reporter activation induced by TRIF, MAVS, STING, TRAF3, and
TBK1 in a dose-dependent manner (Fig. S2A–E). However, IRF3-5D
(an active phosphomimetic mutant of IRF3 in which the
phosphomimetic aspartate replaced S396, S398, S402, S404, and
S405 [40], Fig. S2F) was permissive to IFNβ reporter activation in
the presence of HBs, suggesting that HBs suppress type I
interferon by TBK1 or TBK1 downstream protein IRF3. Next, we
investigated the interaction between HBs and TBK1. We co-
transfected with Flag-HBs and HA-MAVS, Myc-TRAF3, HA-TBK1, or
GFP-IRF3 into Huh7 cells. Flag-HBs coimmunoprecipitated with
HA-TBK1 but not HA-MAVS, Myc-TRAF3, or GFP-IRF3 (Fig. 1A). The
interaction between endogenous HBs and TBK1 was also observed
in HBV-infected HepG2-hNTCP cells (Fig. 1B). Moreover, endogen-
ous and exogenous TBK1 were co-localized with HBsAg (Figs.
1C, D and S2G, H). TBK1 has an N-terminal kinase domain (KD), a
ubiquitin-like domain, an a-helical scaffold dimerization domain,
and a C-terminal domain (CTD) [23] (Fig. 1E). To map which
domain of TBK1 is required for the interaction with HBsAg, three
kinds of TBK1 mutants were constructed (Fig. 1E). HBs was
immunoprecipitated with TBK1-WT and TBK1-D1 but not with
TBK1-D2 and TBK1-D3 (Fig. 1F). This result indicated that the KD
was involved in the interaction (Fig. 1F). Three kinds of surface
antigens, LHBs (large), MHBs (middle), and SHBs (small) (Fig. 1G),
all inhibit type I interferon (Fig. S1C). Coimmunoprecipitation was
performed to confirm whether they bind to TBK1. All the surface
antigens interacted with TBK1 but not the PreS domain (164
amino acid sequence on the N-terminus of LHBs, Fig. 1G),
suggesting that the S domain was required for the interaction
(Fig. 1H). These findings indicate that HBsAg inhibits type I
interferon by targeting and physically interacting with the KD of
TBK1.

HBsAg enhances TBK1 dimerization but inhibits IRF3
activation
To investigate the effect of HBs on TBK1 and IRF3 phosphorylation,
THP-1 cells were transfected with HBs-encoding plasmids and
then stimulated or infected with LPS, poly (I:C), and HT-DNA (Fig.
2A) or with SeV for various times (Fig. 2B). Immunoblotting
showed that HBs inhibited IRF3 phosphorylation but enhanced
TBK1 phosphorylation. Early studies reported that TRAF3 activates
TBK1 upon virus infection and that TBK1 and IRF3 then form a
complex [9]. Coimmunoprecipitation was conducted to examine
the potential inhibition of the TBK1–IRF3 interaction by HBs. HBs
impeded the interaction between TBK1 and IRF3 but not TRAF3
(Fig. S3A–C). The interaction of endogenous TBK1 with IRF3 was
blocked in HBV-infected HepG2-hNTCP (Fig. 2C). In agreement
with these, HBs significantly disrupted SeV-induced TBK1–IRF3
interaction in a dose-dependent manner (Fig. 2D). Dimerized TBK1
phosphorylates IRF3 to dimerize and translocate it to the nucleus
to induce IFN expression. Next, we performed IP and native PAGE
immunoblots to explore the effects of HBs on TBK1 and IRF3.
Dimerization of TBK1 was enhanced by HBs (Fig. 2E and S3D).
However, dimerization of IRF3 (not IRF3-5D, Fig. 2F, G and S3E) and
nuclear localization were significantly inhibited by HBs (Fig.
2H and S3F). TBK1 activation is a multi-step process: homodimer-
ization, ubiquitination at the Lys30 and Lys401 sites, and trans-

autophosphorylation at the Ser172. Homodimerization is a
prerequisite for TBK1 activation, and mutants EE (double site in
E355R/E448R) and HIF (triple site in H459E/I466E/F470E) abolish
TBK1 dimerization [23, 24]. To further confirm that HBs promotes
TBK1 dimerization, we constructed a TBK1 knockout Huh7 cell line
and TBK1 variants with these point mutations: Myc-TBK1EE (E355R/
E448R), Myc-TBK1HIF (H459E/I466E/F470E), Myc-TBK1HIF+EE (H459E/
I466E/F470E and E355R/E448R combined), TBK1S172A, or TBK1K30R
+K401R (Fig. 2I, J). TBK1 knockout Huh7 cells were transfected with
these mutants and HA-TBK1 with or without Flag-HBs. TBK1,
TBK1S172A, or TBK1K30R+K401R were precipitated, except for TBK1EE,
TBK1HIF, and TBK1EE+HIF (Fig. 2K). These findings suggest that
HBsAg enhances TBK1 dimerization but blocks the TBK1–IRF3
complex.

TBK1 is required for HBsAg-induced accumulation of
autophagosomes
HBV-induced autophagy has been widely reported. MAP1LC3/LC3
conversion (LC3-I to LC3-II) and GFP-LC3 puncta are considered
essential indicators of autophagy [41]. To determine whether HBs
triggered autophagy, we transfected HepG2 cells with pHBV1.3,
HA-HBs, or HA-HBc plasmids, and immunoblot showed that HBs
but not HBc induced LC3 conversion (Fig. 3A). Further explorations
revealed that all surface antigens (large, small, and middle)
induced the LC3 conversion (Fig. S4A). Fluorescence microscopy
also revealed that HBs induced GFP-LC3 puncta while pHBV1.3-
ΔHBs (HBsAg expression deletion) did not (Fig. 3B, C and S4B, C).
One study reported the partial presence of co-localization of LC3B
and HBs, which was also observed in Fig. 3B and S4B [42]. Unlike
complete autophagy induced by RAPA treatment, HBs or HBV
upregulated p62 levels, although the trend in LC3-II was
consistent (Fig. 3A and S4A), predicting that they may induce
the initial phase of autophagy but impair the following autophagic
degradation phase (late stage of autophagy). Next, to precisely
capture the autophagy activity status, we constructed mCherry-
GFP-LC3 fusion expression plasmids. During the early stage of
autophagy, GFP and mCherry fluorescence are unaffected and
show yellow fluorescence; during the late stage of autophagy, the
acidic environment quenches GFP fluorescence to show mCherry
fluorescence [41]. HBs and HBV produced yellow LC3 puncta,
whereas RAPA produced several red puncta, suggesting that HBV
impairs the autophagic degradation (Fig. S4D, E). Bafilomycin A1
(BafA1) can effectively inhibit autophagic lysosomal degradation
and can be used to detect autophagic flux [43]. Figure 3D showed
that HBs further elevated LC3-II levels after BafA1 treatment,
suggesting that HBs induced the initial phase of autophagy.
Furthermore, the autophagy flux index assessed by BafA1 was
reduced after HBs transfection (Fig. 3E), suggesting that HBs
inhibited the late stage of autophagy. Studies have shown that the
accumulation of HBsAg causes ER stress [38, 44]. To investigate
whether ER stress is the only pathway for HBs to induce
autophagy, we performed immunoblot analysis of activating
transcription factor 6 (ATF6) and binding-immunoglobulin protein
(BiP), which increase expression after ER stress [38]. ATF6 and BiP
were increased after transfection with HBV and HBs (Fig. S4F, G),
indicating that HBs triggered ER stress. 4-phenylbutyric acid (4-
PBA), an ER stress inhibitor, was used to counteract the unfolded
protein response (UPR) triggered by HBs. Increased autophago-
somes were observed by immunoblot, fluorescence microscopy,
and TEM (Fig. S4H–L). These findings suggest that HBsAg may
initiate autophagy through additional pathways.
Figure 2A, B showed that HBs increased TBK1 and p62

phosphorylation rather than IRF3. We hypothesized that HBs
initiate autophagy through the TBK1-p62 axis during HBV
infection. We transfected pHBV1.3 into Huh7 cells and found that
LC3 conversion and p62 phosphorylation were upregulated (Fig.
S4M). All kinds of HBs and HBV infections upregulated LC3
conversion and p62 phosphorylation (Fig. S4N, O). However, this
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phenomenon disappeared after treatment with BX795, a TBK1-
targeting inhibitor [27] (Fig. 3F). Decreased autophagosomes were
also observed by fluorescence and TEM following the BX795
treatment (Fig. 3G–J). These data suggest that HBs initiate
autophagy through the TBK1-p62 axis. Figure 2K indicated that

HBs increased TBK1 dimerization. Next, we explored the role of
TBK1 dimerization in HBsAg-induced early phase of autophagy.
We transfected TBK1 knockout Huh7 cells with TBK1 (WT), Myc-
TBK1EE, Myc-TBK1HIF, or Myc-TBK1HIF+EE. Compared to WT, TBK1
knockout and these mutants abolished LC3-I/ΙΙ conversion,
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suggesting that TBK1 dimerization is required for HBsAg-induced
early autophagy (Fig. 3K). Similar results were observed by
fluorescence microscopy (Fig. 3L, M). These results suggest that
HBs induce the early phase of autophagy through the TBK1-p62
axis but inhibit autophagic degradation, leading to the accumula-
tion of autophagosomes.

HBsAg blocks the autophagosome–lysosome fusion by
silencing the SNAP29 promoter
The inhibition of autophagic degradation may be due to
disruption of lysosomal acidification or blockade of
autophagosome–lysosome fusion [41]. We performed an autop-
hagic flux assay to explore how HBs inhibits autophagic
degradation [41]. HBs induced the generation of GFP-LC3-II, but
the GFP fragments remained unaffected [31] (Fig. S5A). Subse-
quently, the activity of autolysosomes was assessed. The acidic pH
of lysosomes inhibits the GFP signal, while the mCherry signal
remains unaffected [38]. CQ has been used as an autophagic
degradation inhibitor that prevents the acidification of lysosomes
[31]. We found that the quenching of the GFP signal was
diminished with CQ stimulation or pHBV1.3 transfection but not
pHBV1.3-ΔHBs (Fig. 4A, B). These results again suggest that HBs
hindered autophagic degradation. Next, we checked lysosome
acidification by assessing their acridine orange (AO) retention. AO
emits green fluorescence in the cytosol but turns red when
trapped in acidic lysosomes [38]. In contrast to CQ stimulation, the
cytoplasmic AO-red did not decrease by pHBV1.3 (Fig. 4C, D).
These results suggest that the acidic pH and the lysosomal
enzyme degradation activity were not changed, and HBs may
block autophagic degradation by preventing
autophagosome–lysosome fusion. Subsequently, we found that
transfection of pHBV1.3 yielded identical results as BafA1 (an
autophagy inhibitor as a positive control [45]) treatment, with
reduced co-localization of lysosome-associated membrane protein
1 (LAMP1) and LC3 (Fig. 4E, F), which were localized to
autophagosomal and lysosomal membranes, respectively, and
were used to indicate autophagosome–lysosome fusion [38].
Similar results were obtained by overexpressing HBs in Huh7 cells
(Fig. S5B–G). LC3 conversion was assayed by immunoblot after CQ
or BafA1 treatment, and an increased LC3-I/II conversion was
found (Fig. 4G).
To explore how autophagosome–lysosome fusion was hindered

in hepatoma cells, HBs plasmids were transfected into Huh7 cells.
Genes that determine autophagosome–lysosome fusion (LAMP1,
LC3B, PLEKHM1, Rab7a, RILP, SNAP29, STX17, and VAMP8) were
measured using qRT-PCR. SNAP29 mRNA was significantly down-
regulated, but others were unaffected (Fig. 5A). In addition,
pHBV1.3 validated that HBs decreased SNAP29 mRNA and protein
levels (Fig. 5B, C) but not pHBV1.3-ΔHBs. To delve deeper into the
impact of HBs on SNAP29 expression through transcription, we
cloned and constructed the promoter region (−2000 to +200) of
the human SNAP29 gene into the luciferase pLG3-basic vector. The

SNAP29 promoter activation was also inhibited by HBs (Fig. 5D). A
gradient transfection of HBs was conducted in HepG2 cells. Similar
phenomena were found at the mRNA, protein, and promoter
levels (Fig. 5E–G). To confirm that HBs inhibited
autophagosome–lysosome fusion via SNAP29, SNAP29-encoding
plasmids were transfected into HepG2 cells. We found that
SNAP29 expression was identical to RAPA treatment, significantly
attenuated GFP signaling accumulated by HBs, and mCherry
signaling was unaffected (Fig. 5H, I). These findings suggest that
HBs silence the SNAP29 promoter to block
autophagosome–lysosome fusion.

HBV replication relies on TBK1 activity
Autophagy is associated with HBV replication [46]. To determine
whether TBK1 activity affects HBV replication, Huh7 cells were
transfected with the pHBV1.3 plasmid and treated with BX795.
Immunoblotting revealed that BX795 inhibited TBK1, p62 phos-
phorylation, and LC3-I/II conversion (Fig. 6A). BX795 also inhibited
core-associated HBV DNA and secretion into the supernatant of
HBsAg and HBeAg (Fig. 6B, C). 3-MA has been widely used as an
autophagy inhibitor based on its inhibitory effect on class III PI3K
activity [47]. Next, cells were transfected with pHBV1.3 and
combined to be treated with BX795 and 3-MA. 3-MA treatment
diminished the suppression of BX795 on HBV DNA and secreted
HBsAg and HBeAg (Fig. 6D, E). As 3-MA is not a specific autophagy
inhibitor, we designed three shRNAs (shRNA-ATG7#1, #2, and #3)
to knock down autophagy-related 7 (ATG7) to block the
autophagy pathway [48]. Then, we tested their efficiency (Fig.
6F). ShRNA-ATG7#2 was selected for the experiments. Consis-
tently, ATG7 knockdown diminished the suppression of BX795 on
core-associated HBV DNA and secreted HBsAg and HBeAg (Fig.
6G, H). BX795 targeting TBK1 may hinder autophagy initiation and
repress type I interferons. To exclude the effect of type I interferon
on HBV replication, we treated INFAR1 knockout Huh7 cells with
BX795. The INFAR1 knockout did not affect the effect of BX795 on
HBV replication (Fig. 6I, J). These data suggest that HBV replication
mainly relies on the TBK1-mediated autophagy pathway rather
than the interferon pathway. To further confirm the effect of TBK1
activity on HBV replication, TBK1 knockout and WT Huh7 cells were
transfected with pHBV1.3 plasmid. The results showed that TBK1
knockout decreased the initiation activity of autophagy and HBV
replication (Fig. 6K–M). In conclusion, these findings suggest that
HBV replication relies on TBK1 activity to regulate autophagy.

HBsAg modulates innate immunity and autophagic flux in
HBs-Tg mice
HBsAg transgenic mice (HBs-Tg) contain a sequence that encodes
the HBV large envelope polypeptide inserted downstream of the
albumin promoter. Therefore, the peptide can be expressed in
hepatocytes. To study the modulation of innate immune response
by HBsAg in vivo, 9-week-old mice (n= 3) were injected in the tail
vein with 5 mg/kg body weight poly (I:C), and PBS was injected in

Fig. 2 HBsAg enhances TBK1 dimerization but inhibits IRF3 activation. A Immunoblot analysis of phosphorylated (p-)TBK1, IRF3, and p62 in
THP-1 cells transfected with a vector or Flag-HBs for 24 h and then stimulated with LPS, poly (I:C), or HT-DNA. B Immunoblot analysis of (p-)
TBK1, IRF3, and p62 in THP-1 cells infected with SeV (MOI of 1) for the indicated times. C IP and immunoblot analysis of endogenous TBK1 and
IRF3 in HepG2-hNTCP cells infected with HBV. D Huh7 cells were transfected with increasing amounts of a plasmid encoding Flag-HBs for 24 h
and then infected with SeV (MOI of 1) for 8 h. IP and immunoblot analysis of endogenous TBK1 and IRF3. E Huh7 cells were transfected with
increasing amounts of a plasmid encoding Flag-HBs for 36 h, followed by immunoblot analysis of TBK1 dimerization with native PAGE. F Huh7
cells were transfected with increasing amounts of a plasmid encoding Flag-HBs and then infected with SeV. Immunoblot analysis of IRF3
dimerization with native PAGE. G Huh7 cells were transfected with increasing amounts of a plasmid encoding Flag-HBs and IRF3-5D for 36 h.
Immunoblot analysis of IRF3 dimerization with native PAGE. H Huh7 cells were transfected with increasing amounts of a plasmid encoding
Flag-HBs and then infected with SeV, and immunoblot analysis of IRF3 in nuclear (Nucle) and cytoplasmic (Cyto) fractions. GAPDH served as a
cytoplasmic control. LaminA/C served as a nuclear protein control. I Immunoblot analysis of TBK1 in WT and TBK1 knockout Huh7 cells.
J Schematic representation of TBK1 structural domains and critical amino acid sites. KTBK1 knockout Huh7 cells transfected with plasmids
expressing HA-TBK1 (WT), GPF-TBK1 (WT), or its mutants (GFP-TBK1EE, TBK1HIF, TBK1EE+HIF, TBK1S172A, TBK1K30R+K401R), and along with or
without Flag-HBs. IP analysis of TBK1 dimerization. All experiments were repeated at least three times with consistent results.
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the control group. After 24 h, liver tissue was collected for
subcellular fraction extraction and qRT-PCR. Compared to WT, poly
(I:C)-induced nuclear translocation of IRF3 and mRNA levels of
Ifnb1, Isg15, and Isg56 were significantly inhibited in HBs-Tg mice
(Fig. 7A, B). Next, we examined the autophagic flux in liver tissues.

Immunofluorescence showed that LC3-positive puncta were
increased in transgenic mice (Fig. 7C, D). Additionally, immunoblot
showed increased LC3B-I/II conversion, and TEM showed
increased double-membrane autophagosomes, which are present
in the early stages of autophagy (Fig. 7E–G). TBK1 phosphorylates
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IRF3 to induce IFNβ or p62 to promote autophagy [26, 27].
Consistent with the findings in the cellular, immunoblotting of
transgenic mouse livers showed increased phosphorylation of
TBK1 and p62 proteins, whereas the phosphorylation level of IRF3
protein was decreased (Fig. 7I). These data suggest that HBsAg
prevents IRF3-mediated IFNβ signaling but induces p62-mediated
autophagy in the mouse liver. Subsequently, we also explored
SNAP29 expression in liver tissues. SNAP29 but not p62 expression
was downregulated in HBs-Tg mice (Fig. 7J, K). These findings
suggest HBsAg attenuates innate immunity but induces early
autophagy in vivo.

Comparison of innate immunity and autophagic flux between
chronic HBV and non-HBV patients
To investigate whether HBV infection leads to changes in innate
immunity and autophagic flux in the human liver, we recruited
chronic HBV patients (n= 10) and non-HBV patients (n= 10) and
collected their liver tissues. Immunohistochemistry revealed an
increased phosphorylation of TBK1 and p62 proteins in the livers
of HBV-infected patients, whereas the phosphorylation of IRF3 was
decreased (Fig. 8A). In addition, there was a moderately increased
expression of p62 and a decreased expression of SNAP29 in CHB
patient liver tissues (Fig. 8A). The distribution of IRF3 and LC3 in
liver tissues showed a decrease in IRF3 nucleation and in LC3
positive puncta for LAMP1 after HBV infection (Fig. 8C–F). These
data suggest that innate immunity is downregulated and
autophagosomes are accumulated in the liver tissues of CHB
patients.

DISCUSSION
HBV infection of hepatocytes rarely triggers innate immunity, and
cytokines are maintained at low levels [49, 50]. On the other hand,
HBV infection activates autophagy and utilizes the autophagic
pathway to aid viral replication [22, 48]. However, the precise
molecular mechanisms remain unclear. In this study, we demon-
strated suppression of the innate immune response and
accumulation of autophagosomes by HBV and HBs in vivo and
in vitro. HBsAg disrupts the TBK1–IRF3 interaction but enhances
TBK1 dimerization, which is essential for TBK1 and p62-mediated
autophagy. Moreover, HBs inhibit SNAP29 promoter activity,
thereby suppressing autophagic degradation.
HBV DNA and HBsAg have been detected in macrophages of

CHB patients [51]. HBs expression in THP-1 cells significantly
inhibited type I interference and IRF3 phosphorylation, but TBK1
phosphorylation was upregulated. TBK1 was first discovered to
play a role in the IFN signaling pathway [52]. TBK1’s activity is
strictly regulated, including dimerization, ubiquitination, phos-
phorylation, and the formation of functional complexes
[23, 25, 53, 54]. The KD is essential for its kinase activity, which
is required to interact with IRF3 [55]. Our findings suggest that the

KD is necessary for the interaction between TBK1 and HBsAg,
which competitively impairs IRF3 binding. All three types of HBsAg
interact with TBK1, and they contain common S sequences.
Therefore, the S domain could competitively prevent the
TBK1–IRF3 complex from downregulating type I interferon
signaling.
On the other hand, TBK1 in autophagy and its phosphorylation

of autophagy receptors, such as p62, NDP52, TAX1BP1, and OPTN,
have gained significant interest [27, 56, 57]. A study reported that
TRIM23 promotes TBK1 dimerization during viral infection and
mediates autophagy through the TBK1-p62 axis [27]. TBK1EE and
TBK1HIF mutations lead to defective dimerization [23]. As
anticipated, HBs boost TBK1-WT dimerization; however, TBK1EE

and TBK1HIF mutants are not facilitated. Enhanced TBK1 dimeriza-
tion promotes p62 phosphorylation at serine 403, which induces
autophagy [27]. These results imply that the TBK1-p62 axis may
play a role in HBV infection.
Yuan et al. found that HBV small surface antigen is an essential

protein for the induction of autophagy and is sufficient to trigger
UPR signaling to induce autophagy [42]. Treatment with BX795,
but not 4-PBA (an ER stress inhibitor), abolished the HBsAg-
induced early phase of autophagy. This revealed that HBs initiate
autophagy through an additional pathway and sheds light on the
modulation between innate immunity and autophagy in HBV
infection. Induction of early stages of autophagy can facilitate HBV
replication. Sir et al. believed that the steps at or after the onset of
autophagy were essential for HBV DNA replication and had little
effect on HBV core RNA (pgRNA) [48]. HBs or HBV overexpression
was found to promote TBK1, p62 phosphorylation, and LC3
conversion. Still, this phenomenon disappeared when TBK1 was
knocked out and reappeared when WT, but not TBK1EE and
TBK1HIF mutations, were restored in the TBK1 knockout Huh7 cell
line. In this study, we found that HBs promotes TBK1 dimerization
and activates TBK1, which subsequently phosphorylates p62,
initiating the early stages of autophagy, a process that supports
HBV replication; however, this phenomenon disappeared when
TBK1 was knocked out. This confirms that HBV-enhanced TBK1
dimerization induces p62-mediated autophagy to promote viral
replication.
Some viruses have evolved strategies to benefit from autop-

hagy to evade the innate immune response and establish a
successful infection. For example, the hepatitis C virus suppresses
innate immunity via autophagic degradation of TRAF6 [58]. SARS-
CoV-2-induced mitochondria-mediated degradation of MAVS
evades innate immunity [59]. A recent study showed that HBx
inhibits the cGAS-STING pathway through autophagic degradation
of cGAS [60]. The current research indicates that HBV inhibits
autophagic degradation to induce incomplete autophagy [31]. Lu
et al. reported that increased overexpression of SNAP29 promotes
autophagic degradation of the HBV, and conversely, silencing of
its expression is beneficial for HBV replication [32]. Our findings

Fig. 3 TBK1 is required for HBsAg-induced accumulation of autophagosomes. A HepG2 cells were transfected with pHBV1.3, Flag-HBs, or
Flag-HBc plasmids for 36 h or treated with rapamycin (RAPA, 2.5 μM), followed by immunoblot analysis of p62 and LC3B proteins. B HepG2
cells were transfected with pHBV1.3 or pHBV1.3-ΔHBs plasmid along with GFP-LC3. LC3 puncta were examined by confocal microscopy. Scale
bar: 10 μm. C The numbers of GFP-LC3 dots per cell in (B) were quantified. D Huh7 cells were transfected with Flag-HBs plasmid and treated
with or without Bafilomycin A1 (BafA1, 100 nM). Immunoblot analysis of indicated proteins. E Autophagy flux indices were analyzed with and
without transfection of HBs using Image J. F Huh7 cells were transfected with Flag-HBs plasmid and treated with or without BX759 (1 μM).
Immunoblot analysis of indicated proteins. G Huh7 cells were transfected with GFP-LC3, and along with DsRed-HBs or vectors, the distribution
of GFP-LC3 was imaged by confocal microscopy. Scale bar: 10 μm. H The numbers of GFP-LC3 dots per cell in (G) were quantified. I Cells were
treated as in (G), and then TEM observe autophagosomes. Autophagosomes with double membranes are labeled with red arrows. Mit,
mitochondria. Scale bar: 1 μm. J Quantitative analysis of the number of autophagosomes observed by TEM. KTBK1 knockout Huh7 cells were
transfected with plasmids expressing Myc-TBK1, Myc-TBK1HIF, Myc-TBK1EE, Myc-TBK1HIF+EE, or an empty vector, along with Flag-HBs.
Immunoblot analysis of the indicated protein. LTBK1 knockout Huh7 cells were transfected with plasmids encoding GFP-LC3, Flag-HBs, Myc-
TBK1, Myc-TBK1HIF, Myc-TBK1EE, or Myc-TBK1HIF+EE. LC3 puncta were imaged by confocal microscopy. Scale bar: 10 μm.M The numbers of GFP-
LC3 dots per cell in (L) were quantified. All experiments were repeated at least three times with consistent results. Bar graphs show the
means ± SD (n= 3 biological replicates). *P < 0.05; **P < 0.01; ***P < 0.001; ns not significant; using Student’s t-test.
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Fig. 6 HBV replication relies on the activity of TBK1 to regulate autophagy. A–C Huh7 cells were transfected with an empty vector or
pHBV1.3 for 12 h, then treated with or without BX795 (1 μM) for 36 h. Levels of indicated protein (A) core-associated HBV DNA (B) supernatant
HBsAg, and HBeAg (C) were determined. D, E Huh7 cells were transfected with pHBV1.3 for 12 h, then treated with 3-MA (2.5 mM) and
combined with or without BX795 for 36 h. Levels of core-associated HBV DNA (D) supernatant HBsAg, and HBeAg (E) were determined. F Huh7
cells were transfected with shRNA plasmid targeting noncoding RNA (shNC) and three shATG7 plasmids for 36 h. Immunoblot analysis of ATG7
proteins. G, H Huh7 cells were transfected with pHBV1.3 for 12 h, treated with or without BX795, and transfected with shATG7 or shNC for 36 h.
Levels of core-associated HBV DNA (G), supernatant HBsAg, and HBeAg (H) were determined. I, J WT or IFNAR1 knockout Huh7 cells were
transfected with pHBV1.3 for 12 h, then treated with or without BX795. Levels of core-associated HBV DNA (I) supernatant HBsAg, and HBeAg
(J) were determined. K–M TBK1 knockout or WT Huh7 cells were transfected with pHBV1.3 for 48 h. Levels of indicated proteins (K) core-
associated HBV DNA (L) supernatant HBsAg, and HBeAg (M) were determined. All experiments were repeated at least three times with
consistent results. Bar graphs show the means ± SD (n= 3 biological replicates). *P < 0.05; **P < 0.01; ***P < 0.001; nd not detected; ns not
significant; using Student’s t-test.
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Fig. 7 Assessment of innate immunity and autophagic flux in vivo. A, B PBS or poly (I:C) was injected at 5mg/kg body weight via the tail
vein in 9-week-old WT and HBs-transgenic mice. After 24 h, A immunoblot analysis of IRF3 in cytoplasmic (Cyto) and nuclear (Nucle) fractions.
GAPDH served as a cytoplasmic control. LaminA/C served as a nuclear protein control. B Gene expression of interferon (Ifnb1) and ISGs (Isg56,
Isg15) was determined by qRT-PCR. C Immunofluorescence staining analyses of LC3 in mouse liver tissue. D LC3-puncta were assessed by
Image J. Scale bar: 10 μm. E Immunoblot analysis of LC3B in mouse liver tissue. F Observation of autophagosomes in WT and HBs-Tg mouse
liver tissue by TEM, and the red arrow indicates autophagosomes with double membranes. Scale bar: 1 μm. G Quantification of the number of
autophagic vacuoles observed by TEM. H Immunoblot analysis of (p)-TBK1, IRF3, and p62 in liver tissue from HBs-Tg and WTmice. I, J qRT-PCR
(I) and immunoblot (J) analysis of p62 and SNAP29 mRNA and protein levels in mouse liver tissue. All experiments were repeated at least three
times with consistent results. Bar graphs show the means ± SD (n= 3 biological replicates). **P < 0.01; ***P < 0.001; ns not significant; using
Student’s t-test.
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Fig. 8 Changes in innate immunity and autophagic flux in liver tissue of CHB patients. A Immunohistochemical staining of p-TBK1, p-IRF3,
p-p62, p62, and SNAP29 in bioptic liver tissue from chronic HBV (CHB) or non-HBV patients. Bar: 50 μm. B Assessment of p-TBK1, p-IRF3, p-p62,
p62, and SNAP29 protein staining by score values using ImageJ. C–F Immunofluorescence staining analysis of IRF3 (C) or LC3 and LAMP1 (E) in
liver tissue from CHB and non-HBV patients. Assessment of the IRF3 nuclear localization (D) and co-localization between LC3 and LAMP1 (F) by
ImageJ. Red arrows indicated some nuclear localization of IRF3. Scale bar: 30 μm. All experiments were repeated at least three times with
consistent results. Bar graphs show the means ± SD (n= 10 biological replicates). *P < 0.05; **P < 0.01; ***P < 0.001; using Student’s t-test.
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suggest that HBsAg hinders the transcription of SNAP29,
suggesting that HBV employs a unique mechanism to evade
autophagic degradation. Unlike other viruses, it may be an
inefficient strategy for HBV to evade the innate immune response
through autophagic degradation because HBV viral particles and
proteins replicating and assembling in autophagosomes are
degraded by fusion with lysosomes [32, 33, 46].
In conclusion, our findings indicate that TBK1 functions as a

mediator to regulate innate immunity and autophagy during HBV
infection, which may contribute to eliminating persistent HBV
infection.
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