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Roles of the phagocytosis checkpoint in radiotherapy
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Radiotherapy is widely used in cancer treatment in both curative and palliative care due to its good safety profile and broad clinical
availability. It not only directly destroys tumor cells by damaging their DNA but also plays a critical immunomodulatory role, making it a
potential combination partner for immunotherapy. Radiotherapy-induced immune effects are complex. They could enhance antitumor
immunity by releasing tumor antigens but also promote tumor immune evasion by adaptively regulating immunosuppressive
molecules, such as phagocytosis checkpoints. However, the effects of radiotherapy on phagocytosis checkpoints are not fully
elaborated compared to T cell-associated immune checkpoints. Phagocytosis checkpoints are regulated by a series of receptor-ligand
binding molecules, respectively on the tumor cells and phagocytes, which mediate pro-phagocytosis or anti-phagocytosis signals,
modulate tumor antigen presentation, and further determine the infiltration of tumor-specific cytotoxic T cells in the tumor
microenvironment. Radiotherapy regulates the different phagocytosis checkpoints on the tumor cells and phagocytes to modulate
phagocytic clearance and reshape the irradiated tumor microenvironment. Therefore, radiotherapy in combination with phagocytosis
checkpoints-associated immunotherapy can be a promising antitumor approach by considering the type, dose, and sequence of this
combinatory regimen as well as the biomarkers for patient selection. This review attempts to summarize the cross-effects of
radiotherapy and phagocytosis checkpoints and their combination strategies to enhance the efficiency of radiotherapy and improve
the survival of cancer patients. Opportunities built on the roles of the phagocytosis checkpoint in radiotherapy are duly warranted.
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FACTS

® As a bridge between innate and adaptive immunity, the
phagocytosis checkpoints play important roles both in
antitumor immunity and in cancer immune evasion.

® Radiotherapy can impact phagocytosis checkpoints through
diverse molecular mechanisms.

® Radiotherapy-induced changes in phagocytosis checkpoints
influence the anti-tumor effects of radiotherapy.

® Radiotherapy combined with phagocytosis checkpoints-
associated immunotherapy is a novel and promising treat-
ment strategy.

OPEN QUESTIONS

® What are the detailed mechanisms by which radiotherapy
regulates phagocytosis checkpoints?

® What is the impact of radiotherapy on the tumor immune
microenvironment after radiotherapy-induced changes in
phagocytosis checkpoints?

® What is the effect of phagocytosis checkpoints-associated
immunotherapy on the anti-tumor efficacy of radiotherapy?

® How to combine radiotherapy and phagocytosis checkpoint-
associated immunotherapy to boost antitumor effect?

INTRODUCTION

As a well-established therapeutic modality, radiotherapy plays an
important role in the local treatment of various cancers, whether it is
used alone or in conjunction with other treatments [1]. Radiotherapy
directly leads to tumor tissue apoptosis by causing lethal DNA
damage [2]. Radiotherapy also regulates complicated immune
responses, including both innate and adaptive immune responses.
For example, radiotherapy promotes innate immunity via MHC-I-
dependent mechanisms [3], cell surface death receptor FAS [4], death
receptor DR5 [4], damage-associated molecular patterns (DAMPs) [5],
and calreticulin [6, 7]. Radiotherapy also enhances adaptive immunity
through interferon y (IFN-y) [8], tumor necrosis factor a (TNF-a) [9],
and activation of tumor-specific T cells [5 8, 9]. Furthermore,
radiotherapy has a systemic abscopal effect, leading to anti-tumor
response for non-irradiated tumor tissues [10, 11]. However, radio-
therapy can also induce immunosuppressive effects, such as systemic
and intratumoral lymphopenia [12], transforming growth factor
B(TGFP) [13], immunosuppressive M2-phenotype macrophages [14],
Treg cells [15], and myeloid-derived suppressor cells (MDSCs) [16],
resulting in radioresistance.

Immunotherapy is a powerful systemic antitumor treatment by
activating patients’ immune systems to kill tumor cells [17].
Especially, the immune checkpoint blockade represented by
targeting programmed death 1 ligand 1 (PD-L1)-programmed cell
death 1 (PD-1) [18] and cytotoxic T-lymphocyte-associated protein
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4 (CTLA-4) [19] is broadly applied in different tumors by activating
antitumor T cells. Recently, innate immunotherapy has also been
gradually applied in diverse tumors, especially phagocytosis
checkpoints-associated immunotherapy [20-22]. Phagocytosis
checkpoints are emerging as key mechanisms with the ability to
inhibit or promote phagocytosis [23]. By suppressing or promoting
these phagocytosis checkpoints helps cancer cells to escape or
succumb to immune surveillance. In particular, they regulate the
cytoplasmic regions of phagocyte receptors, such as immune
receptor tyrosine-based inhibitor motifs (ITIMs) or immune
receptor tyrosine-based activating motifs (ITAMs), and modulate
their downstream signals [21]. The cluster of differentiation
47(CD47)-signal regulatory protein a (SIRPa) axis is the first
identified anti-phagocytosis signal and is widely studied in
numerous preclinical studies [24]. Moreover, increasing clinical
trials targeting the CD47/SIRPa axis have been either finished or
are ongoing and have achieved certain antitumor curative effects
[25, 26]. Consequently, phagocytosis checkpoints as a crucial
immune component can become novel diagnostic or prognostic
biomarkers and promising therapeutic targets for cancer patients
[27].

As mentioned above, T cell checkpoint-related immunotherapy
is currently an essential pillar of tumor immunotherapy by
reversing T cell exhaustion [28]. Therefore, in the field of
radiotherapy combined with immunotherapy, numerous studies
mainly focus on radiotherapy and T cell-mediated adaptive
immunotherapy [29, 30]. However, radiotherapy can reduce the
production of peripheral blood T cells because of the intrinsic
sensitivity of the bone marrow and T cells themselves, which leads
to lymphopenia and reduction of T cell infiltration in the tumor
microenvironment [31, 32], resulting eventually in T-cell check-
point-associated immunotherapy failure. This makes the combina-
tion treatment of radiotherapy and T cell-associated
immunotherapy limited and suggests the need to find novel
immunotherapy methods combined with radiotherapy [33].
Fortunately, radiotherapy has less impairment on macrophages
because of the higher tolerance of macrophages to radiotherapy
compared to T cells. Radiotherapy could also promote the
recruitment of macrophages in the tumor microenvironment
[34-36]. Furthermore, an increasing number of phagocytic
checkpoints are being discovered [21], allowing for more selective
targets to rely on the macrophages that remain after radiotherapy.
Also, phagocytosis checkpoints are associated with dual immune
responses, including innate and adaptive immunity. Therefore, as
an emerging immunotherapy with both innate and adaptive
immune functions, phagocytosis checkpoints-associated immu-
notherapy is a promising treatment option combined with
radiotherapy. Importantly, accumulating evidence suggests that
radiotherapy could regulate the expression of phagocytosis
checkpoints [37-39].

Therefore, considering the promising application of phagocy-
tosis checkpoints-associated immunotherapy combined with
radiotherapy, we provide an overview of the regulatory mechan-
isms of diverse phagocytosis checkpoints upon radiotherapy.
Then, we analyze the clinical application of phagocytosis
checkpoints-associated immunotherapy and radiotherapy combi-
nation strategies in tumor patients. Altogether, this review aims to
provide a molecular insight into the exploitation of phagocytosis
checkpoints-associated immunotherapy ~ combined  with
radiotherapy.

THE PHAGOCYTOSIS CHECKPOINTS IN RADIOTHERAPY

Phagocytosis checkpoints have been gradually identified in recent
years because of the fast development of high-throughput
technologies allowing a deep understanding of cancer immunol-
ogy and molecular bases. For example, the CD47/SIRPa axis was
identified in the late 1990s as the first tumor phagocytosis
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checkpoint [20]. Next, others phagocytosis checkpoints including
PD-L1-PD-1 axis (in 2017) [40], major histocompatibility complex
class | (MHC-1)-leukocyte immunoglobulin-like receptor subfamily
B member 1(LILRB1) axis (in 2018) [41], cluster of differentiation
24(CD24)-sialic acid binding Ig like lectin 10(Siglec-10) (in 2019)
[42], cluster of differentiation 22 (CD22) (in 2019) [43], signaling
lymphocytic activation molecule family 3/4 (SLAMF3/4) (in 2022)
[44] and ganglioside 2 (GD2)-sialic acid binding Ig like lectin 7
(Siglec-7) (in 2022) [45] were followingly demonstrated in the
tumor microenvironment. Radiotherapy can influence the phago-
cytosis checkpoints including the ligands on tumor cells, the
receptors on the phagocytes and their downstream phagocytosis
function signals (Table 1) (Figs. 1, 2).

“Don’'t eat me” signals

CD47-SIRPa axis

Immune-related characteristics of the CD47/SIRPa axis: The CD47
protein is universally expressed on cancer cells [46, 47]. CD47
conveys inhibitory “don’t eat me” signals to its receptor SIRPa on
the phagocytes (such as macrophages, DCs [47], neutrophils [48])
to activate inhibitory anti-phagocytosis signals [49, 50]. Various
transcription factors can upregulate CD47 on the surface of cancer
cells, such as MYC [51], nuclear factor kappa B (NFkB) [52], signal
transducer and activators of transcription 3 (STAT3) [53], and
hypoxia-inducible factor-1(HIF-1) [54]. Targeting CD47/SIRPa not
only enhances the innate response through macrophage-mediated
phagocytosis [48, 55] but also promotes adaptive immunity, which
activates antitumor-specific T cells [56]. Therefore, CD47/SIRPa-
targeted therapy is a promising antitumor therapy [47, 48].

Radiotherapy effects on the CD47/SIRPa axis: The CD47/SIRPa
axis is usually overexpressed in diverse radioresistant tumors, such
as head and neck cancer [57], glioblastoma multiforme [58], and
breast cancer cells [59]. Radiotherapy mainly upregulates CD47
[59-61] and SIRPa [62] in the most diverse tumor microenviron-
ments. For example, radiotherapy upregulates CD47 on tumor
cells [61] and SIRPa expression on myeloid cells in colorectal
cancer [62]. Radiotherapy-induced upregulation of amphiregulin
(AREG) not only promotes CD47 upregulation via STAT3 activation
in tumor cells but also reprograms EGFR+ mononuclear phago-
cytes into an immunosuppressive phenotype, resulting in
impaired mononuclear phagocyte phagocytosis [63]. However,
radiotherapy downregulates CD47 in oropharyngeal squamous
cell carcinoma (OSSC), resulting in increased phagocytosis by
dendritic cells (DCs) [64]. The molecular mechanisms underlying
radiotherapy-induced CD47/SIRPa expression changes have been
at least partly elucidated in different tumor types and are
summarized in Table 1.

The immune responses after radiotherapy-induced CD47/SIRPa
expression: Radiotherapy-induced effects are mainly related to
radioresistance by upregulation of CD47 or SIRPa, but other
studies [64, 65] demonstrated that it can also induce tumor cells
sensitivity to radiotherapy by inhibiting CD47 expression. For
example, radiotherapy-induced upregulation of CD47 inhibits
phagocytosis function of macrophages, promotes M2 polarization
of macrophages and inhibits activation of CD8 + T cells to induce
radioresistance of GSCs [66]. However, radiotherapy-induced
microRNA can inhibit CD47 expression to promote tumor cells
sensitivity to radiotherapy in cervical carcinoma, kidney carcinoma
and human alveolar adenocarcinoma [65]. Therefore, radiotherapy
combined with CD47/SIRPa axis-associated immunotherapy can
further promote anti-tumor efficiency, which is mainly associated
with reshaped immune-activated irradiated tumor microenviron-
ments (Table 2).

CD47/SIRPa-induced abscopal effects after radiotherapy: Further-
more, the anti-CD47/SIRPa axis not only inhibits local irradiated
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“Don’t eat me” signals
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Fig. 1
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Regulation mechanisms of radiotherapy on “Don’t eat me” signals. In irradiated tumor cells, radiotherapy upregulates CD47

expression by DNA damage response-associated signals, HER2-PI3K/AKT-NF-kB axis, fatty acids oxidation-Acetyl-COA-NF-kB axis, AMPK-
Histone modification signals, TAK2-STAT1/3 axis, AREG-STAT3 axis and ATM-ATR-JAK/STAT1/3 axis. At the post-transcriptional level,
radiotherapy-suppressed Has-miR-222 and DNMT-TTP axis promotes CD47 expression. Also, the radiotherapy-induced PD-L1 upregulation is
associated with DNA damage response-associated BRCA1/KU70/80-Chk-1-JAK-STAT1/3 axis, EGFR-JAK-STAT1/3 axis, cGAM-Cgas-STING-TBK1-
IRF1/3 axis and KPNA/KPNB1-IRF1/3 axis. Furthermore, irradiated tumor cells-derived extracellular vesicles promote MHC-lexpression through
NBS1-ATM-ATR-JAK/STAT1/3 axis. Unfortunately, detailed regulation mechanisms of radiotherapy are unclear both on CD24, SLAMF3/4, GD2,
FC-IgG and a2,6-linked sialic acid in irradiated tumor cells and on ligands of anti-phagocytosis in irradiated phagocytes according to current

research. (Created with Microsoft Office PowerPoint).

tumor cells but also inhibits distant non-irradiated tumor cells [60,
67, 68]. CD47 blockade combined with radiotherapy promotes
abscopal effects to inhibit distant, non-irradiated small cell lung
cancer. The radiotherapy-induced secretion of cytokines from tumor
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cells, such as CSF1, CCL2, and MCP3, promotes macrophage
recruitment and activation from the irradiated tumor microenviron-
ment to the non-irradiated tumor site [67]. Therefore, CD47/SIRPa is a
novel mechanism of abscopal response independent of CD8+ T cells
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Fig. 2 Regulation mechanisms of radiotherapy on “Eat me” signals. Radiotherapy promotes calreticulin translocation to the tumor cell
surface by increasing endoplasmic reticulum (ER) stress in irradiated tumor cells. Radiotherapy-induced Caspase8 also promotes calreticulin
translocation to irradiated tumor cell surface. However, regulation mechanisms of radiotherapy on other “Eat me” signals including
Phosphatidylserine (PS)-TIM4/CD300b/BAI1/ Stabilin-2 axis, SLAMF7-SLAMF7 axis and Fc-FcyRs axis are still lacking. (Created with Microsoft

Office PowerPoint).

[68]. Previous studies have shown that the abscopal effects are mainly
associated with tumor-draining lymph nodes(TDLN) [69] and CD8+
T cells [70] because radiotherapy could impair T cells in these TDLN.
For example, elective nodal irradiation(ENI) inhibits abscopal
responses by decreasing active CD8+ T cells in non-irradiated head
and neck tumors [71], whereas the delayed TDLN irradiation has
more effective antitumor effects in metastatic melanoma compared
to simultaneous radiotherapy for lymph nodes and tumors [72].
However, in clinical practice, it is difficult to distinguish which TDLNs
have not metastasized and therefore avoid their irradiation to retain
function of T cells. Therefore, macrophages, as the immune cells with
a relatively large residual amount after radiotherapy, can compensate
for the weakened abscopal effect caused by the reduction of T cells
due to lymph node injury after radiotherapy.

Anti-tumor effects with phagocytosis-independent mechanism in
radiotherapy: Beyond phagocytosis-related antitumor immune
response, the anti-CD47/SIRPa axis also enhances tumor cells
sensitivity to radiotherapy through phagocytosis-independent
mechanisms. Anti-CD47 enhanced tumor cells sensitivity to

SPRINGER NATURE

radiotherapy in oral squamous cell carcinoma (OSCC) by suppres-
sing cancer stem cell-like phenotype [73]. Also, anti-CD47 can
enhance tumor cells sensitivity to radiotherapy by inhibiting
tumor pluripotency capabilities and reducing the expression of
DNA repair enzymes in OSCC [74].

Radioprotection effects of CD47 blockade in normal cells: How-
ever, some studies indicated that CD47 blockade can have different
radiotherapy effects between normal and tumor cells [75, 76].
Blocking CD47 combined with radiotherapy has radioprotection
effects in normal tissues and organs, which contribute to normal cell
survival involving various tissues (muscle, skin, vascular, endothelial
tissue) and bone marrow [77, 78], whereas it increases tumor cells
sensitivity to radiotherapy [79]. The main mechanism underlying such
selective radiotherapy reaction is that CD47 not only serves as a
receptor of SIRPa on phagocytosis but also as a receptor of the
secreted matricellular glycoprotein thrombospondin-1(TSP-1) [80].
Therefore, radiotherapy combined with anti-CD47 not only promotes
tumor cells sensitivity to radiotherapy but also has radioprotective
effects on normal tissues and organs.
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PD-L1/PD-1 axis

Immune-related characteristics of PD-L1/PD-1 axis: The PD-L1/
PD-1 interaction between tumor cell and T cell contributes to escape
from T cell-mediated tumor immune surveillance by acting as a “don’t
find me” signal [81, 82]. However, PD-L1/PD-1 axis is also a
phagocytosis checkpoint. PD-L1 is expressed on tumor cells, and its
receptor PD-1, which is an inhibitory transmembrane protein, is
expressed on phagocytes to activate anti-phagocytosis signals
[40, 83]. PD-1(+) tumor-associated macrophages (TAMs) have lower
phagocytosis function compared to PD-1(-) TAMs and PD-L1 knockout
promotes phagocytosis function of PD-1(+) macrophages [40]. High
expression of PD1 on macrophages predicts poor outcomes [84].
Therefore, PD-L1/PD-1 blockade not only improves adaptive immune
responses associated with activated T cells but also promotes innate
immune responses associated with macrophages phagocytosis.

Radiotherapy effects on the PD-L1/PD-1 axis: In radioresistant
head and neck squamous cell carcinoma cells, PD-L1 expression is
upregulated in nuclear and cytoplasmic cell fractions [85]. Also,
high PD-L1 expression is positively correlated with radioresistance
in NSCLC [86]. Furthermore, radiotherapy increases the tyrosine
phosphatase SHP-2 of PD-1 cytoplasmic domain in the M1 TAMs
in NSCLC [87]. The radiotherapy-induced mechanisms of PD-L1
expression are mainly associated with DNA damage and repair
signaling pathway [88], cGAS-STING pathway [89], IFN-y signaling
[90] and epidermal growth factor receptor (EGFR) pathway [91].
However, most researchers mainly study how radiotherapy-
induced PD-L1/PD-1 expression changes influence adaptive
antitumor immune responses mediated by CD8+ T cells but not
innate immune responses mediated by phagocytosis.

The immune responses after radiotherapy combined with PD-L1/
PD-1 blockade: There is great research associated with radio-
therapy combined with PD-L1/PD-1 blockade to activate anti-
tumor CD8+ T cells [92, 93]. However, innate antitumor immune
responses also may play a significant role in the combination
treatment. Radiotherapy combined with anti-PD-1 promotes
tumor cell phagocytosis by DCs, increases tumor-associated
antigen presentation, and further promotes tumor-specific CD8+
T cells priming in colorectal cancer. Furthermore, radiotherapy
combined with anti-PD-1 also increases abscopal effects [60].
Anyway, although the anti-PD-L1/PD-1 axis as “don’t find me”
signal in combination with radiotherapy has been studied
extensively, its role as a phagocytosis checkpoint combined with
radiotherapy needs to be further elucidated (Table 2).

MHC-1-LILRB1 axis

Immune-related characteristics of the MHC-1-LILRB1 axis: MHC-1
is a transmembrane polymorphic glycoprotein which can process
and present tumor antigen fragments to TCR on the surface of
CD8+ T cells [94]. However, MHC-| is also expressed on the surface
of various cancer cells and its component 32M binds with its
receptor LILRB1 on macrophages to inhibit phagocytosis function
[41] by activating four ITIM sequences [95]. LILRB1 antibody blocks
the interaction of MHC-I and LILRB1 to increase the phagocytosis
capability of macrophages, increase M1/M2 ratio and also improve
the cytotoxic capability of both NK and T cells to inhibit tumor
growth [96]. Therefore, anti-MHC-I/LILRB1 axis is a promising
immunotherapy strategy, which is associated with the phagocy-
tosis function of macrophages [41].

Radiotherapy effects on the MHC-1-LILRB1 axis: Radiotherapy
can upregulate MHC-I on the surface of various cancers, including
glioblastoma [97, 98], cervical cancer [99], colon, lung, prostate
cancer [100], ovarian carcinoma [101], melanoma [3] and tongue
and mobile tongue squamous cell carcinoma [102]. However,
many studies mainly focus on its antigen presentation function to
cytotoxic T cells to augment the anti-tumor adaptive immune
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response but do not mention its negative effects on phagocytosis
function.

CD24-Siglec-10 axis

Immune-related characteristics of the CD24-Siglec-10 axis: CD24,
as a cancer stem cell marker [103], has recently been confirmed to
be a phagocytosis checkpoint and highly expressed on tumor
cells. CD24 interacts with its inhibitory transmembrane protein
receptor Siglec-10 on macrophages, resulting in the activation of
an inhibitory phagocytosis signaling cascade [42, 104]. High
expression of CD24 is associated with short survival and both anti-
CD24 on tumor cells and anti-Siglec-10 on tumor-associated
macrophages effectively promote tumor cell phagocytosis by
macrophages [42]. Furthermore, high expression of CD24 is
correlated with more lymph node metastases, more advanced
pathological stage, and shorter survival in breast cancer [105].
Therefore, targeting CD24/Siglec-10 axis can improve prognosis of
cancer patients both as anti-CD24/Siglec-10 monotherapy or in
combination with other therapy approaches.

Radiotherapy effects on the CD24-Siglec-10 axis: The effect of
radiotherapy on CD24/Siglec-10 expression is scarcely known,
according to current research. However, Shen, W. et al. indicated
that radiotherapy combined with CD24/Siglec-10 blockade has a
synergistic anti-tumor efficiency compared with their treatment as
single agents by increasing the percentage of IFNy-expressing
CD8+ T cells, ratio of M1/M2 macrophages, and proportion of
monocytic MDSCs in colon cancer [106] (Table 2).

CD24-Siglec-10 axis as cancer stem cell marker in radiotherapy:
While high expression of CD24 is associated with tumor cells
sensitivity to radiotherapy because CD24(-)/CD44(+) is a tumor
stem marker, its low expression or loss in stem-like breast cancer
generates radioresistance by inhibiting radiotherapy-induced
tumor cell death, because loss of CD24 leads to low level of
radiation-induced ROS and decreased genomic instability [107].

Other anti-phagocytosis checkpoints

a2-6-linked sialic acid-CD22 axis: CD22 (siglec-2) is also an anti-
phagocytosis molecule expressed on the surface of phagocytes
but traditionally expressed on B-cells to inhibit B-cell receptor
signaling [108]. Pluvinage, J. V. et al. demonstrated that CD22 is
upregulated on aged microglia and CD22 binding with a 2,6-
linked sialic acid inhibits the phagocytic capacity of microglia by
activating CD22 downstream inhibitory SHP-1 signaling [43].

Fc-FcyR 1B axis: Fc receptors are a series of classical and
important phagocytosis-related cell surface receptors expressed
on the macrophages, which mediate both anti-phagocytosis and
pro-phagocytosis processing by interacting with their ligand I1gG
immune complexes, especially type | Fc common gamma
receptors(FcyR) [109, 110]. In these Fcy receptors, FcyRIIB mediates
anti-phagocytosis on the surface of macrophages to activate
inhibitory phagocytosis signals [111, 112].

SLAMF3/SLAMF4: Li, D. et al. demonstrated that signaling
lymphocytic activation molecule (SLAM) family receptors, particu-
larly SLAMF3 (CD229) and SLAMF4 (CD244), are also “don’t eat me”
receptors on macrophages. They confirmed these receptors
decrease the phagocytosis function of macrophages by inhibiting
low density lipoprotein receptor-related protein 1(LRP1)-mediated
activation of mTOR and Syk signaling to inhibit “eat me” signals
[44].

GD2-Siglec-7 axis: The disialoganglioside GD2 is a sialic acid-
linked glycolipid and is widely expressed on diverse tumor cells,
especially neuroblastoma [113]. Recently, Theruvath, J. et al.
demonstrated that combination treatment of anti-GD2 and
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anti-CD47 has potent antitumor synergy by promoting macro-
phages to phagocytose tumor cells in neuroblastoma, osteosar-
coma and small-cell lung cancer. Siglec-7 is the ligand for GD2 to
mediate “don’t eat me” signals. Interestingly, anti-GD2 not only
inhibits anti-phagocytosis signals but also promotes “eat me”
signals by upregulating surface calreticulin on tumor cells [45].

However, the above-mentioned anti-phagocytosis checkpoints
have not been studied with radiotherapy according to current
research.

“Eat me” signals

Calreticulin (CRT)-LRP1 axis

Immune-related characteristics of CRT-LRP1 axis: Calreticulin(CRT)
is a multifunctional protein in the endoplasmic reticulum(ER) [114].
Under ER stress induced by chemotherapy [115] and radiotherapy [7],
CRT can translocate from the lumen of ER to the surface of tumor
cells. The low-density lipoprotein receptor-related protein 1 (LRP1,
CD91) [116] is the ligand for CRT and is expressed on the surface of
phagocytes to promote phagocytosis of tumor cells [114]. Chao, M. P.
et al. suggested that CRT is highly expressed both on hematologic
malignancies and solid tumors whereas it is less expressed on normal
cells. Furthermore, high CRT expression is associated with increased
CD47 expression and CRT-LRP1 blockage abrogates anti-CD47
antibody-mediated phagocytosis [117]. Different molecular mechan-
isms, including stanniocalcin1 (STC1) [118] and hormone glucocorti-
coid (GC) [119] regulate CRT and LRP1 expression.

Radiotherapy effects on the CRT-LRP1 axis: Radiotherapy is also a
regulator of CRT-LRP1 signal axis for which radiation-induced ER
stress facilitates CRT translocation to the tumor cells surface,
resulting in promoting immunogenic cell death by increasing
antigen-specific CD8+ cytotoxic T lymphocytes [6, 120]. Radio-
therapy upregulates CRT in cervical cancer patients’ tumor biopsy
specimens [39]. Moreover, different radiotherapy types, including
photon, proton, and carbon-ion, all can increase CRT membrane
exposure in lung adenocarcinoma, glioma, tongue squamous
carcinoma, and nasopharyngeal carcinoma in a dose-dependent
manner [121]. These different radiotherapy types can upregulate
CRT under normoxic conditions, especially carbon-ion radiation.
However, under hypoxic conditions, the baseline expression level
of CRT is high enough, and radiotherapy could not further increase
the expression of CRT [122].

The immune responses after radiotherapy combined with the CRT-
LRP1 targeting therapy: Radiotherapy-induced CRT upregulation
can improve antitumor effects of anti-PD-L1 treatment in caspase-8
knockout tumors because the knockout of caspase-8 suppresses the
translocation of CRT to the surface of tumor cells, which impairs
phagocytosis function and antigen presentation of DCs and the
infiltration of tumor-specific CD8+ T cells [123]. Furthermore,
radiotherapy-induced upregulation of CRT inhibits tumor neuro-
spheroid formation and tumor stemness to increase tumor cells
sensitivity to radiotherapy in neuroblastoma [124] (Table 2).

The negative role of CRT-LRP1 axis in tumors: Interestingly, high
expression of CRT is associated with worse clinical outcomes in
different tumors [117]. Also, LRP1 is highly expressed in radio-
resistant colorectal cancer and higher expression of LRP1 is
associated with poor clinical outcomes [125]. The high expression
of mutated CRT possibly can explain this interesting phenomenon.
Soluble exon-9-mutated CRT is highly released from ER of tumor
cells to further inhibit phagocytosis by DCs and induce
immunosuppressive effects in osteosarcoma, cervix adenocarci-
noma, fibrosarcoma and NSCLC [126].

Phosphatidylserine (PS)-TIM4/CD300b/BAl1/ Stabilin-2

Immune-related characteristics of PS-associated axis:
Phosphatidylserine (PS), as an “eat me” signal, is an inner cell
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membrane molecule at normal physiological environment but can
also translocate to the surface of apoptotic cells under different
molecular signals [127-129]. PS has different receptors [130] on
the surface of phagocytes to promote phagocytosis, such as T-cell
immunoglobulin mucin-4 (TIM4), single Ig-domain type | trans-
membrane protein CD300b, brain-specific angiogenesis inhibitor 1
(BAI1), Rage, Scarfl, CD36, Trem2 and transmembrane protein
Stabilin-2 [130-132].

The effects of radiotherapy on PS-associated axis: Radiotherapy
can upregulate PS on tumor cells by inducing caspase activity, and
high expression of PS is associated with radioresistance [133].
However, radiotherapy-induced PS upregulation promotes immu-
nosuppressive signals and targeting PS antibody combination
with radiotherapy can enhance anti-tumor efficiency in melanoma
by increasing M1 phenotype macrophages and tumor antigen-
specific CD8+ T cells [134]. However, it is needed to further study
the influence of radiotherapy-induced PS upregulation on
phagocytosis function in future studies.

Other pro-phagocytosis axis

SLAMF7-SLAMF7 axis: SLAMF7 is expressed exclusively on the
surface of hematologic tumor cells, which promotes tumor cells
phagocytosis by binding with its equal receptor SLAMF7 on
phagocytes [135]. Chen, J. et al. demonstrate that SLAMF7 on
macrophages promotes phagocytosis by increasing polarization of
actin associated with key step of phagocytosis process [135].
Interestingly, another study suggested that SLAMF7 can express
highly on solid breast cancer, and high SLAMF7 expression is
associated with poor clinical outcomes, for which SLAMF7
mediates “don’t eat me” signals [136].

Fc-FcyRs axis:  FcyRI, FcyRIIB, FcyRIll, and FcyRIV on macrophages
mediates pro-phagocytosis signals by binding with 1gG Fc domain
of target cells [110, 137]. The binding of Fc and pro-phagocytosis
FcyRs also promotes phosphorylation of ITAMs by activating
tyrosine kinase and further increases downstream phagocytosis
signals in macrophages [138].

Unfortunately, there are no studies on revealing the effects of
radiotherapy on the expression of SLAMF7 and Fc-FcyRs axis
according to present literature.

CLINICAL APPLICATION OF PHAGOCYTOSIS CHECKPOINTS IN
TUMOR RADIOTHERAPY

Given that numerous preclinical studies as previously described, the
potential combination treatment of radiotherapy and phagocytosis
checkpoints-associated immunotherapy is a promising treatment
strategy for cancer patients (Fig. 3). Besides, these phagocytosis
checkpoints molecules have other functions which make the novel
combination treatment have stronger anti-tumor effects compared to
T cell-mediated immune checkpoint-related immunotherapy (Table
3). In clinical applications, phagocytosis checkpoints can be putative
biomarkers to predict tumor cells sensitivity to radiotherapy to realize
individualized treatment but not blind treatment (Fig. 4). Also,
targeting these molecules in radiotherapy would have synergistic
efficiency by using feasible and optimal therapy strategies.

Phagocytosis checkpoints as potential biomarkers for
prediction of tumor cells sensitivity to radiotherapy
Radiotherapy is not always an effective antitumor manner with
low radiotherapy curative effect or radioresistance because of
various and complicated tumor and patient characteristics [139].
Therefore, it is necessary to find assessment methods for
evaluating whether tumor patients are suitable for radiotherapy.
The main assessment method includes biomarkers that can
predict the efficacy of radiotherapy in diverse tumors [140-142]
(Table 4).
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Potential strategies for targeting the phagocytosis
checkpoints combined with radiotherapy

Radiotherapy has different antitumor responses for diverse tumor
characteristics. For example, in CURB clinical trial, stereotactic
body radiotherapy (SBRT) targeting oligometastatic sites could
effectively improve PFS of NSCLC patients after resistance to
systemic therapy, but not improve outcomes in breast cancer with
oligometastatic sites [143]. Similarly, in EXTEND trials, metastasis-
directed therapy via SBRT could also improve PFS in oligometa-
static pancreatic ductal adenocarcinoma [144] and prostate
cancers [145]. However, nivolumab(anti-PD-1) plus SBRT does
not enhance abscopal effects compared to nivolumab alone in
patients with metastatic head and neck squamous cell carcinoma
[146]. Although SBRT has limited antitumor effects in metastatic
breast cancer and HNSCC, radiotherapy plus phagocytosis
checkpoints-associated immunotherapy might be an effective
therapy because radiotherapy upregulates phagocytosis check-
points and targeting these molecules could enhance tumor cells
sensitivity to radiotherapy in these tumor cells as mentioned in
section 2 [59, 147]. Furthermore, we also need to consider the
types of tumors that would benefit from the combination of
radiotherapy and phagocytosis checkpoints-associated
immunotherapy.

However, only two ongoing clinical trials are studying the
combination treatment of phagocytosis checkpoint-associated
immunotherapy and radiotherapy. One (NCT02890368) is based
on the intratumoral injection of TTI-621 (anti-CD47 antibody)
combined with different antitumor treatments including radio-
therapy in solid tumors. The other one (NCT05967416) is based on
the autologous SIRPa-low macrophages (SIRPant-M) administra-
tion to confirm the efficiency of SIRPant-M alone or in combina-
tion with radiotherapy in relapsed or refractory Non-Hodgkin
lymphoma. Although there are few clinical applications in
combination therapy, the efficiency of this combination treatment
may be improved with different potential strategies by referring to
previous immune checkpoint inhibitor treatments in radiotherapy
[148] (Table 4).

The influence of diverse radiotherapy plans on the novel combina-
tion therapy

Radiotherapy dose fraction in the novel combination therapy:
The radiotherapy dose fraction includes hypo-fractionation
(3-20 Gy/fraction), conventional fractionation schemes
(1.8-2.2 Gy/fraction) and hyper-fractionation (0.5-2.2 Gy/fraction)
[149]. Diverse radiotherapy dose fraction could regulate
macrophage-associated innate immune response. The low dose
irradiation (2 Gy) promotes the polarization of irradiated tumor-
associated macrophages to M1 macrophages in pancreatic cancer
[150, 151]. The stereotactic body radiotherapy (SBRT) (6.5 to
7.25Gy), as a precise, high-dose, hypofractionated radiation
treatment technique delivered in few sessions to extracranial
targets with maximal tumor control and minimal damage to
healthy tissues, activates innate immunity by enhancing proin-
flammatory M1 macrophages-mediated metabolite elevations of
tumor cells in mitigatory prostate cancers [152]. Therefore, in the
novel combination treatment, radiotherapy dose fraction may play
a crucial role by referring to radioimmunotherapy studies that
have been published.

Radiotherapy types in the novel combination therapy: At
present, the wide application of radiation source types is mainly
light photon radiation including X-ray and y-ray. However, heavy-
particle radiation including proton and carbon ion radiation, as
new types of radiotherapy, are gradually starting to be applied to
tumor treatment with less damage to normal tissues because of
their unique Bragg peak [153]. The heavy-particle radiation
combination with immunotherapy also has stronger antitumor
efficiency compared with light photon radiation.
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The effects of phagocytosis checkpoints-associated immunotherapy
schemes on the combination therapy

Immunotherapy types in the novel combination therapy: Given
that radiotherapy influences immunity molecule expression,
targeting these diverse immune molecules may induce different
antitumor efficiency in radiotherapy. A preclinical study indicated
that anti-PD-1 or anti-CTLA4 combined with radiotherapy has
opposite antitumor effects [154]. Therefore, it is needed to verify
and choose which optimal phagocytosis checkpoints-associated
immunotherapy scheme is better combined with radiotherapy.

Immunotherapy forms in the novel combination therapy: The
forms of phagocytosis checkpoints-associated drugs also influence
antitumor effects in radiotherapy, such as monoclonal antibodies,
small molecule inhibitors, antibody fusion protein and nanopar-
ticles. Targeting the CD47/SIRPa is the most popular phagocytosis
checkpoint-associated immunotherapy. For example, anti-CD47
antibody Hu5F9-G4 has a well-tolerated anti-tumor efficiency both
in solid tumors and hematologic tumors [26] Also, the anti-SIRPa
antibody is a promising antitumor drug with fewer hematologic
toxic side effects because of the confined expression of SIRPa on
normal cells compared with CD47 [49]. CD47/SIRPa-associated
small molecule inhibitors have some advantages including oral
administration, shorter half-life, low cost and no immunogenicity
compared with CD47/SIRPa antibodies [155]. What's more, the
novel peptide pep-20 also blocks the CD47/SIRPa interaction by
binding to the human CD47-IgV domain and inhibiting SIRPa
tyrosine phosphorylation of ITIMs. Also, pep-20-D12 in combina-
tion with radiotherapy has synergistic antitumor effects [38].
Besides, nanoparticles (JCM-MNs) not only inhibit the CD47-SIRPa
axis but also repolarize tumor-associated macrophages to M1
macrophages [156].

Multiple immunotherapy regimens in combination with radio-
therapy: The three-treatment strategy combining two types of
immunotherapy drugs and radiotherapy is also a wise choice for
radioimmunotherapy. For example, the application of anti-SIRPa
and anti-PD-1 combined with radiotherapy activates more robust
adaptive antitumor immune responses in colorectal cancer [60].

The sequence of radiotherapy in combination with phagocytosis
checkpoints-associated immunotherapy

Concurrent therapy in the novel combination therapy: Concur-
rent therapy is a widely applied combination treatment based on
the radiotherapy-induced immune response. However, in the
concurrent treatment, toxicity overlap is a big challenge for which
both radiotherapy and immunotherapy can produce adverse
reactions, and toxicity may increase [157]. Administering radio-
therapy immediately after immunotherapy may exacerbate these
toxicity events, leading to treatment interruption or dose
modification [158]. Hence, when designing treatment plans, it is
crucial to arrange the sequence of radiotherapy and immunother-
apy reasonably based on the patient’s specific conditions to
minimize toxicity risks.

Sequential therapy in the novel combination therapy: Likewise,
sequential therapy is also a common combination treatment
manner, such as radiotherapy before immunotherapy or immu-
notherapy before radiotherapy. Especially, radiotherapy before
immunotherapy is the main order according to current studies for
diverse reasons. Firstly, radiotherapy can shift tumor immune
microenvironment from an immunosuppressive “cold” tumor state
to an immunostimulatory “hot” one by increasing the release of
proinflammatory mediators and chemokines and infiltration of
immune cells [8, 9]. Therefore, administering radiotherapy first can
create a more favorable immune microenvironment for subse-
quent immunotherapy. Secondly, radiotherapy could induce
immunogenic cell death to release tumor-associated antigens

Cell Death and Disease (2025)16:630
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Fig. 3 The phagocytosis checkpoint-associated immunotherapy converts radioresistant tumors into radiosensitive ones. Radiotherapy-
induced reduction of phagocytosis function and lymphopenia promote tumor immune evasion leading to radioresistance. Combination of
radiotherapy and phagocytosis checkpoints-associated immunotherapy could convert radiotherapy-resistant tumors into radiotherapy-
sensitive ones by promoting phagocytosis function and further activating antitumor immune response. In the combination treatment, innate
immunity could be enhanced by directly lysing tumor cells by increasing infiltration of M1 macrophages and dendritic cells but decreasing
infiltration of M2 macrophages. Also, phagocytes as antigen presentation cells could process and present tumor antigen to increased CD8+
T cells and further promote the release of IFN-y, TNF-a and granzyme B from activated CD8+ T cells. Furthermore, the combination treatment
could enhance abscopal effects in non-irradiated tumor sites through more macrophages remaining after radiotherapy in tumor-draining
lymph nodes. (Created with Microsoft Office PowerPoint).
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Negative [41] Positive [187]

Sensitivity to radiotherapy [186]

Processing and presenting tumor

antigen [94]

MHC-1-LIRB1

Radioresistance [188] Negative [189]

Cancer stem cell marker [103]

CD24-Siglec10

Negative [190]

Inhibiting B-cell receptor signaling

[108]

/ (Not identified)

a2-6-linked sialic acid

-CD22

Negative [112] Positive [191]

Fc-FoyR 1B

Negative [44] Positive [193]

Negative [113]

CD8+ T cells exhaustion [192]

SLAMF3/SLAMF4
GD-2-Siglec7
CRT-LRP1

Inhibiting CD8+ T cells [194]

Activating DCs [195]

Negative [196] Positive [197]

Negative [199]

Sensitivity to radiotherapy [124]

“Eat me” signals

Radioresistance [133]

Promoting immune suppression

[198]

PS-associated axis

Positive [201]

Activating CD8+ T cells [200]

SLAMF7-SLAMF7

Fc-FcyRs

Negative [112] Positive [191]

[5]. Immunotherapy, in turn, enhances the ability of immune cells
to recognize and attack these antigens. Hence, as a first-line
treatment, radiotherapy provides more targets for immunother-
apy and improves therapeutic outcomes. Thirdly, radiotherapy can
upregulate the expression of immune checkpoints on tumor cell
surfaces, such as CD47 and PD-L1 [60]. Initiating radiotherapy
before immunotherapy enables immunotherapy to work more
effectively and inhibits immune evasion. However, the optimal
time for immunotherapy after radiotherapy may be in a few days
to weeks after radiotherapy (such as 1 to 14 days after radiation
therapy) [159-161]. Also, immunotherapy before radiotherapy is
another option. If radiotherapy is given first, it may have a certain
inhibitory effect on the immune system [13, 15, 16], affecting the
safety of subsequent immunotherapy. Immunotherapy could
increase tumor-vascular normalization and decrease tumor
hypoxia. Hence, if immunotherapy is given first, it could promote
subsequent tumor cells sensitivity to radiotherapy [162]. There-
fore, when determining the treatment sequence, it is necessary to
consider the balance between therapeutic efficacy and toxicity.

Biomarkers and patient selection with different tumor types in
combination with radiotherapy and phagocytosis checkpoints-
associated immunotherapy

Biomarkers in the novel combination treatment: A reliable
biomarker is essential to select the appropriate patient popula-
tions who are suitable for treatment with radiotherapy in
combination with phagocytosis checkpoints-associated treat-
ments. There are various biomarkers including molecular genes,
immune cells, clinical models, and radiomic models to predict the
antitumor efficiency of radioimmunotherapy and help to make
optimal clinical decisions in different tumors. However, at present,
many types of biomarkers are mainly associated with PD-1/PD-L1
or CTLA4 immunotherapy in radiotherapy, not phagocytosis
checkpoint-associated immunotherapy. Therefore, it is urgent to
explore novel biomarkers able to predict the antitumor effects of
the novel combination.

Tumor selection for novel combination therapy: It is important
to select appropriate and responsive patients eligible for the
combination therapy to maximize the antitumor effects by
considering characteristics of tumors and patients. The phagocy-
tosis checkpoints-associated immunotherapy is mainly dependent
on phagocytes or expression level of phagocytosis checkpoints
molecules to realize its antitumor effects [21]. Therefore, tumor
types with more macrophage infiltration and high expression of
phagocytosis checkpoint molecules might be more sensitive to
the novel combination therapy. These particular tumor types
mainly include breast cancer [59, 163], glioma [58, 164], hepato-
cellular carcinoma [89, 165], colorectal cancer [60, 166], and NSCLC
[167, 168]. Furthermore, as summarized in section 2 of this review,
there are numerous preclinical studies suggesting that radio-
therapy combined with phagocytosis checkpoints-associated
immunotherapy has effective antitumor effects in these
tumor types.

CONCLUSIONS

Radiotherapy, as a complicated tumor immune effector, is widely
applied in combination with immunotherapy. The effects of
radiotherapy on phagocytosis checkpoints are an emerging and
developing research interest that promises to lead to new
immunotherapy in radiotherapy. Moreover, in the irradiated
tumor microenvironment, phagocytosis checkpoints not only
involve innate immunity to phagocytose tumor cells but also
involve the adaptive immune response because macrophages can
present tumor antigens to CD8+ T cells to further kill tumor cells.
Furthermore, phagocytosis checkpoints also involve systemic
abscopal effects by increasing migratory macrophages in the
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Y. Kui et al.

Tumor patients who are suitable for radiotherapy(RT)

\

| Infiltration of cell types in TME | | Phagocytosis checkpoints

|
|
) —— — — ———— J

High infiltration of immune cells (macrophages, | ]

dendritic cells or CD8+ T cells) : l
Activation of phagocytosis checkpoints signaling | R
(CD47, PD-L1, CD24, CRT...) :

—_—————

: Chemotherapy,
: Targeted therapy,
| Other types of

Radiotherapy combined with phagocytosis l
checkpoint-associated immunotherapy :

L __ b
/ Limmunotherapy _ |
I// ______________________ 3 @
RT plans Immunotherapy| !
' | \ 2
, S PP )
: Sequence Tumor types } O
N e %

Potential tumors: Lung cancer, Breast cancer,
Hepatocellular carcinoma, Melanoma, Glioma,
Colorectal cancer, Cervical cancer...

S

Tumor patients who benefit from RT and phagocytosis checkpoint-associated therapy

Fig. 4 Clinical application of phagocytosis checkpoints-associated immunotherapy in radiotherapy by detecting and evaluating
phagocytosis checkpoints-related biomarkers. Detecting and evaluating biomarkers is a wise choice for the combination of radiotherapy
and immunotherapy to select an appropriate immunotherapy regimen for tumor patients who are suitable for radiotherapy. Given that
radiotherapy regulates phagocytosis checkpoints, it is a wise choice to select phagocytosis checkpoints as new biomarkers in combination
with radiotherapy and immunotherapy. Patients with high infiltration of antitumor immune cells (such as macrophages, DCs, CD8+ T cells) or
high activation of phagocytosis checkpoints (such as CD47, PD-L1, CD24, CRT) could be selected to the combination of radiotherapy and
phagocytosis checkpoints-associated immunotherapy. In the combination treatment, it is needed to consider radiotherapy plans,
immunotherapy schemes, sequence of combination treatment and tumor types for enhancing antitumor effects of the novel combination
treatment. According to current studies, tumor patients with lung cancer, breast cancer, liver cancer, melanoma, glioma, colorectal cancer or
cervical cancer might acquire benefits from the novel combination treatment. However, for patients with low infiltration of immune cells or
low activation of phagocytosis checkpoints, other treatments need to be selected, such as chemotherapy, targeted therapy and other types of
immunotherapy and so on. (Created with Microsoft Office PowerPoint).
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Table 4. The potential clinical application of radiotherapy combined with phagocytosis checkpoints-associated immunotherapy.

Types of application

Biomarkers for sensitivity to CD47
radiotherapy
PD-L1
CD24
CRT

Diverse radiotherapy (RT) plans RT dose fraction

RT types

Targeting strategies for Antibody
phagocytosis checkpoints-
associated immunotherapy

SPRINGER NATURE

Details of application

CDA47 has been upregulated in radioresistant breast cancer
cells.

Overexpression of PD-L1 is a helpful biomarker of
radiotherapy treatment failure in HPV-negative head and
neck squamous cell carcinoma.

Overexpression of PD-L1 is a main marker to radioresistance
in lung adenocarcinoma.

Low expression of PD-L1 is correlated with radioresistance
and poor prognosis in head and neck squamous cell
carcinoma.

High expression of PD-L1/PD-1 is related to tumor cells
sensitivity to radiotherapy in head and neck cancers

The lack of CD24 at the level of primary clonogenic blasts is
related to irradiation resistance in B-lineage acute
lymphoblastic leukemia patients.

The CD24-negative breast cancer stem cells are markers of
radioresistance.

The CD24-positive pancreatic cancer stem cells are resistant
to radiotherapy.

Glioblastoma cells overexpressing CRT have increased
tumor cells sensitivity to radiotherapy.

High-dose RT (12 Gy) to primary tumor site primes T cells
and low dose RT (1 Gy x 2 fractions) to secondary site
promotes M1 macrophage polarization and NK cell
infiltration.

Low-dose RT (2 Gy X 1 fraction) promotes systemic
antitumor effects of hypofractionated RT (8 Gy X 3 fractions)
combined with anti-PD1 therapy.

Both a single-fraction dose of 5Gy and a fractionated
schedule (20 Gy /5 fractions) have the same anti-tumor
efficiency when RT is combined with CD47 blockade.

Both low-dose fractionated and hypofractionated RT did not
enhance progression-free survival and overall survival
compared to anti-PD-L1 inhibition alone in metastatic
NSCLC.

Proton radiation could upregulate “eat me” signal protein
CRT expression on the tumor cells to promote tumor
antigen presentation by phagocytes and further increase
infiltration of CD8+ T cells.

The carbon ion therapy in combination with anti-PD-1
antibody not only can upregulate CRT but also increase
infiltration of CD4+ and CD8+ T cells compared to
conventional radioimmunotherapy.

Other new radiotherapy styles such as spatially fractionated
RT and FLASH RT also have antitumor immune responses
and can combine with immunotherapy to produce more
effective antitumor efficiency.

Anti-CD47 antibody Hu5F9-G4 combined with rituximab
(anti-CD20) inhibits B-cell non-Hodgkin's lymphoma
progression by increasing macrophage-mediated
phagocytosis in a phase 1b study.

Anti-CD47 antibody Hu5F9-G4 has a well-tolerated anti-
tumor efficiency both in solid tumors and hematologic
tumors.

Anti-SIRPa antibody is a promising antitumor drug with
fewer hematologic toxicities side effects because of the
confined expression of SIRPa on normal cells compared
with CD47.

Anti-SIRPa antibody promotes phagocytosis of
macrophages, activation of DCs and further increases cross-
priming tumor-specific CD8+ T cells.

Cell Death and Disease (2025)16:630
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Table 4. continued

Types of application
Small molecule inhibitors

Peptide

Nanomaterials

Multiple immunotherapy

regimens
Sequence of RT and phagocytosis Concurrent therapy
checkpoints-associated
immunotherapy

Sequential therapy

Cell Death and Disease (2025)16:630

Details of application

The MYC inhibitor JQ1 downregulates CD47 and PD-L1
expression on the tumor cells to increase antitumor
immune response.

The QPCTL inhibitor regulates CD47 pyroglutamate
formation to interfere the binding with SIRPa promoting
tumor cell killing by macrophages and neutrophils.

The EGFR inhibitor gefitinib inhibits the expression of CD47
and increases the expression of CRT, which promotes tumor
cell phagocytosis by monocyte-derived dendritic cells in
human NSCLC.

A macrocyclic peptide D4-2 can block CD47-SIRPa
interaction by selectively binding with g-V-like domain of
SIRPa, which further promotes macrophage-mediated
phagocytosis.

The novel peptide pep-20 combined with RT (a single dose
of 20 Gy) blocks the CD47/SIRPa interaction by binding to
the CD47-1gV domain and inhibiting SIRPa tyrosine
phosphorylation of ITIMs, resulting in promoting
macrophage-mediated phagocytosis and activating
antitumor T-cell immune response.

A peptide named hEL-RS17 could bind to CD47 on tumor
cells and block the signaling of CD47-SIRPa.

A nanobioconjugate engager carrying both anti-HER2
antibodies and CRT to increase the breast cancer cells
phagocytosis and tumor antigen presentation by
macrophages.

An engineered biomimetic nanozyme CD47@CCM-Lap-CuS
NP, its near-infrared laser irradiation can generate
photothermal therapeutic effects on CD47-overexpressing
cancer cells.

The integration of nanoscale metal-organic frameworks
enabled radiotherapy with checkpoint blockade
immunotherapy to have both local and systemic antitumor
effects.

Additional injection of NBTXR3 nanoparticles can enhance
infiltration and activation of cytotoxic immune cells and
antitumor effects of the combination of proton therapy and
anti-PD-1 on both irradiated and unirradiated tumors.

A bridging-lipid nanoparticle(B-LNP) with dual targeting to
irradiation-triggered CD47 and PD-L1 promotes
macrophages to engulf tumor cells, antigen presentation
and T cell recruitment in irradiated glioma.

The addition of anti-PD-L1 antibody promotes immune
response to the treatment resistance of combination
therapy of radiotherapy and anti-CTLAA4.

Combining two types of phagocytosis checkpoint drugs
(anti-SIRPa and anti-PD-1) with RT could activate robust
adaptive antitumor immune responses in colorectal cancer.

The concurrent administration of anti-PD-L1 and
fractionated radiotherapy has a more synergistic antitumor
effect compared to sequential administration in colon
carcinoma and breast cancer.

Patients treated with RT combined with anti-PD-1 within
four weeks had better antitumor response than more than
four weeks in melanoma brain metastases patients.

The administration of RT before ipilimumab has better
overall survival and less regional recurrence compared with
RT after ipilimumab in melanoma brain metastases.

Giving RT before immunotherapy has a better overall
response rate compared with RT before immunotherapy in
512 patients with cancer metastasis.

RT before immunotherapy has superior survival compared
with the reverse sequence of therapy in patients with
melanoma brain metastases.

Ref.
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[218]
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[219]
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[222]

[223]
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[224]
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[225]

[226]
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[228]

SPRINGER NATURE



Y. Kui et al.

16

Table 4. continued

Types of application Details of application Ref.

Giving anti-PD-1 after irradiation can observe abscopal [229]
effects but delivering of anti-PD-1 before irradiation inhibits

abscopal activity by promoting infiltration of CD8+ T cells in

both primary and secondary tumor in colorectal tumor.

But, administration of ipilimumab before RT had more [230]
effective antitumor efficiency compared with administration
of ipilimumab after RT in advanced melanoma patients.

Patient selection Biomarkers: There are various biomarkers including molecular genes, immune cells, clinical radiomic
models to predict the antitumor efficiency of radioimmunotherapy.

Molecular gene biomarkers A kind of gene signature constituted of six tumor-infiltrating [231]
B lymphocyte-specific genes can predict prognosis and
response of RT and immunotherapy, which low-risk gene
signature group is associated with more immune cell
infiltration and better prognosis in lung adenocarcinoma.

A radiosensitivity index (RSI) model including 10 genes is a [232]
potential biomarker for radioimmunotherapy which low RSI

is associated with higher antigen presentation, higher M1
proportion, richer T cell-inflamed activity and IFN-y

response.

A PD-L1 tumor proportion score (TPS) > 50% is a biomarker [233]
to select patients who can be treated with pembrolizumab
and risk-adapted radiotherapy in locally advanced NSCLC.

Immune cell biomarkers Infiltration of CD103+ Tregs and accumulation of lipid [234]
metabolism can predict resistance to radioimmunotherapy
in glioblastomas.

The contents of blood samples including circulating cell- [235]
free DNA (cfDNA), CD8 + PD1+/PDL1+ PBMCs and 27

microRNAs are early promising biomarkers to predict the

response of RT and immunotherapy in oligoprogressive

patients.

A special T-cell signature with low CD8+ naive T-cells and [236]
high levels of TIM-3 on multiple T-cell populations at

baseline is related to good prognosis in metastatic

melanoma patients treated with RT and immunotherapy.

Clinical radiomic model The CD8 radiomics score is related to progression-free [237]
biomarkers survival, out-of-field abscopal response and overall survival,

which can assess tumor heterogeneity and select patients

who may benefit from radioimmunotherapy without

invasive.

The 18F-FDG-PET is a prognostic imaging biomarker which [238]
is associated with OS and PFS for patients with recurrent

NSCLC by using its metabolic tumor volume (MTV), total

lesion glycolysis (TLG) and lean body mass corrected SUV

peak (SUL peak).

A clinical-radiomic model using XGBoost algorithm can [239]
quantitatively predict pathologic complete response of

neoadjuvant radioimmunotherapy in esophageal squamous

cell carcinoma.

Al approach-based biomarkers A neural network model based on Al approach can simulate [240]
tumor growth and treatment response of RT and anti-PD-L1
therapy by integrating pulse interval, radiation dose, drug
dose, and timing to study a “causal relationship” and further
optimize treatment regimens in radioimmunotherapy.

Tumor types: Special tumor types with more macrophage infiltration or high expression of phagocytosis
checkpoint molecules might be more sensitive to the novel combination treatment.

High infiltration of phagocytes The tumor types of high infiltration of phagocytes mainly include
breast cancer[163], glioma [164], hepatocellular carcinoma [165],
colorectal cancer [166], and non-small cell lung cancer [167].

High infiltration of CD8+ T cells The tumor types with high infiltration of CD8+ T cells include
melanoma [241], NSCLC [242], colorectal cancer [243], breast cancer

[244].
High expression of Using tissue microarray (TMA) data indicates that over 60% [245]
phagocytosis checkpoint of patients have high levels of CD47 in ovarian, cervix,
molecules gastric, NSCLC, melanoma, glioblastoma multiforme, head

and neck cell carcinoma, colon, pancreatic and esophageal
cancer and over 40% in hepatocellular carcinoma, urothelial
and kidney cancer.
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Table 4. continued

Types of application

distant, non-irradiated tumor. Therefore, phagocytosis checkpoint
molecules can become potential biomarkers or promising
targeting immune molecules in radiotherapy to predict or regulate
tumor cells sensitivity to radiotherapy and further to enhance the
antitumor response of radiotherapy.

Nevertheless, there are still some problems that need to be
resolved in this research area, according to current research results.
Firstly, the molecular mechanisms of radiotherapy-induced phagocy-
tosis checkpoint expression still need to be further explored,
especially other molecule types except for the CD47-SIRPa axis in
future studies. Secondly, it is not clear whether the balance between
pro-phagocytosis and anti-phagocytosis signals caused by radio-
therapy can engulf or not tumor cells under different conditions,
resulting in tumor cells sensitivity to radiotherapy. Therefore, it is
needed to confirm the balance between these two adverse
phagocytosis signals. Thirdly, phagocytosis checkpoint-associated
immunotherapy has annoying hematological toxicities, such as
anemia, thrombocytopenia, and other immune-associated side effects
resulting in limitation of drug dose. Therefore, it is an advisable choice
to combine phagocytosis checkpoints-associated immunotherapy
with other treatments to reduce these side effects, such as
radiotherapy. Fourthly, although there have been some phagocytosis
checkpoints associated immunotherapy in clinical patients, there are
only two ongoing clinical trials related to combining treatment of
radiotherapy and phagocytosis checkpoint-associated immunother-
apy one with TTI-621(anti-CD47) (NCT02890368) and the other one
with autologous SIRPa-low macrophages (SIRPant-M) (NCT05967416).
In the future, researchers maybe should carry out more clinical trials to
explore the synergistic effects of radiotherapy and phagocytosis
checkpoint-associated immunotherapy.

In conclusion, this review summarizes the influence of radio-
therapy on phagocytosis checkpoints in the tumor microenviron-
ment and suggests the optimal modes of combination treatment
of radiotherapy and phagocytosis checkpoint-associated immu-
notherapy by considering diverse therapy regimens to improve
antitumor efficacy and tumor patients’ outcomes.
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