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Insulin-degrading enzyme confers neuroprotection in
Parkinson’s disease by inhibiting the Hippo signaling pathway
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Parkinson'’s disease (PD) is a progressive neurodegenerative disorder primarily marked by the degeneration of dopaminergic
neurons and pathological a-synuclein (a-syn) accumulation. Although insulin-degrading enzyme (IDE) has been implicated in both
type 2 diabetes mellitus and amyloid-protein clearance, its precise relevance to PD pathogenesis remains unclear. In this study, we
show that IDE expression is reduced in the nigrostriatal region of aging homozygous A53T a-syn mice and in a-syn-overexpressing
SH-SY5Y PD cells. Overexpression of IDE alleviated motor deficits, reduced pathological a-syn levels, and protected dopaminergic
neurons in A53T a-syn mice. In SH-SY5Y PD model cells, IDE overexpression reduced a-syn-induced toxicity, whereas IDE
knockdown exacerbated it. Integrated transcriptomic and proteomic analyses revealed that the Hippo signaling pathway serves as
a major downstream target of IDE. Notably, inhibition of MST1/2, a pivotal Hippo kinase, recapitulated IDE’s neuroprotective effects
by diminishing a-syn pathology and neuronal apoptosis. Hence, IDE confers neuroprotection partly via suppression of the Hippo
signaling pathway, and pharmacological targeting of the IDE-Hippo axis may represent a promising therapeutic strategy for PD.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder primarily marked by the degeneration of dopaminergic
neurons in the substantia nigra pars compacta, leading to striatal
dopamine deficiency and the accumulation of a-synuclein (a-syn)
inclusions [1, 2]. Clinically, PD is characterized by motor symptoms
(tremor, bradykinesia, rigidity, and postural instability) and multi-
ple non-motor symptoms (cognitive decline, depression, and
autonomic dysfunction) [3]. Despite multiple pathogenic factors—
such as SNCA or LRRK2 mutations, environmental exposures, and
aging—a unifying mechanism remains elusive [4].

In parallel, type 2 diabetes mellitus (T2DM) has been recognized
as a notable risk factor for PD, with epidemiological data
indicating that insulin resistance and islet amyloid polypeptide
(IAPP) deposition may trigger neurodegenerative processes [5, 6].
Clinical and preclinical studies indicate that T2DM treatments (e.g.,
GLP-1 receptor agonists) can ameliorate motor and cognitive
symptoms in PD, underscoring the notion that overlapping
protein misfolding and metabolic dysregulation may drive both
diseases [7, 8]. Insulin-degrading enzyme (IDE) is a zinc
metalloprotease known primarily for cleaving insulin, yet it also
degrades or interacts with multiple amyloidogenic proteins,
including amyloid-f (AB) and a-syn [9, 10]. Previous studies show
that IDE binds the C-terminus of a-syn, preventing its fibrillization
via a non-proteolytic mechanism [11, 12]. IDE deficiency or

dysfunction has been tied to the pathogenesis of T2DM and
Alzheimer’s disease (AD) [13, 14]. However, contradictory proteo-
mic data in PD patients and limited understanding of IDE’s role in
a-syn aggregation underscore the need for further investigation
[15].

Here, we asked whether loss of IDE accelerates a-synuclein
pathology and whether IDE restoration can halt disease progres-
sion. Longitudinal profiling in A53T a-syn mice and a-syn-
overexpressing SH-SY5Y cells revealed a pronounced decline of
IDE in the nigrostriatal system. Bidirectional IDE manipulation
confirmed that reinstating IDE improves motor function, protects
dopaminergic neurons, and reduces a-syn aggregates. Multi-omics
analysis identified suppression of the Hippo kinase module as the
dominant downstream signature of IDE; pharmacological inhibi-
tion of its core kinases MST1/2 further potentiated IDE-mediated
protection. These results delineate an IDE-Hippo axis that
mitigates a-syn toxicity and nominate IDE augmentation or Hippo
inhibition as practical, mechanism-based strategies for Parkinson's
disease.

MATERIALS AND METHODS

Animals and treatment

All animal studies and experimental procedures were approved by the Life
Science Ethics Review Committee of Zhengzhou University. Homozygous A53T
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a-syn transgenic M83+/+ mice [B6; C3-Tg (Prnp-SNCA*A53T) 83Vle/J] and the
age-matched littermate wild-type (WT) male mice were purchased from the
Cavens Laboratory Animal Center (Cavens, Jiangsu, China). Mice were housed
under standard 12-h light/dark cycles with free access to food and water.

Adeno-associated virus (AAV) vector (AAV.CAP-b10-IDE-3xFLAG and
AAV.CAP-b10-3xFLAG) was constructed in OBiO Technology Corp., Ltd.
(Shanghai, China). 200 ul AAV at a final titer of 2 x 10'? vg/mL was injected
into the tail vein. 6-month-old WT and A53T a-syn mice were randomly
selected for three groups: (1) WT + Vector (AAV.CAP-b10-3xFLAG for WT
mice, n =12), (2) A53T+Vector (AAV.CAP-b10-3xFLAG for A53T a-syn mice,
n=12), and (3) A53T + IDE (AAV.CAP-b10-IDE-3xFLAG for A53T a-syn mice,
n=12). Subsequent experiments were performed at 180 days post
injection (dpi).

ELISA

Tail vein blood of fasting mice was collected and centrifuged for 15 min at
3000 rpm and 4 °C to extract serum. The harvested supernatant was stored
at —80 °C until use. Serum IDE levels were measured using an ELISA kit
(Cloud-Clone, Houston, TX, USA) according to the manufacturer’s protocol.

IDE activity assays

Brain tissues were collected and homogenized in the assay buffer of the
SensolLyte® 520 IDE Activity Assay Kit (AnaSpec, Fremont, US) on ice. The
results of preliminary experiments determined the appropriate protein
concentration (500 pg/ml) of each tissue homogenate in subsequent
assays. The protein concentration of samples was determined and suitably
diluted to 500 pg/ml using the BCA kit (Solarbio, Beijing, China). The assay
utilizes a FRET substrate that emits enhanced fluorescence upon cleavage
by IDE. The fluorescence intensity and IDE activity were measured using a
BioTek® Synergy HTX (Agilent, Santa Clara, US), complying with the
manufacturer’s protocol.

Pole test

The pole test was implemented to detect locomotor coordination of mice.
Before the test, mice acclimated to the pole (60 cm in length, 10 mm in
diameter) to receive 3 training trials per day for 3 consecutive days. The
time to descend the pole was obtained.

Rotarod test

The rotarod test was conducted to assess balance and locomotor
coordination in mice. The day before the test, mice were pretrained for
3 consecutive days on an accelerated rotating rod from 4 rpm/min to
40 rpm/min within 5min. Each mouse was tested two times, resting for
30 min. In the testing for day 4, the same procedure was performed, and
the latency to fall (in seconds) was recorded.

Open field test

The open field (OF) test was used to test locomotor activity and anxiety-
like behaviors in mice. The mice were given 30min beforehand to
acclimate to the environment of the testing room. Each mouse was placed
in the center of an open field box (50 cm x 50 cm X 50 cm) with the video
recorder above and allowed to freely explore for 5min. The box was
routinely cleaned with 75% ethanol following each test. The final video
was assessed for the total distance travelled and the time spent in the
center via Open Field software (Xinruan Information Technology Co., Ltd.,
Shanghai, China).

Elevated plus maze test

The elevated plus maze (EPM) test was performed to evaluate the anxiety-
like behaviors of mice. The mice were given 30 minutes to adapt to the
environment before the formal test. Then each mouse was placed in the
middle of the junction area (5cm x5 cm, facing the open arm) between
the open arm (30cm x5cm) and closed arm (30cm x5cm) with the
camera above and allowed 5min of free exploration. The maze was
cleaned with 75% ethanol between each trial. The recorded video was
analyzed for the percentage of time spent in the open arm via Elevated Plus
Maze software (Xinruan Information Technology Co., Ltd., Shanghai, China).

Protein extraction and immunoblotting analysis
Brain tissues and cultured cells were lysed and homogenized with ice-cold
RIPA buffer containing 1X PMSF, 1X protease inhibitor, and 1X
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phosphatase inhibitor (Solarbio, Beijing, China) in the high-speed, low-
temperature homogenizer (Servicebio, Wuhan, China). After the execution
of the grinding program, grinding tubes containing the homogenates and
grinding beads were put on the ice, standing for 30 min. Grinding tubes
were centrifuged to collect the supernatants. Some supernatants of
samples were measured for protein concentration by the BCA kit (Solarbio,
Beijing, China). Samples were suitably diluted and denatured with lysis
buffer and SDS-PAGE loading buffer (Solarbio, Beijing, China) to ensure
uniform total protein concentration. Harvested samples were separated via
SDS-PAGE (Beyotime, Shanghai, China) and blotted onto PVDF membranes
(Merck Millipore, Darmstadt, Germany). The membranes were blocked with
Quick-Blocking buffer (Beyotime, Shanghai, China) at room temperature
(RT) for 45 min, followed by incubation with primary antibodies overnight
at 4°C (refer to Supplementary Table S1) and HRP-linked secondary
antibodies at RT for 90 min. Finally, protein bands were visualized via an
ECL kit (Genview, Beijing, China), and signals were captured and measured
by using the Amersham Imager 680 (Cytiva, Danaher, US) and ImageJ
software.

RNA isolation and real-time quantitative PCR

Total RNA was extracted from brain tissues and cultured cells using the
FastPure® Cell/Tissue Total RNA Isolation Kit (Vazyme, Nanjing, China),
according to the manufacturer's instructions. cDNA synthesis was
performed with a HiScript® lll All-in-one RT SuperMix Perfect for qPCR Kit
(Vazyme, Nanjing, China). Real-time quantitative PCR was conducted using
the Taqg Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) and
the QuantStudio 5 PCR system (Thermo Fisher Scientific, MA, USA). The
following thermal cycling parameters complied with the manufacturer’s
instructions. Notably, triplicate samples were applied in each independent
experiment to further data analyses. The primers for qRT-PCR are
summarized in Supplementary Table S2.

Histology and immunohistochemistry

After the last behavioral test, mice were deeply anesthetized by inhalation
of 2-3% isoflurane (RWD, Shenzhen, China) and sequentially perfused with
PBS and 4% paraformaldehyde (Servicebio, Wuhan, China) by micro-
pumping instrument (Longerpump, Baoding, China). Then brains were
separated and fixed in 4% paraformaldehyde overnight and dehydrated in
sucrose solution (Biosharp, Hefei, China). Brain tissues were then
embedded in OCT (Lecia, Wetzlar, Germany) and cut into a thickness of
10 um coronal frozen sections using the Lecia frozen sectioning machine
(Lecia, Wetzlar, Germany). The slices were stored at —20°C for further
experiments.

For immunohistochemical staining, the IHC Kit (Zsbio, Beijing, China)
was employed, involving 3,3-diaminobenzidine-tetrachloride (DAB) stain-
ing, hematoxylin counterstaining, and subsequent dehydration and
clearing. Sections were rinsed three times in PBS and performed antigen
retrieval in sodium citrate solution (Solarbio, Beijing, China). Endogenous
peroxidase activity was inactivated, and sections were incubated overnight
at 4°C with primary antibodies (refer to Supplementary Table S1). The
slices were stained with DAB solution to detect protein expression. After
the hematoxylin counterstaining, the sections were dehydrated, permea-
bilized, and sealed to observe under the Pannoramic MIDI digital slicing
scanner (3DHISTECH, Budapest, Hungary). The results of immunoreactivity
were measured using ImageJ software.

Immunofluorescence

For immunofluorescence, frozen tissue sections (performed the same
antigen retrieval process) or fixed-adherent cells were permeabilized with
0.3% Triton X-100 (Solarbio, Beijing, China), blocked with 5% bovine serum
albumin (BSA; Biotepped, Beijing, China), and then incubated with primary
antibodies overnight at 4 °C (refer to Supplementary Table S1). After that,
fluorescent-labeled secondary antibodies (refer to Supplementary Table
S1) were incubated, and the nuclei were counterstained with DAPI
(SouthernBiotech, Birmingham, USA) for visualization. The image acquisi-
tion of sealed slides was performed with the Pannoramic MIDI digital
slicing scanner (3DHISTECH, Budapest, Hungary) and analyzed using
ImagelJ software.

Cell culture and treatment

Human neuroblastoma cells (SH-SY5Y) were procured from Wuhan Procell
Life Science and Technology (Wuhan, China) and maintained in MEM/F12
(Procell, Wuhan, China) with 15% FBS (ExCell Bio, Suzhou, China). The

Cell Death and Disease (2025)16:758



Human Embryonic Kidney 293T (HEK-293T) cell line used in this study was
a gift from Henan Key Laboratory of Cerebrovascular Diseases (Zhengzhou,
China) and cultured in DMEM (Corning, NY, USA) with 10% FBS. Cells were
incubated at 37 °C in a 5% CO, humidified atmosphere.

The Flag-IDE and Myc-a-syn plasmids were obtained from Shanghai
Genechem Co. Ltd. (Genechem, Shanghai, China) to implement the
coimmunoprecipitation (CO-IP) experiment. When HEK-293T cells reach
70-80% confluence, they are transfected with plasmids using Lipofecta-
mine 3000 (Thermo Fisher Scientificc, MA, USA) according to the
manufacturer’s instructions.

Lentiviral vectors (LV) were obtained from Shanghai Genechem Co., Ltd.
(Genechem, Shanghai, China), which include empty vector (EV), a-syn-WT
(SNCA"T), a-syn-A53T (SNCA*>T), LV-Con and LV-IDE. LV for EV, SNCA"T,
SNCA*>3T were cloned into a Flag-EGFP tag, and LV-Con and LV-IDE were
cloned into a Myc-Cherry tag. SH-SY5Y cells were infected with an
appropriate MOI and selected with puromycin or G418 according to the
manufacturer’s instructions. Then constructed, stably overexpressed SH-
SY5Y cell lines were used for subsequent experiments.

Small interfering RNA (siRNA) targeting the IDE sequence (IDE-siRNA)
and negative control (NC) were designed and synthesized by OBIO
Technology Corp., Ltd. (Shanghai, China). The related sequences were
listed in Supplementary Table S2. IDE-siRNA or NC was transfected into SH-
SY5Y cells using RNAIMAX (Thermo Fisher Scientific, MA, USA) according to
the manufacturer’s instructions.

XMU-MP-1 was purchased (MCE, New Jersey, USA) to pharmacologically
inhibit the MST1/2 targeting on the Hippo signaling pathway. According to
the previous study, SH-SY5Y cells were treated with 5uM XMU-MP-1
dissolved in DMSO for 24 h [16].

All in all, after infection and transfection, visualizing GFP or m-Cherry
expression and collecting the extracted RNA and protein from cellular
samples for RT-qPCR and Western blot analysis were used to verify the
efficiency of experiments. Then constructed cells were collected for
subsequent experiments.

Cell viability and CCK8 assay

The Cell Counting Kit-8 (CCK-8) method was used to determine the
changes in cell viability (Dojindo, Kumamoto, Japan). Briefly, 100 uL cell
suspensions were inoculated into 96-well plates (1 x 10° cells/well) and
cultured for 24 h. Then, 10 uL of CCK-8 reagent was added and incubated
for 3 h. The absorbance values were read at 450 nm using an automatic
microplate spectrophotometer (Liuyi, Beijing, China).

TUNEL staining

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
staining was performed to detect cell death with DNA fragmentation
(Vazyme, Nanjing, China). Frozen tissue slides or adherent cells were fixed
with 4% paraformaldehyde (Servicebio, Wuhan, China) and permeabilized
with 0.3% Triton X-100 (Solarbio, Beijing, China). Afterward, slides or
adherent cells were incubated in the TUNEL reaction mixture in a wet box
at 37°C, and nuclei were counterstained with DAPI (SouthernBiotech,
Birmingham, USA). Images were observed by the Pannoramic MIDI digital
slicing scanner (3DHISTECH, Budapest, Hungary) and analyzed using
Image)J software.

Proteomic analysis

Protein extraction and BCA assay were implemented to calculate the
protein concentration of the brain tissues. For each sample, 500 ng of lysed
peptides were harvested and analyzed with a nanoUPLC system coupled
to an Astral instrument (Thermo Fisher Scientificc MA, USA) with a
nanoelectrospray ion source. The separation of peptides was performed by
using a reversed-phase column (EASY-Spray™ HPLC, Thermo Fisher
Scientificc, MA, USA). Separation of the sample was executed with a
6.9 min gradient. Data-independent acquisition (DIA) was acquired in
profile and positive mode with the Orbitrap analyzer. Notably, differentially
expressed proteins (DEPs) were considered in our differential expression if
they exhibited average fold change (FC) values greater than 1.2 with a p-
value less than 0.05 or FC values less than 0.83 with a p-value less than
0.05. Data analyses were performed using the UniProt Mus musculus
database.

RNA-seq data analysis
RNA from brain tissues was isolated and purified using TRIzol (Thermo
Fisher Scientific, MA, USA) according to the manufacturer's instructions.
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The quantity and purity of total RNA were assessed using NanoDrop
(Thermo Fisher Scientific, MA, USA), and RNA integrity was analyzed with a
Bioanalyzer 2100 (Agilent, CA, USA). The RNA concentration was required
to be >50 ng/pL, the RIN value >7.0, and the total RNA >1 pg to meet the
requirements for downstream experiments. mRNA with poly(A) tails was
specifically captured using oligo(dT) magnetic beads (Thermo Fisher
Scientificc, MA, USA) through two rounds of purification. The captured
mRNA was fragmented using a Magnesium RNA Fragmentation kit (New
England Biolabs, MA, USA). Then fragmented RNA was reverse-transcribed
into ¢cDNA, and double-stranded cDNA was connected to an adapter.
Finally, purification and fragment sorting were performed, and the final
gene libraries obtained by PCR amplification were subjected to paired-end
sequencing (PE150) on the lllumina NovaSeq™ 6000 platform following
standard procedures. Specifically, only those differentially expressed genes
(DEGs) meeting an average normalized expression value >1 with a p-value
less than 0.05 were included in subsequent bioinformatics analysis.

Statistical analyses

The threshold for statistical significance was set at P<0.05 (two-tailed).
Data were analyzed with SPSS software (version 21.0), and graphs were
created by GraphPad Prism software (version 9.0.0). Additionally,
comparisons between the two groups were analyzed using the
Mann-Whitney U test or unpaired Student’s t test, depending on whether
the variables had non-normal or normal distributions. Three-group
comparisons were performed by using one-way ANOVA (parametric
distribution) or the Kruskal-Wallis test (non-parametric distribution). For
pairwise comparisons among three groups, Tukey’s multiple comparisons
test or Dunn’s multiple comparisons test was utilized for variables with
parametric or non-parametric distribution, respectively.

RESULTS

Reduced IDE in aging A53T a-syn transgenic PD mice
Pronounced dopaminergic degeneration—evidenced by reduced
tyrosine hydroxylase (TH—emerged in 12- and 16-month-old, but
not 6-month-old, A53T a-syn mice (Supplementary Fig. STA-C). To
determine whether IDE is involved in this progression, we
assessed its expression and activity across ages. At the protein
and mRNA level, IDE in substantia nigra (SN) and striatum (STR)
was unchanged at 6 months but declined sharply at 12 and
16 months (Fig. 1A-D), whereas cerebral cortex (CC) and
hippocampus (HP) remained unaffected (Supplementary Fig.
S1D-G). Despite preserved expression in CC and HP, IDE catalytic
activity was significantly reduced across all four regions (SN, STR,
CC, HP) in A53T a-syn mice (Supplementary Fig. STH). In contrast,
fasting serum IDE rose at 12 and 16 months (Fig. 1E). Together,
these data indicate a regionally selective loss of IDE expression
within the nigrostriatal system accompanied by a broader brain-
wide reduction in IDE activity, coincident with the onset of TH
depletion and a-syn accumulation; the peripheral increase may
reflect a compensatory redistribution.

Reduced IDE in SH-SY5Y PD model cells

To corroborate these in vivo findings, we next evaluated IDE levels
in in vitro models of PD. In SH-SY5Y cells overexpressing WT
(SNCA"T) or mutant (SNCA**3T) a-syn (Fig. 2A-C), SNCA*>3T
expression significantly decreased cell viability, consistent with
increased neurotoxicity (Fig. 2D). In a-syn-overexpressing cells,
IDE protein and mRNA were reduced relative to empty vector (EV)
controls (Fig. 2E-F). Phosphorylated a-synuclein (p-a-syn)—a PD-
relevant post-translational modification [17]—was elevated, and
immunofluorescence confirmed attenuated IDE staining coinci-
dent with increased p-a-syn signal (Fig. 2G). Together with the
in vivo data, these results support an inverse relationship between
a-synuclein load and IDE expression.

Co-localization of IDE with a-syn in vivo, but limited direct
interaction in vitro

To investigate the association between the IDE and a-syn, we
performed immunofluorescence colocalization in the SN of 12-
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Fig. 1

Decreased nigrostriatal IDE levels and elevated serum IDE levels in A53T a-syn mice. A-C IDE protein levels were measured in SN

and STR of 6, 12, 16-month-old A53T a-syn mice (n =6) and WT control mice (n = 6). Quantified results of the expression of IDE were also
displayed. **P < 0.01, ns not significant; Student’s t test. D Quantitative transcription analyses exhibiting the expression levels of IDE mRNA in 6,
12, 16-month-old A53T a-syn mice (n =6) and WT control mice (n = 6). ****P < 0.0001, ns not significant; Student’s t test. E The total fasting
serum IDE levels of 6, 12, 16-month-old A53T a-syn mice (n = 8-10) and WT control mice (n = 8-10) were measured in ELISA kits. ****P < 0.0001,

*P < 0.05, ns not significant; Student’s t test.

month-old A53T a-syn mice and WT controls. Immunofluorometric
assays in 12-month-old A53T a-syn mice illustrated reduced IDE
fluorescence and partial co-localization of IDE and a-syn in the SN,
consistent with their reported in vivo association (Fig. 3A).
However, co-immunoprecipitation in HEK-293T cells transfected
with Flag-IDE and Myc-a-syn did not detect a robust direct
interaction (Fig. 3B). These data suggest that IDE-a-syn interac-
tions may be more nuanced, possibly cell-type-dependent or
mediated through additional co-factors in the PD-affected brain.

Moreover, IDE is crucial for insulin signaling by facilitating the
clearance of aggregated toxic proteins. Notably, dysregulation of
this pathway in the brains of PD patients can occur before the loss
of dopaminergic neurons [9, 18]. Therefore, we observed elevated
p-Akt levels in the SN and STR of A53T a-syn mice (Fig. 3C-F),
indicating hyperactivation of insulin signaling, which may limit
autophagy and promote a-syn accumulation [19]. These findings
support the notion that dysregulated insulin signaling exacerbates
PD-related pathology, and suggest that IDE deficiency could be
part of this metabolic-protein aggregation cycle.

AAV-mediated IDE overexpression restores IDE levels and
suppresses a-syn in A53T a-syn mice

To evaluate IDE's therapeutic potential, we administered the AAV-
IDE systemically via tail-vein injection to 6-month-old A53T a-syn
mice and age-matched WT controls, creating three groups:
WT + Vector, A53T + Vector, and A53T + IDE (Fig. 4A). At 180 days
post-injection (dpi), IDE protein and mRNA levels were significantly
elevated in the SN and STR of A53T + IDE mice compared with
A53T + Vector mice (Fig. 4B-D). Consistent with previous findings,
IDE expression remained lower in the SN and STR of A53T + Vector
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mice than in WT + Vector mice (Fig. 4B-D). Correspondingly, a-syn
protein and mRNA levels were markedly reduced in the STR-and
to a lesser extent, in the SN of A53T+IDE mice versus
A53T + Vector mice (Fig. 4B, E, F), suggesting that IDE over-
expression inhibits a-syn pathology.

AAV-mediated IDE overexpression preserves behavior and
dopaminergic neurons in A53T a-syn mice

Previous studies report that A53T a-syn mice develop age-
dependent motor impairment and show reduced anxiety-/
depression-like behaviors [20-22]. Consistent with these data, at
baseline (6 months), WT and A53T a-syn mice did not differ in
pole, rotarod, open field (OF), or elevated plus maze (EPM) tests
(Supplementary Fig. S2A). Tail vein injection of AAV-IDE or AAV-
Vector was followed by longitudinal assessment at 60, 120, and
180 day post injection (dpi). A53T+ Vector mice progressively
deteriorated, showing slower pole test descent, reduced rotarod
latency, hyperlocomotion in the OF, and longer open-arm time of
EPM by 12 months (Fig. S2B-D). For A53T+IDE mice, IDE
overexpression prevented these behavioral abnormalities (Sup-
plementary Fig. S2B-D).

The hallmark pathological feature of PD is the selective loss of
dopaminergic neurons, commonly identified by TH expression
[23]. TH immunostaining revealed a loss of midbrain dopaminergic
neurons in A53T + Vector mice at 12 months. IDE restored TH-
positive cell density and normalized striatal TH-fiber density
(Fig. 5A-D). Total and phosphorylated a-syn immunoreactivity fell
in A53T + IDE versus A53T + Vector mice (Fig. 5E, F). Therefore, IDE
gene delivery maintains nigrostriatal integrity and prevents
a-syn-driven behavioral decline in A53T a-syn mice.

Cell Death and Disease (2025)16:758
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IDE overexpression mitigates a-syn-induced toxicity in PD
model cells, while IDE knockdown exacerbates
neurodegeneration

To determine IDE’s protective capacity in vitro, we manipulated
IDE expression (overexpression or knockdown) in SH-SY5Y cells
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stably expressing wild-type (SNCA") or mutant (SNCA**®") a-syn

(PD model cells). Compared with LV-Con infection, LV-IDE robustly
elevated IDE expression, reduced a-syn levels, improved cell
viability (CCK-8 assay), and diminished cytotoxicity in both
SNCA"T and SNCA®3T cells (Supplementary Fig. S3A-E).
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SN STR SN STR

IDE co-localized with a-syn in vivo without direct interaction in vitro, and potentially activated the insulin signaling pathway.

A Representative immunostaining images displayed the distribution of IDE and a-syn in the SN of 12-month-old A53T a-syn mice and WT mice
(n =3 per group). The quantification of the fluorescence intensity was calculated. Scale bar: 20 pm. **P < 0.01; Student’s t test. B The CO-IP
assay with Flag-IDE and Myc-a-syn co-transfected into HEK-293T cells to uncover the binding between the IDE and a-syn. C The representative
western blot bands of Akt and p-Akt about the SN and STR of 12-month-old A53T a-syn mice (n=6) and WT control mice (n=6).
D-F Quantitative analyses including the Akt, p-Akt, and the ratio of p-Akt/Akt were performed (n = 6 per group). **P < 0.01, *P < 0.05, ns not

significant; Student’s t test.

Immunofluorescence further confirmed less p-a-syn intensity in
IDE-overexpressing PD cells (Supplementary Fig. S3F).

Conversely, compared with negative control (NC), IDE-siRNA
markedly depleted IDE protein and mRNA, increased a-syn
expression, exacerbated cell death, and aggravated neurotoxicity
in PD model cells (Supplementary Fig. S3G-K). Notably, IDE
downregulation also markedly increased the p-a-syn intensity in
PD model cells (Supplementary Fig. S3L). Representative immuno-
fluorescence images for IDE gain- and loss-of-function conditions
are provided in Supplementary Figs. S4 and S5. Collectively, these
data underscore that IDE modulates a-syn accumulation and is
essential for neuronal survival in vitro.

Multi-omics analyses reveal Hippo signaling as a key
downstream pathway of IDE-mediated neuroprotection

To elucidate IDE's molecular mechanism, we conducted RNA
sequencing (RNA-seq) and data-independent acquisition (DIA)
proteomics on the SN and STR of A53T+ Vector and A53T + IDE
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mice. We then mapped differentially expressed genes (DEGs) and
differentially expressed proteins (DEPs) in the nigrostriatal pathway
to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for
subsequent bioinformatic analyses. The related data were summar-
ized in Supplementary Tables S3 and S4. In the SN, IDE treatment led
to 161 upregulated and 351 downregulated DEGs (Fig. 6A), whereas
446 upregulated and 131 downregulated DEGs were identified in
the STR (Fig. 6B). Simultaneously, we detected 106 upregulated and
63 downregulated DEPs in the SN (Fig. 6C) and 95 upregulated and
106 downregulated DEPs in the STR (Fig. 6D).

Representative volcano plots of these DEGs (Fig. 6E, F) and DEPs
(Fig. 6G, H) highlighted enriched gene sets in the SN and STR. We
subsequently subjected the DEGs from the SN and the DEPs from
the STR to KEGG pathway analyses. Notably, the Hippo signaling
pathway ranked among the top enriched pathways in both the SN
transcriptome and the STR proteome (Fig. 6l, J). These results
further illuminate IDE's protective role in PD, partly through
modulating the Hippo signaling pathway.
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Fig. 4 AAV-mediated restoration of IDE reduces a-syn deposition in A53T a-syn mice. A Experimental timeline showing model
establishment, AAV-IDE or control AAV-Vector administration, and behavioral testing. B Representative immunoblots of IDE and a-syn in SN
and STR (n = 6 per group). C, D Quantification of IDE protein and mRNA in SN and STR tissues of WT + Vector, A53T + Vector, and A53T + IDE
mice (n=6 per group). ****P <0.0001, ***P < 0.001, **P < 0.01, ¥P < 0.05, ns not significant; ANOVA analyses and Tukey’s test for post hoc
comparisons. E, F Quantification of a-syn protein and mRNA in SN and STR across the same groups (n=6 per group). ****P < 0.0001,
***P < 0.001, **P < 0.01, ns not significant; ANOVA analyses and Tukey’s test for post hoc comparisons.

IDE gene delivery suppresses Hippo/insulin signaling and
limits neuronal apoptosis
Multi-omics enrichment flagged the Hippo cascade as a major
dysregulated pathway in A53T a-syn mice. Its core kinases MST1/2
and co-activator Yes-associated protein (YAP), together with their
phosphorylated forms, regulate neuronal apoptosis in PD [24-26].
Accordingly, we measured MST1/2, p-MST1/2, MOB kinase
activator 1b (Mob1b), YAP, and p-YAP to assess Hippo activity.
Western blot confirmed the increases in MST1/2, p-MST1/2,
Mob1b, and p-YAP, with a reduction in total YAP in A53T + Vector
versus WT + Vector mice (Supplementary Fig. S6). AAV-IDE
normalized these proteins and partially restored YAP levels
(Supplementary Fig. S6). Insulin signaling was likewise hyper-
activated, as shown by elevated phosphorylation of insulin
receptor substrate 1 (p-IRS-1) and p-Akt. IDE treatment reversed
both changes (Supplementary Fig. S7).

Consistent with Hippo-mediated apoptosis [27-29], A53T+Vec-
tor mice displayed higher Bax, an increased Bax/Bcl-2 ratio, and
greater Caspase 3 in the SN and STR (Fig. 7A-C). IDE
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overexpression reduced these markers and TUNEL-positive
neurons (Fig. 7D, E). These data demonstrate that IDE mitigates
MST1/2-driven Hippo activation, corrects downstream insulin
signaling, and limits dopaminergic neuron apoptosis in A53T a-
syn mice.

MST1/2 inhibition (XMU-MP-1) synergizes with IDE to reduce
a-syn toxicity in PD model cells

Finally, we tested whether pharmacological MST1/2 inhibition by
XMU-MP-1 could further enhance cell viability in PD model cells.
Pharmacokinetic analysis showed that XMU-MP-1 binds MST1/2 on-
target and blocks their kinase activity, thereby activating the
downstream effector YAP and inhibiting the Hippo signaling pathway
[30]. According to a previous report [16], we used the indicated dose
of XMU-MP-1 for 24 h. Indeed, XMU-MP-1 decreased p-MST1/2 levels,
which displayed the inhibition of the Hippo pathway (Supplementary
Fig. S8A-D). Interestingly, XMU-MP-1 effectively rescued neuronal
apoptosis in PD model cells by reducing pro-apoptotic markers (Bax,
Bax/Bcl-2 ratio, and Caspase 3) and increasing Bcl-2 levels
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Fig. 5 IDE restored dopaminergic neurons and decreased a-syn and p-a-syn accumulation in A53T a-syn mice. A Representative
immunohistochemistry figures of TH in the SN and STR of WT + Vector, A53T + Vector, and A53T + IDE mice (n = 3 per group). Scale bar for
SN: 100 pm, for ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc): 50 pm, for STR: 20 pm. B, C TH immunohistochemical
staining of the SN were separately tested in the zone of VTA and SNpc in WT + Vector, A53T + Vector, and A53T + IDE mice. The
quantifications of the TH-positive cells were calculated in succession (n =3 per group). ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant;
ANOVA analyses and Tukey’s test for post hoc comparisons. D Quantification of TH in the STR of the WT 4 Vector, A53T + Vector, and
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(n =3 per group). Scale bar, 20 pm.****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, ns not significant; ANOVA analyses and Tukey’s test for post
hoc comparisons.
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Fig. 6 Proteome and transcriptome analyses revealing the Hippo signaling pathway mediating the neuroprotective effects of IDE.
Comparative statistical histogram of DEGs in the SN (A) and STR (B) of each group of mice (n = 3 each group). Quantitative results of DEPs in
the SN (C) and STR (D) of each group of mice (n = 3 per group). The volcano plots between A53T + IDE/A53T + Vector groups revealed the up
(red) or downregulated (blue) DEGs in SN (E) and STR (F) in mice (n = 3 per group). Volcano plot of DEPs associated with the SN (G) and STR (H)
in A53T + IDE/A53T + Vector groups, with significant upregulations as red dots and significant downregulations as blue dots (n =3 per
group). Considering all DEGs and DEPs in A53T + IDE/A53T + Vector groups, Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
identified the top 10 pathways in the transcriptome in SN (I), along with the proteomics in STR (J), respectively (n = 3 per group).

(Supplementary Fig. S8A, E-H). Furthermore, CCK-8 assays, transcrip-
tion analyses, and immunoblot both confirmed reduced a-syn levels
and improved viability in a-syn-overexpressing PD cells (Supplemen-
tary Fig. S8A, I-M). Collectively, these results underscore the IDE-Hippo
axis as a pivotal checkpoint for neuroprotection in PD (Fig. 8).

DISCUSSION

The intricate connection between PD and T2DM underscores the
need to identify shared pathogenic factors. IDE has emerged as a
promising therapeutic target by degrading islet amyloid,
a-synuclein, and other substrates, thereby hindering disease
progression [31, 32]. In this study, we observed that IDE levels

Cell Death and Disease (2025)16:758

were diminished in the brains of homozygous A53T a-syn
transgenic PD mice. Overexpressing IDE in these mice alleviated
motor deficits and neuropathology, in part by suppressing the
Hippo signaling pathway. Moreover, IDE attenuated a-syn-induced
neurotoxicity and neuronal apoptosis in SH-SY5Y PD model cells,
partly by inhibiting MST1/2 in the Hippo signaling pathway. By
integrating in vivo and in vitro PD models, multi-omics analyses,
and pharmacological MST1/2 inhibition, our results highlight the
IDE-Hippo axis as a central checkpoint for neuroprotection in PD
(Fig. 8).

IDE, implicated in both T2DM and PD, serves as a vital factor in
clearing aggregated substrates such as islet amyloid and a-syn,
underscoring its important role in PD [33]. In addition to its
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Fig. 7 Protective effects of IDE on neuronal apoptosis of Hippo signaling pathways in A53T a-syn mice. A Representative western blot
bands of Bax, Bcl-2, and Caspase 3 in the SN and STR of WT + Vector, A53T + Vector, and A53T + IDE mice (n=6 per group). B, C The
corresponding quantitative analyses of Bax, Bcl-2, the ratio of Bax/Bcl-2, and Caspase 3 were performed (n =6 per group). ****P < 0.0001,
***p < 0.001, **P < 0.01, *P < 0.05, ns not significant; ANOVA analyses and Tukey’s test for post hoc comparisons. D, E Representative TUNEL
staining (green) images and DAPI (blue) and statistical quantification of TUNEL" cells in the SN and STR of WT + Vector, A53T"Vector, and
A53T + IDE mice (n =3 per group). Scale bar, 20 pm. ****P < 0.0001, ***P <0.001, **P < 0.01; ANOVA analyses and Tukey’s test for post hoc
comparisons.
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Fig. 8 Schematic summary of mechanism underlying the neuroprotective effects of IDE in PD. Based on our findings, IDE exerts anti-PD
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levels lost the ability to cope well with intracellular stress, and the dysregulated Hippo signaling pathways increased the p-MST1/2, p-Mob1b,
and p-YAP, along with the increase of MST1/2 and Mob1b, and lowered the YAP levels. Jointly, the series of alterations finally aggravated the
accumulation of a-syn and the neuronal apoptosis via increasing Bax and Caspase 3 level, and decreasing the level of Bcl-2, leading to the

progression of PD (right panel).

degradative function, IDE is also proposed to act as a “dead-end”
chaperone, a heat shock protein, and an E1 ubiquitin-activating
enzyme, highlighting additional non-degradative roles in neuro-
degenerative and metabolic diseases [9, 34]. Consistently, reduced
IDE levels have been reported in IDE-associated conditions like
T2DM and AD [35, 36]. We therefore hypothesized that IDE is
critical in PD pathogenesis, consistent with our preliminary data
linking IDE variants to sporadic PD (unpublished). However, a
proteomic study of SN tissues from 15 PD patients and 15 controls
did not detect significant alterations in IDE expression [15]. In this
study, we found that IDE expression was diminished in 12- and 16-
month-old homozygous A53T a-syn PD mice, but not at 6 months
of age. Consistently, IDE was also reduced in SH-SY5Y PD model
cells overexpressing wild-type or A53T a-syn. Interestingly, 12-
month-old A53T a-syn mice exhibited significantly elevated
fasting serum IDE compared with WT controls, suggesting a
possible compensatory mechanism. These findings imply that
IDE’s role in PD may vary across different disease stages. Moreover,
the discrepancy between brain and serum IDE levels might reflect
a compensatory response, wherein decreased IDE in the brain
prompts elevated peripheral IDE. The specific role of IDE in PD
pathogenesis has been less explored, but several mechanisms
have been proposed. First, IDE may directly inhibit a-syn
fibrillization by binding its C-terminal domain via a non-
proteolytic mechanism [11, 12]. Second, defective IDE may
interfere with a-syn clearance through autophagy and protea-
some systems, as per the “dead-end” chaperone hypothesis [9].
Finally, lower IDE levels could disrupt central insulin signaling and
metabolic homeostasis, thereby increasing neuronal vulnerability
and dopaminergic cell loss [37]. In our study, we assessed IDE's
protective effects on motor deficits, neuropathology, and cyto-
toxicity in both in vivo and in vitro PD models. Specifically, 6-
month-old A53T a-syn mice received AAV-IDE or AAV-Vector, and
at 180 days post-injection, IDE overexpression improved motor
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function and alleviated pathology, including reductions in a-syn/
p-a-syn deposition and dopaminergic neuron loss. Likewise, IDE
overexpression suppressed o-syn levels and attenuated neuro-
toxicity, whereas IDE knockdown heightened a-syn pathology and
cell death in SH-SY5Y PD model cells. Together, these findings
identify IDE as a promising disease-modifying factor in PD.

Previous studies have shown that IDE is involved in T2DM and
AD [14, 38, 39]. Meanwhile, a-syn aggregation and insulin
signaling dysfunction are recognized as major contributors to
PD pathogenesis [9, 40]. Our findings extend these observations
by indicating that insulin pathway perturbations and a-syn
accumulation may converge more extensively than previously
appreciated. In this study, we observed hyperactivation of the
insulin signaling pathway in A53T a-syn mice, evidenced by
elevated p-Akt levels. Heightened mTOR signaling, secondary to
this insulin pathway activation, may suppress autophagy, poten-
tially explaining the observed phenotype in PD mice [19]. Notably,
IDE overexpression rescued this aberrant insulin signaling path-
way in A53T a-syn mice. The partial restoration of p-Akt and p-IRS-
1 in A53T+IDE mice suggests that IDE may normalize insulin
signaling, although further functional assays are required to
confirm potential synergy between IDE's enzymatic activity and
insulin pathways.

Beyond its canonical role in growth control, the Hippo signaling
pathway has emerged as a key regulator of neuronal survival. In
mammals, pathway activation triggers MST1/2-mediated phos-
phorylation of LATS1/2, which in turn phosphorylates and
destabilizes YAP, driving mitochondrial fragmentation, neuro-
inflammation, and apoptosis—processes documented in both
Parkinson’'s and Alzheimer's disease models [24, 28, 41, 42].
Pharmacological or genetic suppression of MST1/2 interrupts this
cascade—Ilowering Bax and Caspase 3, raising Bcl-2 and preser-
ving dopaminergic neurons; the ATP-competitive inhibitor XMU-
MP-1 is a prototypical compound that accomplishes these effects
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in vivo [16, 24, 41]. Notably, MST1/2 inhibition also frees WWC1/
KIBRA from LATS1/2, enriching AMPAR complexes and enhancing
synaptic transmission, a mechanism linked to cognitive improve-
ment in neurodegenerative settings [43, 44]. Our transcriptomic-
proteomic screens place MST1/2, Mob1b, and YAP at the center of
IDE-mediated protection. Reduced IDE amplifies Hippo activity,
increasing Bax, Caspase activation, and TUNEL-positive cells,
whereas IDE overexpression—or XMU-MP-1 administration—
suppresses MST1/2 signaling and mitigates a-synuclein toxicity.
We note, however, that MST1/2 can facilitate mitophagy under
certain stresses [45], underscoring the context-dependent nature
of Hippo components. Our data reinforce the view that an
IDE-Hippo axis governs neuronal apoptosis, inflammation, and
mitochondrial integrity in PD, and highlight MST1/2 modulation as
a nuanced yet promising therapeutic target.

Our study identifies a previously unrecognized IDE-Hippo
signaling axis: raising IDE activity or suppressing the Hippo
kinases MST1/2 converges to curb a-synuclein aggregation and
dopaminergic cell loss. Although the work is still proof-of-concept,
it points to a translational strategy that couples metabolic/insulin-
based approaches (to restore IDE) with brain-penetrant MST1/2
inhibitors for advanced Parkinson’s disease. However, the current
evidence is confined to rodents and immortalized cell lines.
Measuring IDE activity in human PD tissue across disease stages—
and in patient-derived midbrain organoids now under investiga-
tion—will be critical for clinical validation. While in-vitro co-
immunoprecipitation showed minimal IDE-a-syn binding, in-vivo
co-localization and prior reports hint at a context-dependent
interaction. Structural or cross-linking studies should clarify
whether IDE's C-terminal domain engages a-syn monomers or
oligomers in an ATP- or insulin-dependent manner. Our data
suggest that IDE augmentation and MST1/2 inhibition act
synergistically. Future experiments combining these interventions
in PD models could confirm additive neuroprotection and lay the
groundwork for multi-target therapies.

In conclusion, IDE appears to be a potent neuroprotective factor
in PD, mitigating a-syn-mediated pathology partly by suppressing
the Hippo signaling pathway (Fig. 8). These findings enhance our
understanding of how metabolism-linked enzymes and apoptotic
signaling intersect in PD progression, providing a strong rationale
for IDE- and MST1/2-targeted interventions in future translational
studies.
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