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AK4 promotes nasopharyngeal carcinoma metastasis and
chemoresistance by activating NLRP3 inflammatory complex
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Metastasis is the main cause of treatment failure in nasopharyngeal carcinoma (NPC). Our previous study developed a
transcriptomics-based gene signature (AK4, CPAMD8, DDAH1, and CRTR1) to predict metastasis in NPC and identify candidates that
could benefit from induction chemotherapy (IC). Of these, adenylate kinase 4 (AK4) is a potent oncogene involved in the malignant
progression of a variety of tumors. This study investigated the expression and mechanism of action of AK4, a member of the AK
family of enzymes, in NPC. Quantitative real-time PCR, western blotting, and immunohistochemistry revealed that AK4 was
upregulated in NPC and correlated with metastasis and chemoresistance. Stable ectopic overexpression of AK4 in NPC cell lines
conferred resistance to taxol-induced apoptosis, promoted the migration, invasion, and EMT phenotype, and induced IL-1β
secretion by activating the NLRP3 signaling pathway; knockdown of AK4 had the opposite effects. Mechanistically, AK4 co-localized
with NNT, upregulated NLRP3 and IL-1β, and consequently altered NPC cell metastasis and chemoresistance. AK4 may play a role in
the development of NPC and represent a potential therapeutic target.
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INTRODUCTION
The incidence of nasopharyngeal carcinoma (NPC) is very high in
southern China, and metastasis is the main cause of treatment
failure in patients with NPC [1–3]. Several prospective randomized
trials have demonstrated that induction chemotherapy (IC)
followed by concurrent chemoradiotherapy (CCRT) reduces the
risk of distant metastasis. However, our previous study showed
that approximately 20% of patients are resistant to IC and at an
increased risk of developing distant metastasis [4]. Therefore,
distant metastasis and chemoresistance are significant obstacles
to enhancing the survival rate of patients with NPC. Addressing
these challenges is a pressing clinical issue requiring immediate
attention. However, the molecular mechanisms underlying metas-
tasis and chemoresistance of NPC remain unclear.
Emerging evidence has indicated that certain gene expression

patterns can be used as molecular markers of metastasis and
chemoresistance [5]. In our previous study, we performed
transcriptome sequencing on NPC biopsy samples from 12 pairs
of patients with different metastasis risks and identified 11
differentially expressed genes (DEGs). Four of these (AK4,
CPAMD8, DDAH1, and CRTR1) were used to create a gene
signature that effectively categorized patients into low-risk and
high-risk metastasis groups and could be used to identify
candidates who could benefit from IC + CCRT [6].

To further study the molecular mechanisms underlying
metastasis and chemoresistance in NPC, we identified adenylate
kinase 4 (AK4), a member of the AK family of enzymes, as the
target gene. To date, nine known isoforms of AK, from AK1 to AK9
according to the order of discovery, have been identified [7, 8].
AK4 is localized in the mitochondrial matrix [9] and physically
binds to the mitochondrial ADP/ATP translocase as a stress-
responsive protein that protects cells from death [10]. Unlike other
AK enzymes, AK4 is inactivated by enzymes in vitro but retains its
nucleotide-binding ability [11]. AK4 is overexpressed in lung
cancer [12], and high AK4 expression is associated with poor
survival in many cancers [12–15]. Many studies have demon-
strated that AK4 regulates the sensitivity of cancer cells to
antitumor drugs [16–18] and radiation therapy [19, 20]. Addition-
ally, AK4 expression is correlated with tumor invasion [21, 22].
Several studies have investigated the mechanisms underlying AK4
expression and tumor metastasis. Jan et al. [12]. demonstrated
that AK4 promotes lung cancer metastasis by downregulating the
expression of the transcription factor ATF3. Additionally, AK4
overexpression promotes lung cancer metastasis by enhancing
hypoxia-inducible factor 1α (HIF-1α) stability and epithelial-to-
mesenchymal transition (EMT) under hypoxia [23]. However,
whether AK4 regulates metastasis and chemoresistance in NPC
remains unclear.
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In this study, we found that AK4 was highly expressed in NPC
cells, and that high expression of AK4 significantly reduced the
sensitivity of NPC cells to taxol, promoted the invasion and
metastasis of NPC cells, and enhanced EMT in vitro and in vivo.
Mechanistically, we found that IL-1β is a key downstream gene
affected by AK4, and AK4 may promote IL-1β release by activating
the NLRP3 inflammasome signaling pathway binding with
nicotinamide nucleotide transhydrogenase (NNT), thereby pro-
moting invasion, migration, and chemoresistance of tumor cells.
Together, these findings demonstrate the important role of AK4 in
mediating taxol resistance and metastasis in NPC.

MATERIALS AND METHODS
Patients and tumor tissue specimens
We obtained 108 paraffin-embedded specimens from the Sun Yat-sen
University Cancer Center (SYSUCC), including 13 normal nasopharyngeal
epithelial samples, 47 histologically and clinically diagnosed non-
metastatic NPC samples, and 48 metastatic foci biopsy samples. In
addition, we collected peripheral blood samples prior to any anticancer
treatment from 262 patients with NPC, who were diagnosed at the SYSUCC
between 2010 and 2017. The eighth edition of the American Joint
Committee on Cancer Staging Manual was used for restaging of all
patients.

RNA extraction, cDNA library preparation, RNA-Seq, and RT-
PCR
RNA extraction, cDNA library preparation, and RNA-Seq were performed in
accordance with our previous study [6]. RT-PCR was conducted as
previously described [24] using primers designed using Primer Express
Software (version 2.0; Applied Biosystems). Target gene expression data
were normalized to that of GAPDH, and all experiments were performed in
triplicate. The primer sequences used are listed in Supplementary Table 1.

Microarray data process and gene set enrichment
analysis (GSEA)
Microarray data processing and visualization of microarray datasets (GEO
accession numbers: GSE12452 and GSE53819) from the NPC and
control samples were retrieved from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). Subsequently, we performed an integrative
analysis of The Cancer Genome Atlas head and neck tumor and normal
tissue microarray data (https://cancergenome.nih.gov/). Gene expression
profiles of 24 cases of NPC were used to conduct GSEA (http://
software.broadinstitute.org/gsea/msigdb) [25] to identify gene signatures
between groups with high and low AK4 expression levels.

Cell lines, cell culture, plasmids, transfection, and RNA
interference
Human NPC cells CNE1, CNE2, HK1, HONE1, HNE1, SUNE1, SUNE2, and
CNE2 subclones S18 and S26, as well as SUNE1 subclones 5-8 F and 6-10B,
were maintained in RPMI-1640 (Invitrogen, Grand Island, NY, USA) and 5%
fetal bovine serum (FBS; HyClone, Logan, UT, USA); NP69 immortalized
nasopharyngeal epithelial cells were cultured in keratinocyte/serum-free
medium (Invitrogen), and 293FT cells were maintained in DMEM (Gibco,
Grand Island, NY, USA) supplemented with 10% FBS at 37 °C with 5% CO2.
The cells were treated with interleukin (IL)-1β or interleukin 1 receptor
antagonist (IL-1Ra) or transfected with a recombinant lentivirus carrying a
human AK4 overexpression plasmid, shRNA, or corresponding empty vectors
(Genecopoeia, Guangzhou, China). Effective siRNA oligonucleotides target-
ing NLRP3 and NNT were obtained from RiboBio (Guangzhou, China). All
primers and oligonucleotides used for plasmid construction are listed in
Supplementary Table 2 (Primers and Oligonucleotides). 293FT cells were co-
transfected with lentivirus packaging expression plasmids to generate stably
transfected cell lines. The lentiviral particles were subsequently harvested,
and they were infected into NPC cells after 48 h. Stable clones were then
selected using 0.5–1 μg/mL puromycin (Sigma-Aldrich), and RT-PCR or
western blotting assays were used to validate the infection efficiency.

Western blotting and immunohistochemistry (IHC)
Western blotting [24] was performed using anti-AK4 rabbit polyclonal antibody
(1:1000; Proteintech); antibodies against E-cadherin, vimentin, IL-1β, ASC, NNT

(1:1000, Abcam), NLRP3 (1:1000, Adipogen), procaspase-1, caspase-1, and pro-
IL-1β (1:1000, Proteintech); and anti-α-tubulin monoclonal antibody (1:2000;
Proteintech). For correlation analysis, NPC tissue sections were subjected to IHC
staining [24] using an anti-AK4 polyclonal antibody (1:100; Proteintech), IL-1β
(1:200; Proteintech) and NNT (1:100; Abcam) at 4 °C overnight; normal goat
serum was used as the negative control. The degree of immunostaining was
scored independently by two observers in a blinded manner. For histological
evaluation, mouse lung metastatic nodules were resected, fixed in 4%
paraformaldehyde, and routinely processed.

Wound healing, transwell migration and invasion assay,
and ELISA
Transfected cells (1 × 106) were seeded, allowed to reach 70–80%
confluence, and subsequently starved for 24 h. The cell monolayers were
then wounded with a sterile plastic tip and cultured in serum-free medium.
Cell migration was monitored every 12 h under a microscope (Nikon).
Stable cells (6 × 104) were seeded on top of a thick layer with or without

Matrigel in transwell inserts (BD Biosciences) and cultured for another 24 h.
Invasive cells adhering to the lower surface of the filter were washed with
phosphate-buffered saline (PBS), fixed in 4% paraformaldehyde, and
stained with 0.05% crystal violet. Invasive cells were counted under a light
microscope (Zeiss).
ELISA was performed using the IL-1β ELISA kit (ab214025; Abcam)

according to the manufacturer’s instructions.

Drug treatment and CCK-8 assay
Cells were seeded in triplicate into 96-well plates (1 × 104 cells/well; 100 µl
medium).
Cells were cultured for 96 h and then incubated with 0, 2, 4, 6, 10, and

16 nM taxol (Hospira Australia Pty Ltd., Haikou, China) for 24 h. CCK-8
solution (20 µl; 5 mg/ml) was added 4 h before the end point; 200 µl of
DMSO was added to each well, and absorbance was measured at 450 nm.
All experiments were performed in triplicate.

Annexin-V and TUNEL assay
Cells (1 × 105) were seeded in triplicate into 6-well plates and harvested
24 h later.
Cells were treated with taxol for 72 h, stained using the Annexin V-FITC

apoptosis detection kit (Beyotime), and immediately analyzed using the
FSCAN flow cytometer (BD Biosciences, USA). Slices from xenograft tumors
were stained using the RiboAPO One-Step TUNEL Apoptosis Kit to detect
apoptotic cells.

ROS and measurement of NADPH
Lipid reactive oxygen species (ROS) production was detected by flow
cytometry using C11-BODIPY dye (#D-3861; Life Technologies, Grand
Island, NY, USA) according to the manufacturer’s instructions. Briefly, cells
were seeded into 12-well plates and cultured in a 37 °C incubator with 5%
CO2. The cells were then treated with different cytotoxic reagents for the
indicated times, C11-BODIPY was added to the cell supernatants, and the
cells were cultured for more than 30min before ROS detection. ROS can
oxidize the polyunsaturated butadienyl portion of C11-BODIPY, and then
the fluorescence emission peak of the dye shifted from ~590 nm to
~510 nm. The NADPH/NADP+ ratio was determined using an NADP + /
NADPH Assay Kit with WST-8 (S0179, Beyotime, China) according to the
manufacturer’s instructions as described previously [26].

Mass spectrometry and co-immunoprecipitation (co-IP) assay
For immunoprecipitation (IP) assays, 6-10B cells were lysed with IP lysis
buffer. Primary anti-AK4 (2 μg; Proteintech) or anti-IgG (negative control,
3 μg; Proteintech) antibodies were incubated with the lysates at 4 °C
overnight. Protein A/G Sepharose beads (Thermo Fisher Scientific) were
used to recover the immune complexes, which were washed and collected
after isolation. Mass spectrometry analysis was performed by Huijun
Biotechnology (China). For the co-IP assay, western blotting was performed
to determine the protein levels.

Immunofluorescence staining
For the immunofluorescence staining assay, the cells were cultured on
coverslips (Thermo Fisher Scientific). After 24 h, the cells were fixed in 2%
paraformaldehyde, permeabilized with 0.5% Triton X-100 in PBS, and
incubated with primary anti-AK4 (1:100; Proteintech) and anti-NNT (1:200;
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Abcam) antibodies at 4 °C overnight. The coverslips were incubated with
Alexa Fluor 488 and 594 goat IgG secondary antibodies (1:1,000; Abcam)
and counterstained with 4′, 6-diamidino-2-phenylindole. Images were
captured using a confocal laser scanning microscope (Olympus FV1000,
Tokyo, Japan).

In vivo lung metastasis model and xenograft model
Female BALB/c nude mice (4 weeks old) were purchased from the
Guangdong Medical Laboratory Animal Center (Guangzhou, China). For the
lung metastasis model, SUNE2-AK4/SUNE2-Vector cells or 5–8F-Ri-Vector/
5-8F-AK4-Ri1 cells were resuspended in PBS, and 1 × 106 cells were injected
into the tail vein of the mice (n= 6 per group). Eight weeks later, the mice
were sacrificed, and lung metastatic colonies were quantified. For IL-1Ra
treatment of the lung metastasis model, SUNE2 cells with or without AK4
overexpression (1 × 106 cells in 100 μl PBS) were injected into the tail vein
of mice. Two weeks later, 100 μl of saline or IL-1Ra at a dose of 1 mg/kg/
day was delivered intraperitoneally for 21 days. Three weeks later, the mice
were sacrificed for further analysis.
For the xenograft model, female BALB/c nude mice were randomly

divided into two groups (n= 12) and subcutaneously inoculated with
SUNE2-AK4/SUNE2-Vector cells or 5-8F-Ri-Vector/5-8F-AK4-Ri1 cells
(1 × 106; 100 μl sterile PBS). Tumor volumes were measured every three
days ([length × width2]/2). When tumors became palpable (approximately
100 mm3), the mice were intraperitoneally injected with 100 μl dimethyl
sulfoxide or 5mg/kg taxol (n= 6 per group) every two days. On day 31, the
primary tumors were carefully removed, imaged, sliced, and analyzed
using IHC and TUNEL assays.
All animal experiments were performed according to the protocols of

the Institutional Animal Care and Use Committee of Sun Yat-sen University
Cancer Center. All experimental methods complied with the guidelines of
the Declaration of Helsinki.

Statistical analysis
All data are presented as the mean ± SEM from at least three independent
experiments. A two-tailed Student’s t-test was used for comparisons
between groups. Comparisons among categorical variables were per-
formed with χ2 and Fisher’s exact tests.
Kaplan–Meier analysis and the log-rank test were used to compare the

survival rates. Multivariate analysis was performed using the Cox
proportional hazards model. All statistical analyses were performed using
R (version 3.6.0), SPSS (version 22.0; IBM Corp., Armonk, NY, USA), and
GraphPad Prism 5. All statistical tests were two-sided, and statistical
significance was set at p < 0.05.

RESULTS
AK4 is upregulated in NPC and correlated with metastasis and
chemoresistance
Tumor and normal tissue microarray data (NPC, GSE12452,
GSE53819; head and neck tumor, the Cancer Genome Atlas)
revealed that AK4 was the only gene that was upregulated in both
NPC and head and neck tumor samples compared to normal
samples among the gene signatures (AK4, CPAMD8, DDAH1, and
CRTR1) (Fig. 1A, B, C; Supplementary Fig. 1A, B, C). Furthermore,
high expression of AK4 was correlated with worse prognosis in
patients with head and neck cancer patients compared with low
expression of AK4 (Supplementary Fig. 1D). Additionally, our re-
analysis of previously published data6 showed that patients with
nasopharyngeal carcinoma with high AK4 expression have poor
prognosis (Supplementary Fig. 1E). No correlation was found
between AK4 expression and stage, grade, or TNM classification
(Supplementary Table 2). GSEA [25] of our published gene
expression profiles of 12 pairs of patients with different metastasis
risks demonstrated that AK4 expression correlated positively with
NPC-up gene signatures and inversely with NPC-down gene
signatures (Fig. 1D). Western blotting revealed that AK4 was
upregulated in all 11 NPC cell lines compared to immortalized
nasopharyngeal epithelial NP69 cells (Fig. 1E). IHC results showed
that AK4 expression was higher in metastatic and primary
nasopharyngeal tissues than in normal nasopharyngeal tissues.
Interestingly, we found that the expression of AK4 was still higher

in metastatic lesions than in primary lesions (Fig. 1F, G). In
addition, AK4 was found to be significantly upregulated in
chemoresistant patients compared with chemosensitive patients
by reanalysis of our previous data [6] (Fig. 1H), suggesting a
correlation between AK4 upregulation and the clinical response to
IC in NPC. Increasing evidence has demonstrated that taxol-based
IC can bring survival benefits to nasopharyngeal carcinoma
patients. Furthermore, GSEA of our previous gene expression
profiles revealed that AK4 expression positively correlated with
metastasis and docetaxel resistance gene signatures (Fig. 1I).
Taken together, these results suggest that AK4 expression is
correlated with metastasis and chemoresistance in NPC.

AK4 confers resistance to taxol-induced apoptosis in vitro
The above results suggest AK4 as a key molecule in NPC
metastasis and chemoresistance; however, whether AK4 affects
NPC metastasis and chemoresistance remains unknown. We
selected the 6-10B and SUNE2 cell lines for AK4 overexpression
due to their relatively low endogenous expression levels of AK4
(Fig. 2A). In contrast, we chose the 5–8 F and S18 cell lines for AK4
knockdown, as they exhibit high endogenous expression of AK4
(Fig. 2B). Compared to control cells, AK4 overexpression conferred
taxol resistance (Fig. 2C) and attenuated taxol-induced apoptosis
(Fig. 2E). Conversely, AK4 knockdown increased taxol sensitivity
(Fig. 2D) and the number of viable and non-viable apoptotic cells
(Fig. 2F).

AK4 promotes the migration, invasion, and EMT of NPC cells
in vitro
As shown in Fig. 3A, AK4 overexpression significantly increased
cell mobility compared to vector control cells. Additionally,
compared to the control cells, AK4 overexpression significantly
increased the number of migratory and invasive cells (Fig. 3B).
Conversely, AK4 knockdown reduced the invasiveness and
migration of NPC cells (Fig. 3C, D). In addition, GSEA of our
previous gene expression profiles demonstrated that AK4 expres-
sion positively correlated with EMT gene signatures (Fig. 3E).
Western blotting revealed that AK4 overexpression significantly
downregulated the epithelial marker E-cadherin and upregulated
the mesenchymal marker vimentin (Fig. 3F). Conversely, AK4
knockdown significantly downregulated E-cadherin expression
and upregulated vimentin expression (Fig. 3F). Collectively, these
data indicate that AK4 promotes EMT of NPC cells in vitro.

AK4 promotes chemoresistance and metastasis in vivo
To examine the effects of AK4 on chemoresistance in vivo, nude
mice were subcutaneously injected with SUNE2 and 5–8 F cells.
When the tumors reached a volume of approximately 100 mm3,
the animals were randomly assigned to receive intraperitoneal
injections of DMSO (control) or taxol. Interestingly, the volume of
tumors formed by SUNE2-AK4 cells was not significantly affected
by taxol treatment (Fig. 4A). However, taxol inhibited the growth
of tumors formed by vector control cells and AK4 knockdown cells
(Fig. 4B). Consistent with these results, tumors in the SUNE2-AK4
group contained significantly fewer apoptotic cells than those in
the other groups (Fig. 4C), strongly suggesting that AK4 confers
resistance to taxol in NPC. To evaluate the effect of AK4 on NPC
metastasis in vivo, we used a lung metastasis colonization model.
Hematoxylin and eosin staining confirmed that mice with AK4
knockdown exhibited remarkably fewer and smaller metastatic
tumors in the lungs (Fig. 4D, E, p < 0.01).

Transcriptome analysis reveals that IL-1β is a downstream
target affected by AK4
To elucidate the molecular mechanisms by which AK4 contributes
to the invasive phenotype of NPC cells, we performed transcrip-
tome analysis to compare the gene expression of 5–8 F NC versus
5–8 F shAK4 cells and S18 NC versus S18 shAK4 cells.
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Fig. 1 AK4 is upregulated in nasopharyngeal carcinoma (NPC) and correlated with metastasis and chemoresistance. AK4 expression in
NPC tumor and normal tissue samples in array express microarray data (GEO accession number: GSE12452 and GSE53819; http://
www.ncbi.nlm.nih.gov/geo/) (A, B), The Cancer Genome Atlas (head and neck) tumor, and normal tissue microarray data (https://
cancergenome.nih.gov/) (C). GSEA plot showing that AK4 expression is positively correlated with NPC-activated gene signatures
(SENGUPTA_NASOPHARYNGEAL_CARCINOMA_UP) and inversely correlated with NPC-suppressed gene signatures (SENGUPTA_NASOPHAR-
YNGEAL_CARCINOMA_DN) in our previous nasopharyngeal carcinoma gene expression profiles (n= 24) (D). GSEA was performed using GSEA
4.0.3 (http://www.broadinstitute.org/gsea/). Western blotting of AK4 protein expression in NP69 immortalized nasopharyngeal epithelial cells
and eleven cultured NPC cell lines (E). Representative images of immunohistochemical staining for AK4 in normal nasopharyngeal epithelial
biopsies, low and high AK4 expression in NPC tissues, and metastatic tissues of patients with NPC (F, G). Representative images of
immunohistochemical staining of AK4 in chemosensitive and chemoresistant NPC tissues from our previous study (H). GSEA plot showing that
AK4 expression is positively correlated with metastasis-activated gene signatures (WINNEPENNINCKX_MELANOMA_METASTASIS_UP) and
inversely correlated with metastasis-suppressed gene signatures (WINNEPENNINCKX_MELANOMA_METASTASIS_DN) in our previous NPC
gene expression profiles (n= 24) (I).
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According to the conditions (log2Fc= 2, p < 0.05), 41 down-
regulated genes were identified between the four treatment
groups and the control group (Fig. 5A).
Next, we conducted gene annotation enrichment analysis using

the Kyoto Encyclopedia of Genes and Genomes database to
determine whether particular gene sets are significantly enriched
in DEGs regulated by AK4.
As shown in Fig. 5B, DEGs were mainly concentrated in

signaling pathways such as the MAPK signaling pathway, NOD-
like receptor signaling pathway, and cytokine receptor interaction.
Venn diagram analysis further identified that IL-1β was a
downstream target affected by AK4 and a key molecule in the
above three signaling pathways (Fig. 5C). Furthermore, the mRNA
expression level of IL-1β in AK4 knockdown cells was significantly
decreased (Fig. 5D). Additionally, ELISA results also showed that
the expression levels of IL-1β in the conditioned medium of NPC
cells were influenced by AK4 (Fig. 5E).

AK4 promotes NPC cell metastasis and chemoresistance by
regulating IL-1β secretion
IL-1β is a member of the IL-1 family, whose main function is to
participate in inflammatory responses as an endogenic heat
source [27]. Recent studies have shown that IL-1β plays an
important role in tumor metastasis [28–34]. The transwell assay
showed that the number of sublevel cells in the control group was
significantly lower than that in the treatment group (10 pg/ml,
20 pg/ml, and 40 pg/ml) after 24 h of IL-1β treatment, and the
difference between the treatment and control groups was
statistically significant (p < 0.05). Additionally, the effect of IL-1β
on NPC migration increased with the increase in concentration
(Fig. 6A). In summary, the inflammatory factor IL-1β can promote
the migration of NPC 5-8 F cells in a concentration-dependent
manner. However, whether AK4 promotes metastasis through
IL-1β in NPC cells has not been studied to date; therefore, we
conducted the following studies. Inhibition of IL-1β signaling with
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IL-1Ra partially abrogated AK4-promoted migration, invasion, and
chemoresistance (Fig. 6B–E), indicating that IL-1β signaling is a
functional mediator of the ability of AK4 to promote migration,
invasion, and resistance to taxol-induced apoptosis in vitro.
Additionally, as shown in Fig. 6D, IL-1Ra inhibited lung metastasis
in the vector control cells and AK4 overexpressing cells (p > 0.05).
Further, we used ELISA to analyze the expression of IL-1β

protein in the serum samples of 262 patients with NPC. The ROC
value of IL-1β concentration (31.3 pg/ml) was taken as the cut-off
value, and it was divided into high and low concentration groups.
The results showed that the high concentration of IL-1β in serum
was positively correlated to the T stage of NPC (p= 0.035)
(Supplementary Table 3). Multivariate analysis confirmed AK4
expression was an independent prognostic factor for DMFS
(P= 0.001, Supplementary Table 4). Additionally, survival analysis
showed that the 5-year distant metastatic rate of patients with
NPC and higher serum IL-1β levels was significantly lower than
that of patients with NPC and lower IL-1β concentration,
indicating that patients with NPC and a higher serum IL-1β
concentration were prone to metastasis (Fig. 6E).
In addition, microarray analysis (GSE13597, GSE53819, and TCGA)

revealed that AK4 expression was positively correlated to IL-1β
expression in NPC and head and neck tumor samples (Supplemen-
tary Fig. 2A, B, C). Additionally, IHC was performed to detect AK4 and

IL-1β expression in the same cohort of NPC samples (n= 47). The
results revealed a significant positive correlation between IL-1β and
AK4 expression (r= 0.331, p= 0.023, Supplementary Fig. 2D, E).
Western blotting further revealed the positive association between
AK4 and IL-1β in NPC samples (r= 0.803, p= 0.001, Supplementary
Fig. 2F, G). These results strongly suggest that AK4 promotes
metastasis and chemoresistance in NPC via IL-1β, and IL-1βmight be
a potential therapeutic target for NPC.

AK4 induces IL-1β secretion by activating the NLRP3 signaling
pathway
The production of active, mature IL-1β is mainly dependent on the
cleavage of inactive pro-IL-1β precursor by caspase-1, which is
activated in a large multiprotein complex called the inflamma-
some. The NLRP3 inflammasome, comprising the NOD-like
receptor protein NLRP3, the adaptor protein ASC, and pro-
caspase-1, is the most important inflammasome involved in
IL-1β processing [35]. Furthermore, GSEA revealed that DEGs were
mainly concentrated in the NOD-like receptor signaling pathway
and cytokine receptor interaction, which indicated that AK4 might
induce IL-1β secretion through the NLRP3 signaling pathway.
Our western blotting results revealed that AK4 overexpression

upregulated the expression of NLRP3, caspase-1, and IL-1β,
whereas AK4 knockdown in cells reduced the expression levels
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of NLRP3, caspase-1, and IL-1β (Fig. 7A). In addition, AK4
overexpression increased the binding affinity of NLRP3 to ASC,
indicating that AK4 promoted the NLRP3/ASC interaction (Fig. 7B).
Next, we determined whether NLRP3 inflammasome activation is
required for AK4-mediated IL-1β release and pro-metastatic
effects on NPC cells. NLRP3-targeting siRNAs were transfected
into 6-10B cells stably overexpressing AK4 (Fig. 7C). The results
showed that NLRP3 knockdown significantly abrogated AK4-
mediated IL-1β release and promoted its migration and invasion
(Fig. 7D, E). The results also demonstrated that AK4 activated the
NLRP3 signaling pathway, which further led to IL-1β release and
promotion of migration and invasion.

AK4 might regulate NLRP3 signaling by binding to NNT
Previous studies have reported that NLRP3 inflammasomes can be
activated by diverse ligands and stimuli such as ATP, low
intracellular K + , and high ROS [36–38]. Our results indicated that

AK4 overexpression increased ROS levels and vice versa (Fig. 8A, B).
A previous study demonstrated that the enhanced ROS response
was mainly regulated by NADPH oxidase, and our results showed
that intracellular NADPH/NADP+ levels were affected by AK4
overexpression or suppression in NPC cells (Fig. 8C, D). Moreover,
NADPH generation is regulated by NNT, which catalyzes the transfer
of hydride between NADH and NADP+ [39]. Interestingly, using IP
and mass spectrometry, we found that the NNT protein strongly
interacted with AK4 (Fig. 8E, F). Immunofluorescence staining
revealed that endogenous AK4 co-localized with NNT in the
cytoplasm of NPC cells (Fig. 8G, H). Additionally, NNT-targeting
siRNAs were transfected into 6-10B cells stably overexpressing AK4;
western blotting showed that NNT knockdown significantly down-
regulated NLRP3 and IL-1β (Fig. 8I). Based on the above results, we
speculated that AK4might bind to the NNT protein and regulate the
generation of NADPH and, subsequently, ROS, which plays a vital
role in NLRP3 inflammasome activation.

Fig. 4 AK4 promotes chemoresistance and metastasis in vivo. Tumors formed by AK4-transduced SUNE2 cells were larger than the vector
control tumors. Conversely, tumors formed by AK4-silenced 5–8 F cells were smaller than those formed by the vector cells (A). Tumor volume
growth curve (B). Representative images of immunofluorescence staining of TUNEL-stained cells in the indicated tumors (C). SUNE2-vector,
SUNE2-AK4, 5–8F-NC, and 5–8 F shAK4#1 cells (1 × 106 cells in 100 µl PBS) were injected into the tail vein of mice. Mice in the AK4 group
displayed a significantly higher number of metastatic lung nodules than mice in the control group and vice versa. Representative images and
quantification of metastatic nodules in the lungs of mice (D, E). Data are represented as the mean ± SEM. ** p < 0.01, *** p < 0.001; Student’s
t test.
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DISCUSSION
Distant metastasis and chemoresistance are major obstacles to
improving the prognosis of patients with NPC [4]. In this study, we
demonstrated that AK4 promoted NPC metastasis and chemore-
sistance by promoting IL-1β release by regulating the NLRP3
inflammatory complex.
Our data showed that AK4 significantly enhanced cell migration

and promoted NPC metastasis, both in vitro and in vivo. Jan et al.
demonstrated that AK4 promotes lung cancer metastasis by
downregulating the expression of the transcription factor ATF3
and enhancing HIF-1α stability and EMT under hypoxia [12, 23].
However, we identified a novel pro-metastasis mechanism of AK4
in NPC—AK4 promoted NPC cell metastasis by regulating IL-1β
secretion. Consistent with a previous study that AK4 could
regulate the expression of inflammatory genes, including IL-1β,
IL-6, and TNF-α, in M1 macrophages [40], our study also suggested
that IL-1β was a downstream target affected by AK4 in NPC cells.
We demonstrated that patients with NPC and a higher serum IL-1β

concentration are prone to metastasis, and IL-1β can promote the
migration of NPC cells in a concentration-dependent manner.
Furthermore, the inhibition of IL-1β signaling using IL-1Ra partially
abrogated AK4-promoted migration, invasion, and chemoresis-
tance, indicating that IL-1β signaling is a functional mediator of
the ability of AK4 to promote biological phenotypes both in vitro
and in vivo. IL-1β is a prominent tumorigenic inflammatory marker
that can trigger a cascade of inflammatory mediators, and
extensive preclinical data are available to support the role of
IL-1β in various stages of cancer development and progression,
including tumor initiation, promotion, angiogenesis, and metas-
tasis [41–43]. In addition, research has shown that chronic
IL-1β-induced inflammation regulates EMT memory phenotypes
via epigenetic modifications in non-small cell lung cancer [41–43].
In recent years, many basic and translational studies have
investigated the development and use of novel IL-1β blockers in
cancer therapy. IL-1β blockers, such as canakinumab and anakinra,
have already been approved. They are used for the treatment of

Fig. 5 Transcriptome analysis reveals that IL-1β is a downstream target affected by AK4. Heat-map analysis of 41 downregulated genes
screened out between S18 NC versus S18 shAK4#1, S18 shAK4#2 cells and 5–8 F NC versus 5–8 F shAK4#1, 5–8 F shAK4#2 cells (A). Kyoto
Encyclopedia of Genes and Genomes pathway determined the MAPK signaling pathway, NOD-like receptor signaling pathway, and cytokine
receptor interaction gene sets, which were significantly enriched in DEGs regulated by AK4 (B). Venn diagram analysis shows that IL-1β is a key
molecule in the above three signaling pathways (C). The mRNA expression level of IL-1β in AK4 knockdown cells was significantly decreased
(D). The expression levels of IL-1β in the conditioned medium of AK4 knockdown cells was significantly decreased (E). Data are represented as
the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001; Student’s t test.
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some autoimmune and autoinflammatory diseases and are
currently being tested in preclinical and human clinical trials for
cancer therapy [44, 45]. Together, our findings demonstrated that
IL-1β inhibition might be an attractive therapeutic target in NPC,
and further clinical trials are needed to confirm the efficacy and
safety of IL-1β blockers in NPC. However, how AK4 regulates the
expression of IL-1β is still unclear.
Previous studies have indicated that IL-1β was mainly

produced by the NLRP3 inflammasome complex, which com-
prised NLRP3, together with molecules such as the adaptor
protein ASC, which promote caspase-1 activation, thereby
promoting IL-1β release [35]. Western blotting revealed that
AK4 overexpression activated the NLRP3 inflammasome. Increas-
ing evidence suggests that NLRP3 inflammasome activation
depends on ROS generation. All known NLRP3 activators

generate ROS; conversely, inhibitors of ROS block inflammasome
activation [36]. Additionally, a previous study has shown that
higher AK4 levels in MCF-7 cells elicit an increased ROS
generation [18]. Consistent with this, we found that AK4
overexpression increased ROS levels in NPC cells. Therefore,
increasing the AK4-ROS-NLRP3 axis is crucial for NLRP3
inflammasome activation and subsequent IL-1β release. Given
that AK4 contributes to chemoresistance and metastasis by
activating the NLRP3 inflammasome, AK4 may be a promising
novel molecular target for NPC.
Our study found that AK4 strongly interacts with NNT, which is

vital for the generation of NADPH and enhancement of ROS
response. Additionally, knockdown of NNT significantly down-
regulated the expression of NLRP3 and IL-1β. Based on the
above results, we speculated that AK4 might bind to the NNT

Fig. 6 AK4 promotes NPC cell metastasis by regulating IL-1β secretion. The promoting effect of IL-1β on NPC migration increased with the
increase in concentration (A). Inhibition of IL-1β signaling using IL-1Ra partially abrogated AK4-promoted migration, invasion, and resistance
to taxol-induced apoptosis in vitro (B–E). IL-1Ra inhibited lung metastasis in the vector control cells and AK4 overexpressing cells (D). Survival
analysis showed that the 5-year DMFS, PFS, and OS rates of patients with NPC and higher serum IL-1β levels were significantly lower than
those of patients with NPC and lower IL-1β concentration (E). Data are represented as the mean ± SEM. * p < 0.05; ** p < 0.01; *** p < 0.001;
Student’s t test.
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protein and regulate the generation of NADPH and, subse-
quently ROS, which plays a vital role in NLRP3 inflammasome
activation. However, the exact binding sites of AK4 and NNT
were not determined. Regardless of the binding site, this study
demonstrates that AK4 upregulation in NPC confers chemore-
sistance and metastasis by activating the NLRP3 pathway. AK4
holds promise as a novel molecular target and potential
prognostic biomarker for NPC.

CONCLUSION
In summary, this study showed that upregulation of AK4 conferred
chemoresistance and promoted metastasis in NPC via IL-1β by
regulating the NLRP3 inflammatory complex. Additionally, high IL-
1β expression was associated with advanced clinical stage and
was a prognostic factor associated with significantly poorer overall
survival. These results may lead to novel therapeutic approaches
for patients with NPC.
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