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The immunotherapy has achieved some efficacy in triple-negative breast cancer (TNBC), but the benefit population is limited,
primarily due to an abnormal immune microenvironment. Thus, it is necessary to explore new molecular targets to enhance the
immunogenicity of TNBC cells and improve their responsiveness to immunotherapy. We found that a key component of the DNA
repair system, Ataxia telangiectasia mutated (ATM), may function as an immune response inhibitor. In this study, the inverse
correlation between ATM and CD8" T cells and tumor-infiltrating lymphocytes (TILs) was confirmed by immunochemical staining of
191 TNBC specimens. Subsequently, inhibition of ATM increased the expression of major histocompatibility complex | (MHC-I) and
enhanced the infiltration and cytotoxic activity of CD8" T cells by Western blot and flow cytometry analysis. In addition, we further
confirmed that the MHC-I upregulation induced by ATM inhibition depends on the activation of the c-Jun/TNF-a/p-STAT1 pathway.
Animal studies have shown that ATM deficiency delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy.
This study reveals a new mechanism by which ATM negatively regulates MHC-I by inhibiting the c-Jun/TNF-a/p-STAT1 pathway in
TNBC, and shows an important role in mediating CD8" T cells infiltration and regulating the “heat” of the immune
microenvironment. The combination of ATM inhibitors with radiotherapy and Immune-checkpoint blockade (ICB) therapies may be

a new strategy for TNBC treatment.
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INTRODUCTION

TNBC represents the most aggressive molecular subtype of breast
cancer, constituting 10-20% of all cases, and is associated with a
poor prognosis due to a lack of specific therapeutic targets [1].
While chemotherapy remains the primary treatment for TNBC, it is
often hindered by drug resistance and off-target toxicity [2]. In
recent years, immunotherapy has emerged as a promising
treatment for TNBC. Multiple immune checkpoint inhibitors (ICls)
have been approved for the treatment of triple-negative breast
cancer, leading to significant improvements in patient outcomes
[3-5]. The PD-1/PD-L1 axis plays a crucial role in dampening T cell
activity and facilitating tumor immune evasion [6]. Pembrolizumab
monotherapy was confirmed to provide sustained antitumor
activity in patients with early and advanced PD-L1-positive TNBC
(combined positive score [CPS] =1) [7]. Additionally, a Phase |
clinical trial (NCT02838823) highlighted the safety and efficacy of
the PD-1 inhibitor JS001 in patients with metastatic TNBC who had
previously undergone multiple treatment lines [8].

The inactive tumor microenvironment is the main reason for the
poor efficacy of chemotherapy and immunotherapy [9]. Studies
have shown that TILs are significantly associated with improved
prognosis in TNBC patients [10, 11]. When the expression level of
MHC-I—known as human leukocyte antigen (HLA) in humans and

histocompatibility system 2 (H-2) in mice—within tumor cells is
down-regulated or absent, the cytotoxic effect mediated by CD8*
T cells can be affected, allowing tumor cells to evade immune
surveillance and clearance [12, 13]. Numerous studies have shown
that PD-1/PD-L1 inhibitor treatment is more effective in cancers
characterized by a higher presence of CD8* T cells, which can
serve as predictive and therapeutic biomarkers for anti-PD-1
therapy [14, 15]. Therefore, enhancing the recruitment of CD8*
T cells and remodeling the immune microenvironment are
important methods to improve the therapeutic effect of ICls in
breast cancer.

The ATM gene encodes a serine/threonine protein kinase, which
plays an important role in DNA damage response (DDR) and cell
cycle regulation [16, 17]. ATM plays a key role in the detection and
repair of DNA double-strand breaks (DSBS) caused by ionizing
radiation (IR) [18, 19]. ATM-deficient cells are extremely sensitive
to IR, so ATM inhibitors have been explored as sensitizers for
radiotherapy [20]. Additionally, studies have found that ATM is
highly expressed in ER-negative breast cancer, with its expression
level inversely correlated with CD8* T cells infiltration [21, 22]. This
suggests that ATM deficiency or inhibition may enhance the
antitumor effects of radiotherapy as well as ICB therapies [23, 24].
Defects in the DDR pathway may increase the immunogenicity of
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tumor cells and improve the effectiveness of ICls [25-28].
Moreover, both alterations in the DDR pathway and radiotherapy
have been shown to induce the expression of immune checkpoint
ligands such as PD-L1, which provides an opportunity for the
intervention of ICls [27, 29, 30].

In this study, we performed single-cell sequencing and
immunohistochemical (IHC) analysis of tumor tissues from TNBC
patients and found that the expression of ATM was significantly
negatively correlated with the expression of TILs, MHC-I and CD8*
T cells. Additionally, we found that inhibition of ATM can up-
regulate the expression of MHC-I through c-Jun/TNF-a/p-STATT,
thereby enhancing CD8* T cells infiltration and increasing the
immune “heat” in TNBC. It further proves the effectiveness of the
combination of ATM inhibitors with radiotherapy and ICB
therapies, providing a new strategy for enhancing the efficacy of
cancer treatment.

MATERIALS AND METHODS

Human peripheral blood mononuclear cell (PBMC) isolation
and co-culture with tumor cells

Peripheral venous blood (10mL) was collected from fasting human
subjects using EDTA-anticoagulated vacuum tubes. Within 4 h of collec-
tion, the whole blood was diluted 1:1 with phosphate-buffered saline (PBS)
and subjected to density gradient centrifugation using Ficoll-Paque
solution (Solarbio, China) at 1200 x g for 15 min at room temperature
for PBMC isolation. Collect PBMCs in a separate tube by carefully pipetting
the cells from the layer. Cells were then washed with an equal volume of
PBS and centrifuged at 1200 X g for 15 min. This washing procedure was
repeated twice to obtain purified PBMCs.T cells were activated with plate-
bound anti-human CD3 (2 pg/mL, clone OKT3) and anti-human CD28
(2 pg/mL, clone CD28.2) antibodies (BioLegend, San Diego, CA, USA) in the
presence of 100IU/mL interleukin-2 (PROSPEC, East Brunswick NJ, USA).
T cells were cultured in 25 cm? cell culture flasks with RPMI 1640 medium
(Gibco) in a total volume of 5mL and maintained at 37 °C in 5% CO,
atmosphere. The cells were diluted up to 5 x 10° cells/mL by adding fresh
culture medium supplemented with 251U/mL interleukin-2 on days 4, 7
and 10. Informed consent was obtained from all volunteers. Subsequently,
the acquired PBMCs were co-cultured with tumor cells at a ratio of 10:1 for
48 h to assess immune alterations.

Lactate dehydrogenase (LDH) cytotoxicity assay

Cytotoxicity of CD8" T cells was determined by LDH Cytotoxicity Assay Kit
(Beyotime Biotechnology). TNBC-shV and TNBC-shATM cells were cultured
normally and diluted into 2 x 10%/100 L using 1640 complete medium after
trypsin digestion. At the same time, the PBMC cells sorted from the above
experimental procedure were resuspended in 1640 complete medium, and
four gradients were set up, and the concentration was 1 x 10°/100 pL (target
cell: effector cell = 1:5), 2x10°/100 pL (target cell: effector cell = 1:10),
3% 10°/100 pL (target cell: effector cell = 1:15) and 4 x 10°/100 uL (target cell:
effector cell = 1:20). Prepare the 96-well cell culture plate and design the
following groups with 3 repeat holes in each group:

a. Background control: 200 pL medium.

b. Low control: 100 pL tumor cells+100 uL medium.

c. High control: 100 puL tumor cells+100 uL Membrane breaking
solution (2% Triton-X100 in culture medium).

d. Effector control: 100 uL CD8* T cells+100 puL medium.

e. Experimental group (Effector/target cell mix) : 100 uL tumor cells
+100 pL CD8™* T cells (different proportions).

After spreading the plates for a total of 20 h, the culture solution was
transferred to a 96-well plate and mixed with the reaction mixture for
30 min at room temperature. Following the addition of stop solution,
the OD490 and OD680 values were assayed, and the difference
(OD490-0D680) represented LDH activity. Cytotoxicity (%) = (Effector/
target cell mix -Effector cell control-Low control)/(High control-Low
control) x 100.

Flow cytometry
Cells were harvested and collected by centrifuging at 1,500 rpm for 5 min. For
molecular staining of cell surfaces, resuspended cells were directly incubated

SPRINGER NATURE

with the related antibody and protected from lights on ice for 30 min and
then washed with staining buffer. For intracellular molecular staining, the BD
cell fixation and permeabilization were used for the fixation of cells and the
Perm/Wash Buffer was used to wash the cells and to dilute the antibodies for
staining (BD, no. 554714). The supernatant was aspirated, and the cells were
resuspended in 200 yL staining buffer for flow cytometric analysis. The
following antibodies were used for flow cytometry analysis. Brilliant Violet
510™ anti-human CD45 Antibody (biolegend, no. 304035), APC/Fire™ 750
anti-human CD3 Antibody(biolegend, no. 300469), Brilliant Violet 785™ anti-
human CD8 Antibody(biolegend, no. 344739), PE anti-human CD279 (PD-1)
Antibody(biolegend, no. 329905), Brilliant Violet 421™ anti-human CD366
(TIM-3) Antibody(biolegend, no. 345007), FITC anti-human IFN-y Antibody(-
biolegend, no. 502505), BUV395 anti-human TNF(BD Biosciences, no. 563996),
Anti-MHC class 1+ HLA A+ HLA B antibody(abcam, ab134189), All the flow
cytometry data were processed with FlowJo software (version 10.9).

Immunohistochemical procedure

IHC analysis on formalin-fixed tissue sections was performed with an
avidin-biotin system using a standard protocol. The antibodies used are as
follows: ATM rabbit monoclonal antibody (mAb) (Abcam, ab32420), 1:100
dilution; MHC class |+ HLA A +HLA B rabbit mAb (Abcam, ab134189),
1:4000 dilution; CD8-a mouse mAb (Santa Cruz Biotechnology, sc-7970),
1:100 dilution; TNF-a mouse mAb (proteintech, 26405-1-AP), 1:200 dilution;
Phospho-Stat1 rabbit mAb (Tyr701) (Cell Signaling Technology, 9167 T),
1:400 dilution. Phospho-ATM S1981 recombinant rabbit mAb(HuaBio,
ET1705-50), 1:200 dilution; HLA-A + HLA-B + HLA-C rabbit pAb(Abclonal,
A1285) 1:100 dilution. The sections were then incubated sequentially with
primary antibody, biotinylated secondary antibody, and avidinperoxidase
conjugate. All steps were preceded by rinsing sections with PBS (pH 7.6).
The chromogen was DAB.

Clinical specimens and ethical approval

The 191 samples used in this study were all surgical resection specimens of
TNBC admitted to Tianjin Medical University from August 2014 to
December 2016 without preoperative neoadjuvant chemotherapy, and
confirmed to be pathological stage Il and Il after surgery. Detailed
clinicopathological information is shown in Table S3. All human breast
tissues were collected with written consent from patients prior to
participation in the study. All studies involved in this study meet the
requirements of the Ethics Committee.

Additional materials and methods
Additional methods are described in Supplementary Materials and
Methods.

RESULTS

The expression of ATM is negatively correlated with TILs and
CD8" T cells in TNBC

We performed immunohistochemical staining on samples from
191 TNBC patients (Fig. TA). Quantitative evaluation demonstrated
that ATM expression levels did not show statistically significant
differences when compared across pathological stages (stage Il vs
stage lll, P=0.674), histological grades (grade 1/2 vs grade 3,
P=0.972), or between special and non-special histological
subtypes (P =0.063).

The raw scores from the IHC analysis showed that the
expression of ATM was negatively correlated with the expression
of CD8" T cells (r;=-0.233, P=0.001) and TILs(r; = —0.236,
P=0.001) (Fig. 1B, C). This negative correlation was consistent in
subgroups of patients with different pathological stages (105
cases in stage ll, 86 cases in stage Ill) and histological grades (66
cases in grade 1/2, 113 cases in grade 3) (Table S4 and S6).

To investigate the relationship between ATM expression levels
and immune cells in the tumor microenvironment, we analyzed
data from 198 TNBC samples in GEO data (GSE76124). We found a
significant negative correlation between ATM and CD8" T cells,
supporting our previous IHC findings (Fig. 1D-F). These results
suggest that ATM may serve as a potential regulatory molecule
influencing the immune “heat” of TNBC.
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Fig. 2 ATM knockdown is expected to improve the immune “heat” of TNBC. A-H Representative dot plots (left) and statistical analysis
(right) of CD8™ T cells (A-D), CD8™" T cells exhaustion (E-H) cocultured with the indicated cell line. *P < 0.05 and **P < 0.01, by unpaired t test.
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(ANOVA).
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ATM knockdown is expected to improve the immune “heat”
of TNBC

To clarify the effect of ATM knockdown on CD8* T cells, PBMC
extracted from the peripheral blood of healthy volunteers was co-
cultured with tumor cells in vitro. After 24 h of co-culture, the
changes of immune cells in the supernatant were detected by
flow cytometry. Notably, we observed a significant upregulation in
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the proportion of CD3* CD8" T cells following ATM knockdown in
TNBC cell lines MDA-MB-231, HCC1937, SUM159 and BT549 (Fig.
2A-D). In addition, the percentage of IFN-y* CD8" T cells and TNF-
a* CD8* T cells were both increased in the TNBC-shATM cells
compared with the control TNBC-shV cells (Fig. STA-D). At the
same time, the percentage of PD-1" TIM-3" exhausted CD8" T cells
was reduced in TNBC-shATM cells (Fig. 2E-H).
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Fig. 4 ATM knockdown upregulates MHC-I expression through TNF-a in TNBC. A, C Western blot analyses showed the effect of silencing
TNF-a on the protein expression of TNF-a and HLA in MDA-MB-231, HCC1937, SUM159 and BT549 cells with indicated treatments.
Quantitative of relative TNF-a and HLA protein levels. B, D qRT-PCR analyses showed the effect of silencing TNF-o on the mRNA levels of TNF-a
and HLA-A in MDA-MB-231, HCC1937, SUM159 and BT549 cells with indicated treatments. E, G Western blot analyses showed the effect of
TNF-a monoclonal antibody on the expression of HLA protein in MDA-MB-231, HCC1937, SUM159 and BT549 cells. Quantitative of relative
HLA protein levels. F, H qRT-PCR analyses showed the effect of TNF-a monoclonal antibody on HLA-A mRNA levels in MDA-MB-231, HCC1937,
SUM159 and BT549 cells. I, K Protein expression by Western blot analyses of ATM and HLA in MDA-MB-231, HCC1937, SUM159 and BT549 cells
with indicated treatments. Quantitative of relative HLA protein levels. J, L mRNA levels by gRT-PCR analyses of HLA-A in MDA-MB-231,
HCC1937, SUM159 and BT549 cells with indicated treatments. Error bars represent mean + SD. Two-tailed Student’s t test was used for

statistical analysis. *P < 0.05; **P < 0.01; ns, not significant, P > 0.05.

Moreover, we observed the recognition and killing of tumor
cells by CD8" T cells at different time points of co-culture. At the
20-hour mark, TNBC-shATM cells were recognized and killed by
more CD8" T cells than TNBC-shV cells. Subsequently, we used the
LDH cytotoxicity assay to detect the killing efficiency of CD8"
T cells against tumor cells at the 20th hour of co-culture under
different gradients. Compared to TNBC-shV cells, the killing
efficiency of CD8" T cells against TNBC-shATM cells was
significantly increased and improved with the rising proportion
of CD8" T cells (Fig. 2I). These results indicate that ATM
knockdown can enhance the immune function of CD8" T cells
and their killing ability against tumor cells.

ATM deficiency in TNBC cells promotes MHC-I expression

To further dissect the mechanism of the negative correlation
between ATM and CD8"* T cells, we noted that MHC-l, as a key
molecule of antigen presentation, plays an indispensable role in
the activation process of CD8" T cells. We speculate that ATM may
affect the recognition and response of CD8" T cells to specific
antigens by regulating the expression level of MHC-I (known as
HLA in humans) molecules or the efficiency of antigen presenta-
tion. To test this hypothesis, we first constructed ATM knockdown
stable cell lines in four TNBC cell lines, MDA-MB-231, HCC1937,
SUM159 and BT549, and found that the expression of MHC-I (HLA-
A + HLA-B) on the surface of tumor cells was increased by flow
cytometry (Fig. 3A-D). In addition, we observed that both the
protein and mRNA levels of HLA were upregulated after ATM
knockdown (Figs. 3E, F, and S2A, B). Similarly, treatment of TNBC
cells with KU55933 also increased the protein expression and
mRNA levels of HLA (Figs. 3G, H, and S2C, D). These findings
suggest that ATM negatively regulates the transcriptional activa-
tion and protein expression of MHC-I in TNBC cells in vitro.

We also confirmed that in TNBC-shATM, Genes encoding key
components of MHC-I (32m), MHC-I loading machinery (Erap1, Tap
1, and Tap2), and MHC-I transcriptional coactivator (NLRC5) were
upregulated at the transcriptional level relative to TNBC-shV (Fig.
3l). These results suggest that ATM can negatively regulate HLA
expression in TNBC.

ATM knockdown upregulates MHC-I expression through TNF-
a in TNBC

Subsequently, we sought to investigate the key mechanism under-
lying the regulation of MHC-| expression by ATM. Some studies have
shown that TNF-a can up-regulate the expression of MHC- by
activating the NF-kB signaling pathway [31, 32]. Previous studies have
confirmed that ATM knockdown induces up-regulation of TNF-a
expression [33]. Therefore, we hypothesized that ATM knockdown
mediates elevated MHC-l expression through TNF-a. To test this
hypothesis, Western blot and gRT-PCR analyses were performed to
assess changes in HLA expression in the TNBC-shV and TNBC-shTNF-a
cell lines. The results showed that after the knockdown of TNF-a in
TNBC cells, the protein expression and mRNA levels of HLA were
down-regulated (Fig. 4A-D). Consistent conclusions were obtained
when we treated TNBC cells with TNF-a mAb (Fig. 4E-H). In TNBC-
shATM cells, the knockdown of ATM increased the expression of HLA
compared with TNBC-shV cells, however, when TNF-a was blocked,
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the upregulated expression of HLA were significantly inhibited (Fig. 4],
K). The changes in the mRNA levels of HLA-A are consistent with the
protein expression (Fig. 4J, L).

C-Jun-mediated TNF-a/p-STAT1 activation induces MHC-I
expression in ATM knockdown TNBC

Previous studies have demonstrated that ATM deficiency pro-
motes c-Jun phosphorylation, leading to its nuclear translocation
and subsequent binding to the TNF-a promoter region, thereby
enhancing TNF-a transcription and expression [33]. Therefore, we
further verified whether c-jun affects the expression of MHC-I
through TNF-a. In TNBC-shATM cells, the knockdown of ATM
increased the expression of p-c-Jun, TNF-g, and HLA compared
with TNBC-shV cells, however, when c-Jun was silenced, the
upregulated expression of both TNF-a and HLA was significantly
suppressed (Fig. 5A, B). This suggests that c-Jun plays an
important role in this regulatory network.

Prior work has shown that TNFR1-STAT1 interaction and
p-STAT1 expression are significantly increased upon TNF-a
stimulation [34]. The activation of STAT1 can promote the up-
regulation of MHC-I [35, 36]. We used siRNA to silence STAT1 and
confirmed its impact on HLA expression in TNBC-shV cells. In
TNBC-shTNF-a cells, knockdown of TNF-a reduced the expression
of HLA and p-STAT1 compared with TNBC-shV cells. Silencing
STAT1 further reduced the protein expression and mRNA levels of
HLA (Fig. 5C=F). In conclusion, ATM knockdown upregulates HLA
expression in triple-negative breast cancer through activation of
the c-Jun/TNF-a/p-STAT1 signaling pathway.

The expression of ATM was negatively correlated with TNF-a,
p-STAT1 and MHC-I in TNBC patients

In order to analyze the correlation between levels of ATM with
TNF-qa, p-STAT1 and HLA in clinical specimens, we evaluated the
ATM, TNF-q, p-STAT1 and HLA immunohistochemical scores of 191
TNBC patients. Based on raw scores obtained from IHC of 191
TNBC patients (Fig. 6A-I), our data showed that ATM H-core was
correlated with TNF-a H-core (r; = —0.214, P = 0.003), p-STAT1 H-
core (r;=-0318, P<0.001) and HLA H-core (ry=—0.265,
P <0.001) (Fig. 6J-L). Additionally, HLA H-core showed a positive
correlation with both TNF-a H-core (r; = 0.395, P<0.001) and
p-STAT1 H-core (r, = 0.314, P < 0.001) (Fig. 6M, N).

We analyzed triple-negative breast cancer samples with
different pathological stages (Il/lll) and histological grades (1/2/
3). ATM expression showed a consistent negative correlation with
TNF-q, p-STAT1, and HLA, whereas HLA showed a stable positive
correlation with both TNF-a and p-STAT1. These associations
remained robust across all subgroups (Table S4-S7).

ATM inhibition delays tumor growth and sensitizes tumors to
PD-1 blockade and radiotherapy

In our previous work, we demonstrated that ATM knockdown or
inhibition did not affect tumor growth in nude mice [33]. In this
study, we further examined the effect of ATM on tumor growth
and intratumoral CD8" T cell infiltration in BALB/C mice. We
inoculated 4T1 cells and EMT6 cells into the fat pad of BALB/C
mice, followed by intraperitoneal injection of KU55933 and/or
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Fig. 5 C-Jun-mediated TNF-a/p-STAT1 activation induces MHC-I expression in ATM knockdown TNBC. A, B Protein expression by Western
blot analyses of ATM, TNF-a, HLA, p-c-Jun and c-Jun in MDA-MB-231, HCC1937, SUM159 and BT549 cells with indicated treatments.
Quantitative of relative TNF-o, p-c-Jun and HLA protein levels. C, E) Protein expression by Western blot analyses of TNF-a, p-STAT1, STAT1 and
HLA in MDA-MB-231, HCC1937, SUM159 and BT549 cells with indicated treatments. Quantitative of relative p-STAT1 and HLA protein levels.
D, F mRNA levels by gqRT-PCR analyses of HLA-A in MDA-MB-231, HCC1937, SUM159 and BT549 cells with indicated treatments. Error bars
represent mean + SD. Two-tailed Student’s t test was used for statistical analysis. *P < 0.05; **P < 0.01; ns, not significant, P > 0.05.
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of ATM expression with p-STAT1 expression. L Correlation of ATM expression with HLA expression. M Correlation of TNF-a expression with HLA

expression. N Correlation of p-STAT1 expression with HLA expression.
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PD-1 neutralizing antibody and/or tumor-directed radiotherapy, as
shown (Fig. 7A, C). Tumor growth was recorded every 2-3 days
after the appearance of macroscopic tumors. The results showed
that ATM inhibition not only significantly delayed tumor growth,
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Fig. 7 ATM inhibition delays tumor growth and sensitizes tumors to PD-1 blockade and radiotherapy. A, B 1x 10° 4T1 cells were
orthotopically implanted into the right fourth mammary fat pads of 6-8-week-old female BALB/c mice. When the tumor volume reached
about 100 mm?, mice received a 10 mg/kg dose of KU55933 or placebo via intraperitoneal injection every three days. Mice received
intraperitoneal injections of 100 pg of anti-PD-1 (clone 29 F.1A12™; Bio X Cell) per injection or its isotype control (clone 2A3; Bio X Cell) on days
10, 17and 24. Radiation therapy was administered when the tumor volume of the mice reached approximately 300 mm? (n = 5-7/group).
A Treatment regimen and (B) mean tumor volume curves are shown. C, D 1 x 10° EMT6 cells were orthotopically implanted into the right
fourth mammary fat pads of 6-8-week-old female BALB/c mice and subjected to the identical treatment regimen. C Treatment regimen and
(D) mean tumor volume curves are shown. *P < 0.05; **P < 0.01; ns, not significant, P > 0.05, by unpaired t test (B, D). E-L Representative images
of immunohistochemical staining of all molecules expressed in 4T1 murine mammary tumor tissues (200 X). (E) p-Atm low (H-score: 40); (F)
p-Atm high (H-score: 110); (G) Tnf-a low (H-score: 30); (H) Tnf-a high (H-score: 120); (1) p-Stat1 low (H-score: 20); (J) p-Stat1 high (H-score: 220);
(K) H-2 low (H-score: 40); (L) H-2 high (H-score: 120). M-T Representative images of immunohistochemical staining of all molecules expressed
in EMT6 murine mammary tumor tissues (200 x). M p-Atm low (H-score: 30); (N) p-Atm high (H-score: 120); (O) Tnf-a low (H-score: 25); (P) Tnf-a

high (H-score: 180); (Q) p-Stat1 low (H-score: 20); (R) p-Stat1 high (H-score: 140); (S) H-2 low (H-score: 65); (T) H-2 high (H-score: 220).
<

As expected, ATM inhibition was most potent when it was
combined with anti-PD-1 therapy and radiotherapy, with a limited
prolongation of host survival (Fig. S3A, B). We observed that triple
therapy (comprising Atm inhibitor therapy, anti-PD-1 therapy, and
radiotherapy) resulted in a significant reduction in tumor weight,
as compared with ATM inhibitor alone (Fig. S3C, D).

Subsequently, we fixed part of the tumor tissue and performed
immunohistochemical staining (Fig. 7E-T). In addition, our data
demonstrated that in 4T1 mice, the expression of p-Atm (51981)
was negatively correlated with Tnf-a (r,=—0.313, P=0.049),
p-Stat1 (Tyr701) (r,=—0.368, P=0.019) and H-2 (r;=—0.324,
P=0.041), and the expression of H-2 expression was positively
correlated with Tnf-a (r; = 0.485, P=0.002) and p-Stat1 (Tyr701)
(rs = 0431, P=10.006) (Fig. S3E-I). Similarly in EMT6 mice, P-ATM
(51981) expression exhibited negative correlations with TNF-a
(rs=—0.403, P=0.01), P-STAT1 (Tyr701) (r;=—0.380, P=0.016),
and H-2 (ry,=-0350, P=0.027), and the expression of H-2
expression displayed positive correlations with TNF-a (r; = 0.324,
P =0.042) and P-STAT1 (Tyr701) (ry = 0.402, P=0.01) (Fig. S3J-N).

These results suggest that inhibition of ATM increases the
expression of MHC-I on the tumor surface, leading to a significant
increase in CD8" T cell infiltration, which subsequently inhibits
tumor growth. This points to a potential role for ATM in shaping
the immune microenvironment.

DISCUSSION

TNBC, as an aggressive subtype of breast cancer, has high
invasiveness, recurrence rate and poor prognosis, and is not
sensitive to endocrine therapy and anti-HER2 targeted therapy
[37]. In recent years, immunotherapy has made a breakthrough in
the treatment of triple-negative breast cancer, providing new
treatment options for patients [38]. However, because TNBC is often
classified as a “cold” tumor that poses challenges for immune cell
infiltration, the application of ICB therapy for TNBC is still limited,
and only a small proportion of TNBC patients can benefit from anti-
PD-1/PD-L1 therapy [39, 40]. The diversity of immune evasion
mechanisms remains a critical barrier to converting non-responsive
“cold” tumors into responsive “hot” tumors. Therefore, exploring the
mechanisms underlying this shift could provide important insights
into the design of effective cancer treatment strategies.

In our study, we found that high expression of ATM was
significantly associated with reduced TILs, downregulation of HLA-
class | molecules, and insufficient CD8" T cell infiltration,
suggesting that ATM may drive immune escape in TNBC by
inhibiting antigen presentation and immune cell recruitment. This
finding is consistent with previous studies showing that DDR
pathway defects such as ATM loss of function may enhance
immunogenicity by increasing tumor mutational burden and
neoantigen generation [25, 27, 28]. In addition, ATM inhibition
could reverse the immune “cold phenotype” of tumor cells by
activating the TNF-o/STAT1 signaling pathway and up-regulating
the expression of MHC-I molecules. This mechanism provides
direct evidence that ATM-targeted interventions reshape the
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immune microenvironment and explains the potential cause of
increased sensitivity to ICI therapy in TNBC patients with low ATM
expression. However, whether ATM inhibition affects other
immunosuppressive cells, such as Tregs or MDSCs, remains to
be further explored.

MHC-I molecules are distributed on the surface of all
eukaryotic nucleated cells and consist of heavy alpha and light
chains (f2m) and antigenic peptides of 9-10 amino acids [41].
The genes encoding the heavy chain of human MHC-I molecules
are mainly composed of human leukocyte antigens HLA-A, HLA-
B and HLA-C [42]. As an important hub in the immune system,
the core function of MHC-I molecules is to display endogenous
peptides to the T cell receptor (TCR) on the surface of CD8"
T cells. This process is a key step to trigger the activation of CD8"
T cells and thus endow them with cytotoxic potential [43]. This
mechanism ensures that the immune system can precisely
recognize and eliminate abnormal cells in the body, thereby
maintaining the immune balance of the body and anti-tumor
immune surveillance. In this study, we provide the first evidence
that inhibition of ATM activation increases tumor cell surface
antigen presentation by up-regulating the expression of MHC-I
molecules, so that more CD8" T cells can recognize and attack
tumor cells, and regulate the function of other immune cells by
secreting cytokines, and enhance the tumor immunity “heat” of
TNBC. And further enhance the efficacy of anti-tumor immu-
notherapy. In addition, HLA up-regulation mediated by the TNF-
a/STAT1 pathway suggests that ATM inhibition may overcome
ICl resistance due to MHC-I depletion, providing a new idea for
the treatment dilemma of patients with PD-L1-positive but HLA-
low expression.

Previous studies have shown that tumor responsiveness to ICB
therapy is regulated by multiple factors, including the abundance
of PD-L1 expression, the level of tumor mutation burden (TMB),
and the “heat” of tumor immune microenvironment (TIME)
[44-46]. However, the anti-tumor response rate of ICB mono-
therapy remains relatively low, prompting a shift towards
combination therapies as a common clinical approach.

The ATM gene was first identified in patients with ataxia
telangiectasia, and these individuals typically exhibit increased
susceptibility to cancer and sensitivity to ionizing radiation [20].
ATM plays an important role in DDR and cell cycle regulation
[16, 17]. Alterations in the DDR pathway not only lead to genomic
instability and neoantigen generation, but also affect the tumor
immune microenvironment through mechanisms such as upre-
gulation of PD-L1 [27, 28, 47]. Studies have shown that
radiotherapy can synergize with immunotherapy by enhancing
the release and presentation of tumor antigens, activating
immune cells, increasing the density of tumor-infiltrating lympho-
cytes, and remodeling the tumor microenvironment, thereby
transforming “cold” tumors into “hot” tumors [48, 49]. Thus, on the
one hand, ATM deficiency can enhance radiosensitivity by
hindering DNA double-strand break repair [50, 51]. On the other
hand, inhibition of ATM can up-regulate the expression of HLA
through c-Jun/TNF-a/p-STAT1, thereby enhancing CD8" T cells
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Fig. 8 Summary of the role of ATM downregulating MHC-I expression by inactivating the c-Jun/TNF-a/p-STAT1 signaling axis in TNBC.
The Schematic model summarizes the promotion effect of ATM/c-Jun/TNF-a/p-STAT1 signaling axis on MHC-I expression in TNBC. ATM
inhibition upregulates TNF-a expression at both transcriptional and translational levels by promoting c-Jun phosphorylation and nuclear
translocation, thereby enhancing its binding to the TNF-a promoter region. The elevated TNF-a subsequently facilitates STAT1
phosphorylation through TNFR1-STAT1 interaction, ultimately mediating increased expression of both MHC class | and PD-L1 molecules.
The up-regulation of PD-L1 molecules is the result of the regulation of ATM/JNK/c-Jun/TNF-a signaling axis confirmed by our previous study

[33].

infiltration and increasing the immune “heat” in TNBC. This dual
effect of “radiosensitization and immune activation” further
strengthens the reversal of the immune “cold phenotype” of
tumor cells. However, whether the toxicity of this triple therapy
(ATM inhibitor + radiotherapy + ICl) can be controlled and
whether it can accurately screen the patients who can benefit
from it still need to be further explored.

In conclusion, our results provide insight into the molecular
mechanism by which ATM negatively regulates MHC-I expression
through the TNF-a/p-STAT1 signaling axis (Fig. 8). ATM plays a key
role in CD8* T cell-mediated tumor immune regulation. Our results
suggest that ATM negative regulation of MHC-l is a key
mechanism of immune escape in triple-negative breast cancer.
ATM may be a promising marker for anti-PD-L1 therapy and
radiation therapy. The efficacy of ICB in TNBC was improved by
ATM inhibition and further augmented by radiation, highlighting
the combination of ATM inhibition with ICB and radiation as an
effective treatment strategy for breast cancer.
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The data supporting the findings of this study are available from the corresponding
author upon reasonable request.
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