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Purine metabolism rewiring improves glioblastoma
susceptibility to temozolomide treatment
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Glioblastoma (GBM) is among the deadliest cancers, characterized by poor prognosis and median survival of 12-15 months post-
diagnosis. Despite aggressive therapeutic regimens, GBM treatment is still an unmet clinical need due to heterogeneity,
recurrencies, and resistance. Metabolic reshaping is emerging as a critical mechanism supporting cell proliferation and sustaining
chemoresistance. In this study, we explored metabolic changes induced by chemotherapy in temozolomide (TMZ)-sensitive and
TMZ-resistant GBM cell lines. We found that purine levels were altered in sensitive versus resistant GBM cells, highlighting a critical
role of guanosine and inosine metabolism. By using a mesenchymal-like GBM zebrafish model, we uncovered dysregulated
pathways involved in purine metabolism, with a downregulation of catabolic processes. Our data indicate that combined treatment
with TMZ plus guanosine and inosine increased cytotoxicity, enhancing chemotherapy effectiveness in TMZ-resistant cells. These
effects correlated with alterations in mitochondrial dynamics and activity. Specifically, the combinatorial effectiveness of TMZ with
guanosine and inosine was linked to Mitofusin-2 overexpression, enhancing mitochondrial fusion, typically associated with a better
prognosis. Therefore, our findings suggest that purine metabolism is involved in the metabolic rewiring of TMZ-resistant cells,
suggesting guanosine and inosine as potential adjuvant treatments to improve the cytotoxicity effects of chemotherapy in

resistant GBM.
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INTRODUCTION

Glioblastoma (GBM) is a highly malignant and deadly brain
tumour characterised by a poor prognosis and a median survival
of 12-15 months post-diagnosis [1]. To date, in most cases, GBM
has shown resistance to conventional treatments, including
radiotherapy and chemotherapy, which together with surgical
resection represent the gold standard approach [2]. In particular,
GBM heterogeneity and resistance strongly limit therapeutic
effectiveness [3]. Histologically, GBM shows significant differences
between patients, and this diversity is confirmed at a molecular
level by a wide range of possible genetic alterations [4]. Based on
molecular features, a genomic analysis has grouped GBM into
three subclasses: classical, mesenchymal and proneural, showing
distinctive features and a wide degree of sensitivity to therapy [5].
Typically, mesenchymal tumours are aggressive and more
resistant to therapy, while proneural ones are relatively sensitive
to treatments and less infiltrative [6, 7]. In addition, during tumour
progression, GBM could shift from a proneural to a mesenchymal
subtype, leading to chemoresistance [8]. In particular, Tumour
Associated Macrophages (TAMs), through the secretion of anti-

inflammatory cytokines, support the GBM subtype transition,
driving the tumour to adopt a mesenchymal profile [9].

The standard-of-care chemotherapy for GBM patients includes
temozolomide (TMZ), an antineoplastic alkylating agent of DNA.
Throughout its lipophilicity, size and stability at low pH, TMZ can
cross the blood-brain barrier, acting on the central nervous system
(CNS) tumours [10, 11]. However, GBM can employ different
strategies to resist TMZ, primarily including DNA repair with O6-
methylguanine-DNA methyltransferase (MGMT) activation, drug
efflux through ATP-binding cassette (ABC) transporters, epigenetic
modifications and metabolic rewiring [12]. Altered metabolic
pathways are a typical hallmark of GBM, which can reshape its
metabolism depending on nutrient availability. Metabolic repro-
gramming increases GBM invasiveness and aggressiveness,
supporting tumour growth also in a hypoxic environment [13]. It
is well known that GBM takes advantage of glycolysis to increase
its proliferation rate by metabolising glucose into lactate, even in a
normoxic environment, leading to the Warburg effect [14, 15].
Beyond an improved glycolysis, GBM can modulate lipid and
nucleotide metabolism to enhance de novo lipid and nucleotide
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synthesis, thus adapting to increased energy requests [16].
However metabolic reshaping is also one of the key mechanisms
to overcome cytotoxicity of standard therapy. Through metabolic
reprogramming, GBM cells decrease cellular stress caused by
radio- and chemo-therapy, leading to therapeutic tolerance and
supporting tumour growth [17].

Moreover, recent studies show that tumour genotype and
microenvironment affect metabolic rewiring in GBM cells, indu-
cing alterations that may play a role in developing novel
therapeutic strategies [15]. Growing evidence demonstrates that
drugs targeting cell metabolism in combination with chemother-
apy or radiotherapy could increase the effectiveness of anti-cancer
approaches [18]. Specifically, metabolomic analysis allows the
study of tumour metabolic reprogramming, investigating the
molecular pathways involved in GBM metabolic alterations, to
discover new therapeutic targets [19]. However, highlighting
metabolic targets for GBM therapy is challenging due to its
heterogeneity; thus, it is crucial to characterise GBM from a
metabolic perspective [20].

Herein, we aimed to investigate GBM metabolic rewiring by
combining both in vitro and in vivo approaches. Particularly, we
focused on the study of metabolic alterations after chemotherapy
treatment in different GBM cell lines: U-251 MG of proneural
subtype sensitive to TMZ, T98-G of mesenchymal subtype
resistant to TMZ, and U-251 MG R, induced to develop TMZ

resistance. Our results revealed that purine metabolism plays a
crucial role in cellular mechanisms leading to TMZ resistance. Our
findings on GBM cell lines were confirmed in an in vivo zebrafish
model of mesenchymal GBM, showing dysregulated pathways
involving purines, thus suggesting a role of metabolic reshaping in
TMZ susceptibility. We found that mitochondrial fitness and
dynamics were affected by the increased levels of guanosine and
inosine in resistant cells and these changes were positively
correlated with mitochondrial fusion.

RESULTS

U-251 MG R and T98-G cells exhibit resistance to TMZ

U-251 MG S, spontaneously sensitive to TMZ, were used to
generate a TMZ resistant-induced cell line (i.e. U-251 MG R)
following the protocol schematized in Fig. 1a, to obtain a GBM cell
line with intermediate characteristics suitable for studying the
mechanisms underlying chemotherapy resistance. To test cells
sensitivity to chemotherapy, we analysed TMZ-induced cytotoxic
effects on U-251 MG S, U-251 MG R and T98-G cells, spontaneously
resistant to TMZ, evaluating relative cytotoxicity at 24, 48, 72h
post-TMZ administration at different concentrations (50, 100, 250,
500 pM) (Figs. 1b-d and S1). Data showed that at 24 h, U-251 MG S
cells exhibited a significant increase in relative cytotoxicity to
500 uM TMZ, while no effects were observed in U-251 MG R and
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Fig. 1

U-251 MG S, U-251 MG R and T98-G cells differently tolerate TMZ. a Schematic representation of the protocol used to induce TMZ

resistance in U-251 MG S cells. b-d LDH assay at 24 h on U-251 MG S (b), U-251 MG R (c) and T98-G (d) cells treated with 0, 50, 100, 250, 500 uM
of TMZ. e-g Surviving fraction (SF) at 24 h and 72 h post-treatment, quantification of average clones size and representative pictures of the
clonogenic assay at 72 h of U-251 MG S (e), U-251 MG R (f) and T98-G (g) clonogenic assay. Data are shown via scattered dot plots as
mean = SD of n 23 independent experiments. *p-value < 0.05; **p-value < 0.01; **** p-value < 0.0001. CTRL control, FC fold change, SF
surviving fraction, TMZ temozolomide, Tx-100 Triton X-100.
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T98-G cells at any tested concentrations (Fig. 1b-d). These results
were confirmed at 48 and 72 h, proving that relative cytotoxicity
(%) increased at 250 and 500 uM of TMZ in U-251 MG S cells, while
changes were observed in U-251 MG R cells at 48 h and 72 h only
at the dose of 500 uM. Additionally, T98-G cells showed an effect
only at 72 h with the highest tested concentration (Fig. S1).

We also performed a clonogenic assay to assess the effect of
TMZ on cell proliferation, demonstrating a decrease in the
surviving fraction of U-251 MG S cells following 72 h treatment
with TMZ, whereas no significant effects on U-251 MG R and T98-G
cells were observed (Fig. 1e-g). We did not observe significant
changes in the average size of clones in all tested cell lines (Fig.
le-g).

Therefore, our results confirmed that U-251 MG S cells were
sensitive to TMZ, while T98-G cells showed resistance to the drug.
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Notably, U-251 MG R cells demonstrated a resistance profile
comparable to the spontaneously resistant T98-G cells.

Sensitive and resistant cell lines show different metabolic
profiles

Our next aim was to investigate metabolic changes involved in
chemotherapy resistance. Thus, to study metabolic profiles in
sensitive and resistant cells, we assessed a targeted metabo-
lomic analysis on the 3 GBM cell lines. These results revealed
different levels of specific metabolites among the 3 tested cell
lines, with U-251 MG R cells showing an intermediate metabolic
profile between those of U-251 MG S and T98-G cells (Fig. 2). We
observed a better antioxidant and energetic metabolic profile
in T98-G cells as compared to U-251 MG cell lines, as
demonstrated by the higher levels of energetic phosphates,
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Fig. 2 Sensitive and resistant GBM cells display distinct metabolic profiles. a Heatmap of Z-Score values based on the abundance of 38
metabolites. b—-d Volcano plots of metabolites levels expressed as log, fold changes over CTRL and —log; of adjusted p-value in U-251 MG S
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same trend in all tested cell lines; orange dots represent metabolites showing the same trend in resistant cell lines (i.e. U-251 MG R and T98-G).
Data include n =4 independent replicates per group. CTRL control, TMZ temozolomide.
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Fig. 3 Guanosine and inosine are involved in TMZ resistance. a-c Metabolite ratio analysis plots, representing ratios with higher average
importance for U-251 MG S (a), U-251 MG R (b) and T98-G (c). Blue squares indicate lower levels or ratios between metabolites and red squares
indicate higher levels or ratios between metabolites in CTRL vs TMZ. d Guanosine abundance (expressed as nmol/1 x 10° cells) in CTRL versus
TMZ-treated cells for U-251 MG S, U-251 MG R and T98-G. e Inosine abundance (expressed as nmol/1 x 10° cells) in CTRL versus TMZ-treated
cells for U-251 MG S, U-251 MG R and T98-G. f GTP abundance (expressed as nmol/1 x 10° cells) in CTRL versus TMZ-treated cells for U-251 MG
S, U-251 MG R and T98-G. Data are shown via scattered dot plots as mean + SD of n =4 independent experiments. g LDH assay at 24 h on
U-251 MG R, CTRL or treated with guanosine and/or inosine. h LDH assay at 24 h on U-251 MG R, treated with TMZ and/or guanosine/inosine.
i LDH assay at 24h on T98-G, CTRL or treated with guanosine and/or inosine. | LDH assay at 24 h on T98-G, treated with TMZ and/or
guanosine/inosine. Data are shown via scattered dot plots as mean £ SD of n > 3 independent experiments. *p-value < 0.05; **p-value < 0.01;
***p-value < 0.001 vs untreated or between groups; ###p-value < 0.001; ####p-value < 0.0001 vs untreated U-251 MG S; +++p-value < 0.001;
++++p-value < 0.0001 vs TMZ treated U-251 MG S. CTRL control, GUA guanosine, INO inosine, TMZ temozolomide.

such as adenosine triphosphate (ATP), guanosine triphosphate
(GTP), and of glutathione (GSH; Fig. 2a). Furthermore, through
volcano plots analysis of CTRL vs TMZ treatment, we evaluated
metabolites that changed in the same direction across all tested
cell lines (green dots) or specifically among resistant cells
(orange dots), following TMZ treatment (Fig. 2b-d). These data
revealed a similar pattern involving uridine diphosphate (UDP)
derivatives upon TMZ treatment in all tested cell lines, while
most of the metabolites shared among resistant cells were
associated with nucleotide metabolism (Fig. 2b-d).

SPRINGER NATURE

Guanosine and inosine increase chemotherapy efficacy in
resistant cells

From metabolomics data, we performed a metabolite ratio
analysis, which calculates the most significant ratios according to
their rank frequency and average importance (Figs. 3a—-c and S2).
These findings highlight the metabolites that play a significant role
in response to TMZ treatment in the specific cell line. Ratios with
higher importance included UDP N-acetylglucosamine (UDP-
GlcNac) for U-251 MG S cells, and, guanosine and inosine for
U-251 MG R and T98-G cells, respectively (Fig. 3a-c). Analysing
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guanosine and inosine abundances from metabolomic analysis, we
found that guanosine basal levels were significantly lower in both
resistant cells as compared to the sensitive ones, and that inosine
levels were reduced in T98-G vs U-251 MG cell lines (Fig. 3d, e). Vice
versa, T98-G cells exhibited a higher abundance of GTP as
compared to U-251 MG S and U-251 MG R cells (Fig. 3f). This
evidence suggests that purine metabolism could play a key role in
TMZ resistance.

We then performed an LDH assay to test the effects of purine
metabolites, namely exogenous guanosine and inosine, on
resistant cells. We exposed U-251 MG R and T98-G cells to
exogenous guanosine and inosine treatment, also analyzing their
combination with TMZ (Fig. 3g-I). A very slight effect on
cytotoxicity was observed in the two cell lines treated with
guanosine or inosine (Fig. 3g, i). Interestingly, exogenous increase
of purine levels in resistant-induced cells U-251 MG R led to a
significant increase in cytotoxicity mediated by TMZ (Fig. 3h). Data
from T98-G cells treated with both purines co-administered with
TMZ confirmed an increased relative cytotoxicity (Fig. 3l). These
findings confirmed the importance of purines in chemotherapy
resistance, showing that guanosine and inosine can increase
sensitivity to TMZ in resistant cells.

Mesenchymal-like GBM zebrafish model exhibits an
upregulation of purine biosynthesis, while concurrently
downregulating purine catabolism

To examine the role of purine metabolism in GBM resistance, we
employed a zebrafish GBM model, zic:RAS. Specifically, this model
was developed through the expression of specific oncogenes
during development in neural cells; indeed, somatic expression of
oncogenic RAS spontaneously leads to GBM development,
showing a mesenchymal-like profile [21]. On the zebrafish zic:RAS
model, an RNA-seq and a Gene Ontology (GO) analysis of
dysregulated pathways were performed. Our data demonstrated
that about 10% of the top 50 dysregulated pathways were
correlated to purine metabolism (Fig. 4a). Moreover, we evaluated
genes involved in these pathways, revealing that most of the
upregulated genes were implicated in purine biosynthetic
mechanisms, whereas the downregulated genes were correlated
to purine catabolic processes (Fig. 4b). These data demonstrated
that altered purine metabolism represents a signature of
mesenchymal GBM tumours, which typically exhibit resistance to
TMZ, and that catabolic processes leading to guanosine and
inosine accumulation are strongly reduced.

Guanosine and inosine lead to alterations in mitochondrial
dynamics

Our subsequent objective was to understand how purine levels
could influence mitochondrial dynamics, investigating guanosine
and inosine’s role in mitochondrial fitness. To this end, we first
performed a gRT-PCR to evaluate on U-251 MG S, U-251 MG R and
T98-G cells, mRNA expression levels of the main genes involved in
mitochondrial fusion and fission. Data revealed a significant
differential expression of tested genes among cell lines, identify-
ing common clusters between U-251 MG R and T98-G cells, and
distinct cluster for U-251 MG S cells (Fig. 5a).

We then performed a PCA analysis on gRT-PCR data to identify
the highest contributors to the clustering between groups (Figs.
S3 and 5b-d). Our data identified that Mitofusin-2 (MFN2) is a
relevant factor in the group treated with TMZ combined with
guanosine and inosine across all 3 tested cell lines (Fig. 5b-d).
Indeed, purine metabolites in combination with TMZ increased
MFN2 expression in both sensitive and resistant cells, improving
mitochondrial fusion (Fig. 5e).

In order to confirm mitochondrial fusion in cells treated with
TMZ combined with guanosine and inosine, we performed a
MitoView staining to analyse mitochondrial morphology and
dynamics (Fig. 6a). We observed that the total branch length/mito
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increased in all tested cell lines as compared to control, while at
the same time we observed a reduction in the number of
individual mitochondrial particles in response to purines and TMZ
treatment (Fig. 6b-d). These results support the hypothesis that
guanosine and inosine enhance mitochondrial fusion. Moreover,
we found changes in the number of branches and branch
junctions as a result of treatment with TMZ combined with
guanosine and inosine in both sensitive and resistant cells,
confirming alterations in mitochondrial dynamics (Fig. S4).

Subsequently, we conducted a TMRM staining to quantify
mitochondrial membrane potential (Apm), which reflects mito-
chondrial activity (Fig. 7a-d). Our results showed that mitochon-
drial activity in U-251 MG S cells was not influenced by purine
metabolites, coupled with an increase in MFI TMRM and in the
percentage of occupancy after TMZ treatment that was main-
tained in cells treated with TMZ combined with guanosine and
inosine (Fig. 7b).

However, purine metabolites strongly impacted mitochondrial
activity in resistant cells (U-251 MG R and T98-G), reverting TMZ
effect (Fig. 7¢, d). Indeed, TMZ decreased MFI TMRM in U-251 MG
R, but purine metabolites modified TMZ outcome, increasing both
MFI TMRM and the percentage of occupancy (Fig. 7¢). In contrast,
T98-G cells improved mitochondrial activity following TMZ,
reverting these effects after purine metabolites treatment (Fig.
7d). This evidence suggests that increasing purine metabolites,
namely guanosine and inosine, may interfere with metabolic
reprogramming employed by resistant cells to limit cytotoxic
effects mediated by TMZ.

DISCUSSION

Metabolic reprogramming is one of the emerging mechanisms
employed by GBM to enhance its aggressiveness and to better
tolerate toxic effects of therapeutic treatments [22]. While glucose
and lipid metabolic rewiring has been extensively investigated,
studies on other metabolic pathways remain limited and most of
the underlying mechanisms are not yet fully clarified [15].
Furthermore, it is well established that TMZ resistant cells alter
different metabolic pathways to elude chemotherapeutic-induced
damages and the subsequent cell death [23]. Thus, our aim was to
analyze metabolic differences between TMZ-sensitive and resis-
tant cells, identifying potential targets to increase chemotherapy
efficacy. We selected two GBM cell lines: U-251 MG, which are
TMZ-responsive, and T98-G, resistant to the drug [24]. In addition,
we subjected U-251 MG cells to increasing concentrations of the
chemotherapeutic agent to generate a third cell line, with
morphological and mechanistic features similar to sensitive cells,
but resistant to TMZ such as T98-G cells. Metabolomic analysis on
these three cell lines revealed different levels of purine
metabolites. Specifically, U-251 MG R and T98-G cells showed
reduced guanosine levels as compared to U-251 MG S, while
inosine was decreased only in mesenchymal cells, that on the
contrary exhibited higher GTP levels. These results support the
hypothesis that purine metabolic reprogramming is a mechanism
involved in TMZ resistance. Recent evidence demonstrated that
purine metabolism regulates radiotherapy resistance, revealing
that GBM patients overexpressing enzymes implicated in the de
novo GTP synthesis exhibited a shorter survival time [25].
Therefore, the inhibition of GTP synthesis reinforced radiation
effects, increasing sensitivity of orthotopic GBM mouse model to
radiotherapy [25]. Thus, to prove that guanosine and inosine could
have effects on chemotherapy efficacy, we exposed resistant cells
to purine metabolites in combination with TMZ, confirming their
role in enhancing treatment effectiveness. The combination of
guanosine and inosine with TMZ was effective in improving
chemotherapy efficacy in both cell lines. However, considering the
individual effects of the external purines, for U-251TMG R cells, only
guanosine was effective in combination with TMZ, while for T98-G
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cells, both guanosine and inosine were toxic when associated with
the chemotherapeutic agent. These results could be related to the
basal levels of guanosine and inosine in these two cell lines.
Inosine levels in U-251 R cells were comparable to those in U-251
MG S, while T98-G cells exhibited significantly reduced levels of
this metabolite. In contrast, guanosine basal levels were relatively
low in both resistant cell lines as compared to the sensitive ones.

Oliveira et al. (2017) demonstrated that guanosine promoted
cytotoxicity in TMZ-treated A172 GBM cells, inducing cell death
through adenosine receptors [26]. Moreover, to confirm the role of
purine metabolism in TMZ resistance, we performed an RNA-seq
on a GBM zebrafish model, exhibiting a mesenchymal-like profile.
The zic:cRAS GBM zebrafish model is developed through the
expression of specific oncogenes triggering mitogen-activated
protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)
signalling pathways in neural progenitor cells. Particularly,
HRAS'? induces invasive brain tumours, showing a gene
signature overlapping with that of the GBM mesenchymal subtype
[21]. RNA-seq data revealed that zic:RAS upregulates purine
biosynthetic processes, while downregulates purine catabolic
mechanisms. This evidence is in accordance with reduced
abundance of guanosine and inosine and increased levels of

SPRINGER NATURE

GTP, deriving from nucleotide biosynthetic processes, in T98-G
cells, exhibiting a mesenchymal profile [27]. Shireman et al. (2021)
proved a correlation between de novo purine biosynthesis and
chemoresistance; indeed, mycophenolate mofetil, blocking the
activity of inosine monophosphate dehydrogenase 2 (IMPDH2)
that is a rate-limiting enzyme of purine biosynthesis, increases
TMZ efficacy in an in vivo GBM model [28]. We also demonstrated
the role of catabolic products from purine metabolism and their
involvement in TMZ resistance, thus not only de novo purine
biosynthesis represents a driver of chemoresistance, but purine
catabolism plays a crucial role too. Notably, increased TMZ
susceptibility could be linked to the salvage pathway, an
alternative process to synthetise purines by recycling purine
bases or nucleosides, thereby producing new nucleotides with
lower energy consumption [29]. GBM cells prefer de novo purine
synthesis and downregulate salvage pathway. This mechanism
may be related to the therapeutic effect of TMZ, which alkylates
purines; thus, GBM cells may avoid recycling damaged purines
upon TMZ treatment by limiting purine salvage pathway [28].
Adding guanosine and inosine could promote the salvage
pathway to maintain the nucleotides pool; however, the exposure
of GBM cells to purine metabolites in combination with TMZ,
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could lead to increased damaged purines recycling, resulting in an
enhanced cytotoxicity for GBM cells.

Furthermore, our results support the treatment with purine and
TMZ as modulators of mitochondrial dynamics, upregulating
MFN2 and thus increasing mitochondrial fusion. MFN2 is an outer
mitochondrial membrane GTPase and is pivotal in inducing
mitochondrial fusion [30]. MFN2 role in cancer is still controversial,
acting either as an onco-suppressor or oncogenic factor, depend-
ing on the tumour type and the tissue; however, in many solid
tumours, MFN2 shows an anticancer function, inducing cell
apoptosis and inhibiting proliferation through Bax-mediated
apoptosis [31, 32]. Indeed, MFN2 overexpression, along with
Drp1 knockdown, increases apoptosis in lung cancer cells,
reducing their proliferation [33]. Recent studies revealed an
unbalanced mitochondrial dynamic typical of tumour cells with
hyperactive mitochondrial fission and impaired fusion [34]. GBM
cells also exhibit higher rates of mitochondrial fission, showing a
correlation with poor prognosis for patients. Indeed, increased
mitochondrial fission and impaired fusion are correlated with
enhanced tumour aggressiveness [35]. Therefore, this evidence
suggests mitochondrial dynamics as a possible therapeutic target
for GBM [36].

Our data revealed that guanosine and inosine can increase
MFN2 expression, reverting TMZ effect that, on the contrary,
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reduces its expression in resistant cells. Thus, MFN2 down-
regulation could be a resistance to limit TMZ toxic effects, while
purine metabolites revert this outcome. Moreover, mitochondrial
fusion after purine metabolites treatment is confirmed by Mito-
View staining, in which we observed an increase in total branch
length and a decrease in the number of individual mitochondrial
particles as compared to control in all tested cell lines, further
pointing towards an enhanced mitochondrial fusion [37]. Beyond
alterations in dynamics, purine metabolites lead to changes in
mitochondrial membrane potential, strongly correlated to mito-
chondrial functionality. In particular, while no differences in
mitochondrial activity were observed in U-251 MG S cells exposed
to TMZ alone or in combination with guanosine and inosine,
resistant cells were strongly affected by TMZ combined with
guanosine and inosine. Thus, a mechanism by which resistant cells
counterbalance TMZ-induced cytotoxicity is related to reprogram-
ming of their mitochondrial metabolism. This evidence is in
accordance with previous literature demonstrating that tumours
adapt their metabolism to evade drug cytotoxicity via mitochon-
drial metabolism reshaping, supporting their proliferation under
stress conditions [38].

In conclusion, our data demonstrated that TMZ-sensitive and
resistant cells show different metabolic profiles, shedding light on
the role of purine metabolism in chemotherapy resistance. We
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observed in both in vitro and in vivo models an upregulation in
purine biosynthetic processes and a decrease in purine catabolism
in mesenchymal GBM, with significantly reduced guanosine and
inosine, and increased GTP levels in GBM resistant cells. Moreover,
purine metabolites treatment improves TMZ efficacy in resistant
cells, increasing cytotoxicity and altering mitochondrial dynamics.
Guanosine and inosine stimulate mitochondrial fusion upregulat-
ing MFN2 and revert TMZ-induced effects on mitochondrial
membrane potential. Therefore, purine metabolism plays a crucial
role in metabolic rewiring associated with TMZ resistance. Finally,
guanosine and inosine could be considered as adjuvant treat-
ments to increase chemotherapy effectiveness in resistant GBM
tumours.

MATERIALS AND METHODS

Cell lines culture

Experiments were performed on U-251 MG (RRID: CVCL_0021) and T98-G
(RRID: CVCL_0556) human GBM cell lines. Cells were purchased from the
European Collection of Authenticated Cell Cultures (ECACC, Public Health
England). U-251 MG and T98-G were cultured in growth medium
consisting of Dulbecco’s Modified Eagle Medium (DMEM) High glucose
(Cat#11965092, Gibco, Grand Island, NY, USA) supplemented with 10%
Foetal Serum Bovine (FBS, Cat#26140079, Gibco), 100 IU/mL Penicillin-
Streptomycin solution (pen-strep, Cat#15140-122, Gibco) and 1 mmol/L
sodium pyruvate (Cat#11360-039, Gibco). Cells were maintained in an
incubator at 37 °C with 95% air and 5% CO, and sub-cultured in standard
culture flasks.

Temozolomide resistance-induced cells

U-251 MG cells, naturally sensitive (S) to TMZ (U-251 MG S), were subjected
to increasing concentrations of TMZ (Cat#T2577, Sigma-Aldrich, Darmstadt,
Germany) to create a resistant-induced cell line [39]. Briefly, in the first
round, cells were cultured in a growth medium containing 20 uM TMZ for
the first passage, followed by a wash-out phase of 3 passages without TMZ.
In the second round, cells were treated with 40 uM TMZ for 3 consecutive
passages, and, in the third round, U-251 MG were subjected to 60 uM TMZ
for 3 additional consecutive passages, reaching TMZ resistance. These cells
were then tested for TMZ resistance and named U-251 MG R.

Lactate dehydrogenase assay

Lactate dehydrogenase (LDH) activity assay (Cat#CBA-241, Cell Biolabs, Inc.,
San Diego, CA, USA) was assessed to measure the relative cytotoxicity after
treatments. Cells were seeded at a final density of 1x 10* cells/well in 96-
well plates. After 24 h, cells were subjected to different sets of treatments
for 24, 48 or 72 h (as stated in figure legends): (i) vehicle (i.e. DMSO and/or
PBS); (i) TMZ at different concentrations (50, 100, 250, 500 uM); (iii) 500 pM
Guanosine (Cat#G6264, Sigma-Aldrich); (iv) 500 uM Inosine (Cat#l4125,
Sigma-Aldrich); (v) 250 uM Guanosine combined with 250 uM Inosine; (vi)
250 M TMZ combined with 500 uM Guanosine; (vii) 250 uM TMZ
combined with 500 uM Inosine (Cat#l4125, Sigma-Aldrich); (viii) 250 uM
TMZ combined with 250 pM Guanosine and 250 pM Inosine. Control cells
received an equal amount of vehicle (i.e. PBS and/or DMSO) as per treated
cells. In LDH assay experiments, DMSO was used at a concentration equal
to 1% of the total volume. Cells treated with 1% of triton X-100 solution
(Cat#124102, Cell Biolabs, Inc.) were considered as positive controls (100%
relative cytotoxicity). Vehicle-treated cells were used as negative controls
(0% relative cytotoxicity). LDH activity quantification was assessed by
evaluating supernatants, following the manufacturer’s instructions. The
absorbance was measured at 450nm using a Multiskan SkyHigh
Microplate spectrophotometer (Thermo Scientific, Waltham, MA, USA).
The percentage of relative cytotoxicity was calculated using the formula:

ODsample — ODnegative CTRL
ODpositive CTRL — ODnegative CTRL

Yorelative cytotoxicity = ( ) % 100

Clonogenic assay

Clonogenic assay was performed by seeding cells at low density 400 cells/
well in a 6-well plate. Cells were treated with vehicle (DMSO) or TMZ at a
final concentration of 50 pM, for 24 or 72 h. After 10 days, colonies were
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fixed with methanol (Cat#412381, Carlo Erba, Milan, Italy) for 15 min at
room temperature. Then, colonies were stained with crystal violet
(Cat#61135, Sigma-Aldrich) for 25min at room temperature. A colony
composed of more than 50 cells were considered as a clone. Plating
efficiency (PE) of controls was calculated as:

_ Number of clones
" Number of plated cells

P.E.

The percentage of surviving fraction (SF) was calculated as:

P.E.sampl
TE.sample e) 100

S.F. (%over CTRL) = < P ECTRL

The average size was quantified in Fiji (version 2.14.0/1.54j).

Targeted metabolomics and metabolite ratio analysis
For analysis of metabolites, cells were treated with vehicle (DMSO) or
50uM TMZ for 24h and then trypsinized, resuspended in PBS (1 x 10°
cells/ml) and centrifuged at 300 x g for 5 min at room temperature. Cellular
pellet was deproteinized through a precipitating solution (75% acetoni-
trile + 25% KH,PO,4, 10mM, pH 7.4) and centrifuged at 20,890 x g for
10 min at 4 °C. Afterwards, supernatant was supplemented with chloroform
to extract the aqueous phase. Separation of selected metabolites was
achieved by flowing samples through a C18 chromatographic column
(Hypersil C-18, 250x 4.6 mm, 5pm particle size) settled in a HPLC
apparatus (ThermoFisher Scientific, Spectra System P4000 pump). The
diode array detector UV6000 (ThermoFisher Scientific) tuned at wave-
length of both 206 nm and 260 nm was used for metabolites identification
and quantification.

Employing metabolomics data, metabolite ratio analysis was performed
through MetaboAnalyst 5.0. Top ratios were calculated, based on the
average importance and rank frequency, for all tested cell lines.

Zebrafish model

Adult zebrafish (Danio rerio) were housed in the Model Organism
Facility-Center for Integrative Biology (CIBIO) University of Trento and
maintained under standard conditions. All zebrafish studies were
performed according to European and Italian law, D.Lgs. 26/2014,
authorisation 148/2018-PR to M. C. Mione. Fishes which developed brain
tumours, called zic:RAS, were generated as described [21]. The following
zebrafish transgenic lines were used during this study to generate the GBM
model:

- Et(zic4:Gal4TA4, UAS:mCherry)p,ms called zic:Gal4 [21];
- Tg(UAS:eGFP-HRAS_G12V);5006 called UAS:RAS [40].

RNA-seq
RNA, library preparation and sequencing were done as previously
described for 3 control brains (from 3 month old zic:Gal4 fish) [21] and 3
tumour brains (from 3 month old zic:RAS fish) [41]. Demultiplexed raw
reads (fastq) generated from the Illumina HiSeq were checked using
FASTQC tool (version 0.11.3) where all the samples passed the quality
standards. Alignment was done against the reference genome Danio rerio
assembly GRCz10 using STAR with recommended options and thresholds
(version 2.5) HTSeg-count (version 0.9.1) was used to generate raw gene
counts. Counts normalisation to Trimmed Mean of M-values (TMM) for
visualisation methods was performed by edgeR package (v.3.24.3). Analysis
of the expressions of the genes involved in metabolism in zebrafish brain
tumours was performed following the protocol previously described [42].
Specifically, we used 1421 human genes assigned to human metabolic
pathways described in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database [43]. Zebrafish orthologs of metabolic genes were
retrieved using the DIOPT online tool (https://fgr.hms.harvard.edu/diopt)
and filtered for a match score equal or greater than 6. The differential
expression analysis was performed using DESeq2 package (v.1.16). Top 50
GO pathways were calculated through Gene Ontology and pathway
analysis.

qRT-PCR
Gene expression on U-251 MG and T98-G was tested by performing qRT-PCR.
Cell pellets were resuspended in TRIzol (Cat#15596018, Thermo Fisher

Cell Death and Disease (2025)16:336


https://fgr.hms.harvard.edu/diopt

S. D'Aprile et al.

Table 1. List of primers used for qRT-PCR.

Gene Forward Primer Reverse primer

ND4 ACAAGCTCCATCTGCCTACGACAA TTATGAGAATGACTGCGCCGGTGA
FIS1 ACTACCGGCTCAAGGAATACG CATGCCCACGAGTCCATCTT
DNML1 TGGAGGCGCTAATTCCTGTC TCTGCTTCCACCCCATTTTCT
MFN2 GGGAAGGTGAAGCGCAA TTGTCCCAGAGCATGGCATT
TFAM CCGAGGTGGTTTTCATCTGT AGTCTTCAGCTTTTCCTGCG

OPA1 GAAAGGAGCTCATCTGTTTGGAGTC TTCTTCCGGAGAACCAAAATCG
MFN1 TCGGGAAGATGAGGCAGTTT TGCCATTATGCTAAGTCTCCG

18S CTTAGAGGGACAAGTGGCG ACGCTGAGCCAGTCAGTGTA

Scientific). RNA extraction was performed by chemical separation, while
cDNA was obtained by using High-Capacity cDNA Reverse Transcription Kit
(Cat#4368814, Thermo Fisher Scientific) according to manufacturer’s protocol.
Gene expression was analyzed using PowerUp™ SYBR™ Green Master Mix for
(Cat#A25741, Thermo Fisher Scientific) and Rotor-Gene Q 2plex (Qiagen,
Hilden, Germany). The relative expression level was determined by
comparison with the control housekeeping ribosomal RNA 18S by using
the 2722 method. Primers used for this assay are reported in Table 1.

Principal component analysis

Principal component analysis (PCA) was performed on qRT-PCR data. Scree
plot with explained variances and corr plot with principal components
(PCs) contribution expressed as square cosine (cos®) are shown. PCA is
expressed as a biplot of variables and key-coloured arrows represent each
variable. Analyses were performed using the RStudio software (Version:
2024.09.1 + 394).

MitoView and TMRM staining and analysis

Cells were plated on Poly-D-Lysine (PDL)-coated glass coverslips treated with
vehicle or 50 uM TMZ or 50 uM TMZ combined with 250 uM Guanosine and
250 uM Inosine. After 24 h, cells were washed in extracellular solution (ECS)
and incubated with 150 nM MitoView Green (Cat#70054-T, Biotium, San
Francisco, CA, USA) for 30 min at 37 °C, then with 100 nM Tetramethylrho-
damine, Methyl Ester, Perchlorate (TMRM) (Cat#T668, Invitrogen, Waltham,
MA, USA) for 30 min at 37 °C, diluted in ECS.

Live images of MitoView Green and TMRM stained cells were acquired
using a LSM 800 confocal microscope with a Plan-Apochromat 63x/1.4 oil
DIC M27 objective (Carl Zeiss, Oberkochen, Germany) using 488 nm, and
561 nm diode laser excitation. Emission spectra were acquired sequentially
with 505-555 nm (MitoView) and 555-700 nm (TMRM) bandpass emission
filters. Image stack series of cells (500-nm-thick z stacks) were recorded.

Morphological analysis of mitochondria stained with MitoView was
performed by the Mitochondria analyser plugin [44] run in Fiji [45] using
Fiji (version 2.14.0/1.54j). To describe the morphology of mitochondria, the
total number of branches, number of branches/mito and number of
branches junctions/mito were calculated. TMRM mean fluorescence
intensity (MFI) and % of occupancy were quantified with Fiji (version
2.14.0/1.54j), defining the area of each cell.

Statistical analysis

Data analysis was performed using GraphPad Prism software version 8.0.1.
The sample size for each experiment is reported in the figure legends. No
statistical methods were used to predetermine sample sizes, but our
sample sizes were similar to those reported in previous publications
[21, 46]. Quantifications were performed by operators blinded to the
treatment, and no data points or animals were excluded from the analysis
ex-ante. Outliers were identified using ROUT method with a Q = 1%. The
data were assessed for normality distribution by using the Shapiro-Wilk
test or D’Agostino & Pearson test, according to the sample size, followed
by an evaluation for homogeneity of variance. Datasets that passed both
tests were analysed with a two-tailed unpaired Student's t-test for
comparison of n =2 groups, or one-way or two-way analysis of variance
(ANOVA), followed by Holm-Sidak post-hoc test for multiple comparisons,
for comparison of n>3 groups. Datasets with non-normal distribution
were analysed using Kruskal-Wallis test. Data are expressed as mean +
standard deviation (SD). For all statistical tests, p-values <0.05 were
considered statistically significant.
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