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Comprehensive map of the regulatory network triggered by
MET exon 14 skipping reveals important involvement of the

RAS-ERK signaling pathway
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The MET exon 14 skipping mutation (named METex14Del) described in lung cancer leads to prolonged activation of signaling
pathways and aberrant cell responses, but the link between HGF signaling and cell responses remains unclear. A putative lung
cancer regulatory network of influential transcription factors was constructed from the transcriptomes of lung cancer cell lines.
Transcriptomic data from METex14Del-expressing cells, stimulated or not by HGF, were mapped onto this lung cancer reference
network and revealed activation of a major regulatory node composed mainly by the highly influential transcription factors ETS1,
FOSL1 and SMAD3. HGF activation of METex14Del receptor induced the expression and phosphorylation of these three master
regulators and the expression of their predicted target genes involved in migration and invasion. All these molecular and biological
effects were inhibited by trametinib, a MEK inhibitor, which was potentiated by combination with capmatinib, a MET inhibitor. New
mapping with transcriptomic data from trametinib-treated METex14Del cells validated the key role of the RAS-ERK pathway
signaling in the activation of ETS1, FOSL1 and SMAD3 regulators and the induction of their target genes in HGF-activated
METex14Del receptor. Thus, we report an original and powerful strategy to uncover key regulators, including transcription factors
that have not been widely described in METex14Del signaling, such as SMAD3. These factors are activated by specific signaling
pathways and could provide a novel therapeutic strategy involving a combination of receptor and signaling inhibitors.
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INTRODUCTION

Receptor tyrosine kinases (RTKs) provide an interface between the
extracellular and intracellular environments. Once activated by an
extracellular growth factor, RTKs can activate intracellular signal-
ing pathways that relay information within the cell, triggering
various cell responses such as proliferation, differentiation,
migration/invasion, and changes in the cell death/survival balance
[1]. Signaling pathways transmit information to various cell
compartments, including the nucleus, where regulation of gene
expression is one of the most important mechanisms influencing
cell responses [2]. The transcriptional program, which can be
deciphered by transcriptomic analyses, provides important
information about biological responses, as gene expression
profiles can be linked to key biological processes. However, how
signaling pathways are integrated at the transcriptional level
remains elusive.

In some cancers, RTK activation by genomic alterations can lead
to oncogene addiction, in which cancer cell growth and/or
survival is dependent on a single oncogene [3]. In this situation,
targeted therapies against RTKs, mainly tyrosine kinase inhibitors
(TKls), are effective and have profoundly improved patient care [4].

In addicted cancer cells, overactive RTKs induce aberrant signaling
leading to a deregulated transcriptional program. Thus, under-
standing oncogene addiction requires a deep understanding of
signaling pathway integration at the transcriptional level. In
addition, the efficacy of targeted therapies against RTKs is limited
by primary or acquired resistance, often supported by activation
of alternative signaling pathways that can bypass the targeted
inhibition [5]. In this situation, understanding signaling pathway
integration at the transcriptional level is also an important issue.

MET, a member of the RTK family, is an emerging target in
cancer. In lung cancer, the MET gene has been found to be
mutated in approximately 3% of patients, with point mutations,
deletions or insertions affecting the splice sites of exon 14. Such
mutations result in in-frame skipping of this exon (METex14Del)
[6, 7] and thus deletion of the juxtamembrane regulatory domain
of the receptor [8, 9].

Experiments using ectopic expression of METex14Del or its
reconstitution by genome editing in normal lung epithelial cells
and cancer cell lines have shown that activated METex14Del
induces enhanced and sustained activation of downstream
signaling pathways, including the RAS-ERK and PI3K-AKT
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pathways [10-13]. In normal epithelial cells, METex14Del
activation depends on stimulation by HGF, its high-affinity
ligand, and the mutant receptor can promote experimental
tumor growth only in humanized mice expressing human HGF
[11]. Thus, in contrast to most RTK-activating mutations
described to date, which result in ligand-independent RTK
activation, MET exon 14 skipping does not eliminate MET
receptor dependence on ligand stimulation. This suggests the
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Fig. 1 Regulatory network of 16HBE METex14Del in response to HGF. A Focus on the largest cluster of the co-regulatory network, showing
the influence of TFs on METex14Del cells in the presence and absence of HGF. Circles represent DIRs and the radius of the circle is proportional
to the number of target genes regulated by the DIR. Co-regulatory interactions between DIRs are indicated: protein-protein interactions with
published evidence (blue lines), transcriptional regulation interactions with published evidence (red arrows), and interactions defined only by
the h-LICORN algorithm (gray lines). B DIRS were visualized in a volcano plot from interference network analysis: average difference in
influence vs. log10 transformed adj. P-value (regulators with an adj. p-value < 0.05 and an influence difference greater/smaller than 0.5 were
considered up-/down-influenced (red/green). C DIRS were visualized in a volcano plot from transcriptomic analysis: log, fold change vs.
p-value of differential mRNA-level expression (genes with an absolute adj. p-value < 0.05 and a fold change greater/smaller than 1.5 were
considered upregulated/downregulated (red/green)). D mRNA-level expression of the six main influent DIRs present in the putative regulatory
node, in the presence and absence of HGF (triplicates of n = 3 independent experiments). Significance was determined by unpaired one-tailed

t-test with Welch’s correction and data are expressed as mean + SD.

regulation of the death/survival balance [19-22]. Downregulation
of MET signaling appears to be mediated primarily by the CBL
binding site [10].

Activated METex14Del can also induce a much more complex
transcriptional program than its WT counterpart. Gene ontology
analyses are consistent with the migration and invasion responses
induced by METex14Del [11]. However, this approach based on
mMRNA levels does not take into account the complexity of gene
regulation, which involves the coordinated action of multiple
transcription factors and co-factors (TF/co-TFs) and the influence
of signaling pathways on their regulation.

The recently developed software solution CoRegNet [23], which
can be visualized with the interactive tool Cytoscape Widget [24],
is based on expression correlations between known cooperative
TFs/co-TFs and target genes extracted from transcriptomic data
and on described interactions between these regulators. CoR-
egNet has already proven its ability in complex organisms to
identify 12 microglia-specific transcriptional regulators [25], 10 key
regulators driving the transition in non-alcoholic liver disease [26],
and five master regulators specific to rheumatoid arthritis synovial
fibroblasts [27].

Here we constructed a lung cancer-specific regulatory network
based on the aggregation of extensive transcriptomic data from
lung cancer cell lines. This network was then used to dynamically
model the network of METex14Del, stimulated or not by HGF. A
“dialogue” between biological experiments and modeling con-
firmed the robustness of the proposed network and allowed an
integrative view of METex14Del signaling from its downstream
signaling pathways to gene expression, which in turn regulates
cell responses.

RESULTS
Transcriptome-based modeling of the putative regulatory
network of HGF-stimulated METex14Del
The Cancer Cell Line Encyclopedia provided transcriptomic data
for 206 lung cancer cell lines, including 135 NSCLC cell lines, 50
SCLC cell lines and 21 other cell lines. Of the 206 cell lines, 105
were derived from primary tumors and 101 from metastatic
tumors. Using these gene expression data and the CoRegNet
package [23], we constructed a lung cancer regulatory network
and then enriched it with TF binding sites, ChIP-seq data and
protein interactions found in the CoRegNet-embedded databases
[28-31]. The lung cancer-specific regulatory network consists of
502 key regulators that potentially regulate 4143 target genes
which are connected by 18,053 regulator-target gene regulatory
interactions. The key regulators are connected by 2014 described
protein-protein interactions (p < 1e-130) and 61,272 transcription
factor binding sites on their target genes (p < 1e-300). CoRegNet
can identify the most influential regulators based on their
influence score (Supplementary Table 1) and co-regulatory pairs
in our network that share common target genes (Supplementary
Table 2).

To identify which of the TFs have a strong influence induced by
HGF binding to the MET receptor, normalized expression levels of
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differentially expressed genes (DEGs) from transcriptomic datasets
of 16HBE cells expressing MET WT (Supplementary Fig. STA, B) or
16HBE METex14Del (Fig. 1A and Supplementary Fig. S1C, D) in the
presence and absence of HGF [11], were mapped onto this lung
cancer regulatory network. HGF-stimulated 16HBE cells expressing
METex14Del reveal a large node of influential regulators formed
by six positively interacting regulators: ETS1, FOSL1, SMADS3,
HMGA?2, CCND1 and RUNX1 with a high number of target genes
(Fig. TA and Supplementary Fig. S1D). ETS1, FOSL1 and SMAD3
interact with each other and binding sites were found in ETS1 and
FOSL1 for SMAD3 and in SMAD3 for ETS1. The representation by
the mean difference in influence (Fig. 1B) and the high value of
the mean group influence (Supplementary Table 1) confirm the
activation state of these six key regulators. Looking at the mRNA
levels for these six regulators in the transcriptomic data, only
FOSL1 and HMGA2 appeared to be significantly up-regulated
under HGF stimulation (Fig. 1C), whereas by quantitative RT-PCR
all six regulators showed significantly increased mRNA expression
in the presence of HGF, with a stronger up-regulation for FOSL1
and HMGA?2 (Fig. 1D).

Evidence for a regulatory relationship between ETS1, FOSL1
and SMAD3 and their predicted target genes

We then focused on the three most influential TFs: ETS1, FOSL1
and SMAD3. The transcriptional regulatory network of 16HBE
METex14Del constructed with the microarray datasets allowed
visualizing the putative influence of ETS1, FOSL1 and SMAD3 on
their respective or common target genes (Fig. 2A). The 50 most
regulated targets are shown in a heatmap (Fig. 2B), and the
complete list of regulated target genes by specific or combined
TFs was compiled in Supplementary Table 2. The predicted
differential expression by HGF activation was confirmed at the
mRNA expression level for ten HGF up-regulated (VIM, NOG,
SERPINE2, SERPINA1, SH2D5, PTX3, CHGB, LETM2, DCBLD2, ABCAT)
and two HGF down-regulated (IRS1, SLC15A3) target genes (Fig.
3A) in 16HBE METex14Del cell line. Similar results were obtained
for ten up-regulated (ADMA19, KRTAP2-3, GOS2, NGEF, COL13A1,
THBD, TSPAN5, ARHGAP22, CAVIN3, RAC2) and two down-
regulated (CAV1, CLDN11) additional target genes (Supplementary
Fig. 52).

To assess the regulatory relationships between ETS1, FOSL1 and
SMAD3 and their targets, these TFs were silenced by RNA
interference, separately or in combination, and the effect on
expression of 12 original target genes was evaluated. The efficacy
of each siRNA pair and the pooled one was confirmed at the
mRNA level (Fig. 3B) and at the protein level (Fig. 3C), under
stimulation or not by HGF in 16HBE METex14Del cell line. Among
the HGF upregulated target genes, VIM, NOG, SERPINE2, SERPINA1,
PTX3, CHGB, ABCA1 and LETM2 showed reduced expression in the
presence of the three silencers, alone or in combination (Fig. 3D).
The effects of ETS1 silencing on PTX3 expression and
FOSL1 silencing on LETM2 expression were particularly pro-
nounced. Reduced expression of SH2D5 was observed with either
ETS1 or FOSL1 silencing alone and with the three silencers in
combination. Reduced expression of DCBLD2 was observed with
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Fig. 2 Identification of differentially expressed target genes potentially regulated by ETS1, FOSL1, and SMAD3 on 16HBE METex14Del
cell line. A Representations of the transcriptional regulatory network of ETS1, FOSL1 and SMAD3 with their putative influence on positively
(red triangle) and negatively (green triangle) regulated DEGs. B Heatmaps showing putative ETS1, FOSL1 and SMAD3 target genes based on
METex14Del vs. HGF-activated METex14Del (adj p-value < 0.05 and absolute fold change >1.5) (n = 4 for each condition). Colors indicate high
(red) and low (green) relative expression levels.
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Fig. 3 Effects of ETS1, FOSL1 and SMAD3 silencing on the expression of their predicted target genes on 16HBE METex14Del cell line.
A The mRNA-level expression of selected target genes up- or down-regulated in response to HGF was determined by RT-gPCR (triplicates of
n = 3 independent experiments). Significance was determined by unpaired one-tailed t-test with Welch’s correction and data are expressed as
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assessed by B RT-gPCR for mRNA-level expression (triplicates of n =3 independent experiments) and C by Western blotting for protein-level
expression (representative results). D mRNA-level expression of up- and down-regulated target genes induced by knockdown of ETS1, FOSL1
and SMAD3 expression (triplicates of n = 2, 3 or 4 independent experiments). Significance was determined by one-way ANOVA test and data
are expressed as mean = SD in panels B and D.
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METex14Del cell line. Forty-eight h after transfection with siRNAs targeting ETS1, FOSL1 and SMAD3 alone or in combination, wound healing
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significance was determined by two-way ANOVA test. C The effect of siRNA on proliferation was determined by Alamar blue staining after 16 h
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Proliferation data are expressed as mean + SD and significance was determined by one-way ANOVA test. D Images of the effect of silencing on
cell scattering were captured at different time points using the Incucyte system and representative images from baseline and 6 h after

stimulation with HGF are shown.

either the FOSL1 or SMAD3 silencer used alone and with the three
silencers combined. Of the two downregulated genes, IRS1 and
SLC15A3 showed restored expression in the presence of the three
silencers. SLC15A3 expression was strongly increased in the
presence of the FOSL1 silencer alone (Fig. 3D).

Silencing of ETS1, FOSL1 and SMADS3 slightly affects wound
healing and scattering

Knockdown of ETS1, FOSL1 or SMAD3 alone in 16HBE METex14Del
cell line did not affect wound healing, but combined knockdown
slightly reduced both basal and HGF-stimulated responses (Fig. 4A).
Similarly, in the presence of Matrigel, combined knockdown of all
three TFs reduced HGF-induced wound invasion (Fig. 4B). HGF did

SPRINGER NATURE

not increase cell proliferation, but ETST knockdown enhanced this
process both in the presence and absence of HGF (Fig. 4C). In
addition, ETS1 knockdown appeared to increase HGF-induced
scattering, whereas FOSL1T and SMAD3 knockdown decreased it
(Fig. 4D). These results show that combined knockdown of the three
TFs slightly reduces HGF-induced migration, invasion and scattering
of 16HBE METex14Del cell line.

The RAS-ERK signaling pathway controls ETS1, FOSL1 and
SMAD3 phosphorylation and cellular wound healing

Since ETS1, FOSL1 and SMAD3 silencing did not fully inhibit
known biological functions induced by HGF, we investigated
upstream regulators to understand how these 3 TFs might act

Cell Death and Disease (2025)16:783
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together in the regulatory node. The heatmap of the top 50
differentially expressed target genes of 16HBE MET WT vs. 16HBE
METex14Del upon HGF stimulation (Fig. 5A) and the complete
gene ontology (GO) enrichment analysis revealed a significant
overrepresentation of annotations such as epithelial-mesenchymal
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transition (EMT), KRAS signaling up or positive regulation of
locomotion (Fig. 5B and Supplementary Table 3). Given our
previous study showing HGF/MET signaling induces activation of
ETS1 through ERK-dependent phosphorylation of its threonine 38
(Thr®®) [32, 33], we examined the induction of ETS1, FOSL1 and
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Fig. 5 Gene ontology (GO) annotation of target genes induced by HGF activation of METex14Del. A Heatmap of the 50 most significantly
differentially regulated target genes in response to HGF (adj. p-value < 0.05 and absolute fold change >1.5) between indicated conditions
(n =4 per condition). Colors indicate high (red) and low (green) levels of relative expression. B Shown are gene ratios (%) of GO enrichment for
the differentially expressed target genes according to Hallmarks, Biological Process, Molecular Functions and Reactome annotations.
Overrepresentation analysis was performed using the hypergeometric test: **p-value <0.01, ***p-value <0.001. C-E The 16HBE cells
expressing MET WT or METex14Del and ZORG cells derived from lung cancer patients expressing METex14Del were stimulated with HGF in a
time course experiment. Expression and activation of € ETS1 and its form phosphorylated at T® (P-ETS1), D FOSL1 and its form
phosphorylated at $%%® (P-FOSL1), and E SMAD3 and its form phosphorylated at 5?°® (P-SMAD3) were analyzed by Western blotting

(representative results).

SMAD3 phosphorylation upon stimulation by HGF (Fig. 5C-E). As
expected, ETS1 was found to be phosphorylated at Thr*® in 16HBE
METex14Del cells, an effect detected up to 8 h after stimulation.
No phosphorylation of this TF was detected in their WT counter-
parts (Fig. 5C). Similar sustained ETS1 phosphorylation was
observed in ZORG cells (Fig. 5C) and H596 cells (Supplementary
Fig. S3A) derived from NSCLC patients harboring the METex14Del
variant. A slight increase in ETS1 expression was observed in
METex14Del cells 8 h after HGF stimulation (Fig. 5C). A strong
induction of FOSL1 expression and phosphorylation at Ser?®® was
found in our three cell models peaking at 8 h post-simulation and
persisting until 24 h (Fig. 5D and Supplementary Fig. S3B). SMAD3
was phosphorylated at Ser’® in our three cell models with a
maximum phosphorylation at 30 min post-stimulation (Fig. 5E and
Supplementary Fig. S3C). The expression of ETS1, FOSL1, SMAD3
mMRNA was also assessed in a similar HGF time course stimulation.
In 16HBE METex14Del, ZORG and H596 cells, HGF stimulation
induced weak ETST mRNA expression, which was only detected at
8h post-stimulation. FOSLT mRNA expression increased from
30 min post-stimulation, reaching a maximum expression at 8 h
and a decrease at 24 h in all cell lines. Expression was stronger in
16HBE METex14Del cells compared to its WT counterpart. SMAD3
mMRNA expression remained unchanged during the course of HGF
stimulation in any of the cell lines (Supplementary Fig. S3D-G).
Taken together, the mRNA expression of ETS1, FOSL1 and SMAD3
is consistent with their protein expression.

To confirm involvement of the RAS-ERK signaling, trametinib
was used to specifically inhibit MEK. The addition of trametinib
completely reversed the HGF-induced phosphorylation of ETS1 at
Thr*®, FOSL1 at Ser”®> and SMAD3 at Ser**® in 16HBE METex14Del
and ZORG cells (Fig. 6A-C). U0126, another MEK inhibitor, was also
effective in the 2 cell models (Supplementary Fig. S4A-C). The
effect of trametinib on the biological responses of 16HBE
METex14Del cells was also investigated. Trametinib was found to
inhibit HGF-induced wound healing both in the absence (Fig. 6D)
and presence of Matrigel (Fig. 6E), although less effectively than
the MET TKI capmatinib used as a control. Co-treatment with both
capmatinib and trametinib resulted in more potent inhibition (Fig.
6D-F). Similar results were observed in cell scattering assays (Fig.
6F). Cell proliferation was only slightly affected by the co-
treatment (Fig. 6G). Wound healing experiments in presence or
absence of Matrigel have been also performed in both ZORG and
H596 lung cancer cells and confirmed the inhibitory effect of the
capmatinib and trametinib (Supplementary Fig. S5A-D).

To determine whether another oncogene driver activates the
regulatory node composed of ETS1, FOSL1 and SMAD3, four cell
lines harboring an activating mutation in the EGFR gene were
treated with Osimertinib (a third generation EGFR TKI) or
trametinib. As expected, the four cell lines displayed constitutive
EGFR and ERK phosphorylation, which was inhibited by osimerti-
nib. Trametinib inhibited ERK phosphorylation but not EGFR
(Supplementary Fig. S6A, B). ETS1 was found to be constitutively
phosphorylated in PC9, HCC0827 and H1975 cells and this was
inhibited by both osimertinib and trametinib. ETS1 expression was
not detected in H3255 cells (Supplementary Fig. S6A). FOSL1
expression and phosphorylation were inhibited by both inhibitors
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in PC9 and HCCO0827 cells. In H1975 cells, the inhibitors did not
reduce FOSL1 expression or phosphorylation and in H3255 cells,
FOSL1 expression and phosphorylation were weak and remained
unchanged by treatment (Supplementary Fig. S6B). SMAD3 was
found to be phosphorylated in H1975 and H3255 cells and was
inhibited by both osimertinib and trametinib (Supplementary Fig.
S6B). Overall, only one or two transcription factors were found to
be phosphorylated and inhibited by both inhibitors in each
different cell line.

Involvement of the RAS-ERK signaling pathway in the positive
regulation of the METex14Del regulatory network

A new RNA-seq transcriptomic analysis was performed on 16HBE
METex14Del cells stimulated or not with HGF and treated or not
with capmatinib (CAPM) or trametinib (TRAM). The heatmap of
CAPM treatment shows a restoration of the transcriptional
program corresponding to the unstimulated state (Fig. 7A) and
the heatmap of TRAM treatment shows a drastic change in all
differentially expressed genes under both basal and HGF-
stimulated conditions (Fig. 7A). To go further, these RNAseq
datasets were mapped onto the lung cancer-specific reference
network (Fig. 7B and Supplementary Fig. S7) and showed that HGF
treatment alone resulted in an activated network profile similar to
Fig. TA, with activation of the same six positively influential TFs of
the major regulatory node: ETS1, FOSL1, SMAD3, HMGA2, CCND1
and RUNX1 (Fig. 7B). As expected, CAPM completely inhibited
their positive influence and stronger effect was found with TRAM
treatment (Supplementary Table 4). Furthermore, when the
expression of the previously analyzed regulated target genes of
ETS1, FOSL1 and SMAD3 were plotted in a box-and-whisker plot
(Fig. 7C), VIM, NOG, SERPINE2, SERPINA1, SH2D5, CHGB, LETM2,
DCBLD2, IRS1 and SLC15A3 showed the expected up- or down-
regulation under HGF stimulation and were reversed by these two
inhibitor treatments. The exception was ABCA1, which showed
only weak activation (Fig. 7C).

DISCUSSION

Disease phenotypes, including those related to disease progres-
sion and response to therapy, are maintained by small groups of
TFs and co-TFs [34, 35]. Therefore, it is important to focus on the
identification of these regulators. There are several bioinformatic
methods for inferring gene regulatory networks from high-
throughput data to enable the discovery of disease-related genes
and/or pathways. To date, successful approaches for reverse-
engineered construction of context-specific networks have been
ARACNe, LICORN or GENIE3 with enrichment of interaction
evidence such as protein-protein interactions and/or transcrip-
tional regulation [36]. Our regulatory network concept is based on
the representation of numerous TFs and co-regulators with an
indication of cooperation/interaction [23, 37] and also the level
influence of regulators on target genes [23].

Our reverse engineering approach to infer the first lung cancer-
specific gene regulatory network from the lung cancer cell dataset
without any a priori knowledge allowed us to distinguish two
different states of cell activation: HGF-stimulated or not. Notably,
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we and others have demonstrated that METex14Del activation
requires HGF stimulation in various cell lines expressing METex14-
Del, via genome editing [8, 11, 38], by ectopic expression [10, 39]
or cells derived from patients [11, 40]. The dependence of tumor
formation in vivo on HGF has been demonstrated using human
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16HBE METex14Del cells, which induce tumor growth only when
xenografted in HGF-humanized mice. Interestingly, mice infected
with a lentivirus expressing mouse METex15del (equivalent to
human METex14Del) also develop lung tumors. However, the
contribution of HGF to tumorigenesis was not elucidated in this
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Fig. 6 Effect of MEK inhibitor on ETS1, FOSL1 and SMAD3 phosphorylation and cell responses induced by HGF. The effect of trametinib
(TRAM, a MEK inhibitor) on the expression of (A) P-ETS1/ETS1, B P-FOSL1/FOSL1 and € P-SMAD3/SMAD3 in 16HBE METex14Del cells and ZORG
cells stimulated or not with HGF was determined by Western blotting (representative results). The effects of trametinib and capmatinib (CAPM,
a MET inhibitor), alone and in combination, on 16HBE METex14Del cell wound healing were evaluated without D and with E Matrigel (6
replicates of n =3 independent experiments); F scattering in 16HBE METex14Del cells stimulated or not with HGF (representative photo of
baseline and 6 h after inhibition under HGF) and G proliferation (6 replicates of n = 4 independent experiments). In all graphs, only statistically
significant differences between the negative control without HGF (DMSO) and the different treatments (individual or combined inhibitors) in
the presence or absence of HGF are indicated. Wound healing data in panels (D, E) are expressed as mean = SEM and significance was
determined by two-way ANOVA test. In panel G, proliferation data are expressed as mean + SD and significance was determined by one-way

ANOVA test.
<4

experiment, as mouse HGF could also contribute to tumor growth
[8]. By contrast, cells displaying both MET exon 14 skipping and
MET gene amplification, such as Hs746T, receptor activation is
ligand-independent, likely due to the high expression of MET.
Nevertheless, the ligand dependence of METex14Del remains
debated, regardless of its overexpression, since receptor phos-
phorylation and downstream signaling activation were observed
without ligand stimulation in some models in which METex14Del
was reconstituted by genome editing [13].

Our transcriptomic data of HGF-stimulated METex14Del, inter-
pretated by the regulatory network, revealed three interconnected
transcription factors: FOSL1, ETS1 and SMADS3, the last two only
highlighted by the network representation but not by transcrip-
tomic analysis. Furthermore, the network showed that the
relationship between ETS1, SMAD3 and FOSL1 was characterized
by protein-protein interactions between them and by the fact that
the transcription factors ETST and SMAD3 have binding sites on
each other's genes and FOSL1 has a binding site for SMAD3.
Several studies have already documented interactions between
these differentially influential regulators (DIRs): co-regulation of
gene expression by ETS1 and SMAD3 [41-43] and the existence of
active transcriptional complexes containing them [44]; an
association between FOSL1 and SMAD3 leading to co-regulation
of target genes has also been demonstrated [45], as has a
potential cooperation between ETS1, SMAD3 and AP1 to regulate
the angiopoietin-like 4 gene [46]. Therefore, although the inter-
play between these transcription factors had already been
documented, our study shows that they actively cooperate in
the context of an integrated biological response (HGF stimulation
of the METex14Del receptor) to regulate a set of target gene. This
demonstrates that they belong to the regulatory node.

Transcription factors can be activated by several mechanisms,
including expression, phosphorylation state, localization, and
interaction with co-activators. In our model, we found that mRNA
and protein expression of FOSL1 is strongly increased under HGF
stimulation, but ETST and SMAD3 expression is only weakly
increased. This suggests a different activation mechanism for the
latter two, independent of protein expression, as confirmed here
by the phosphorylation/activation state for the 3 TFs under HGF
stimulation. Note that ETST and FOSL1 phosphorylations are
known to be ERK-dependent [33, 47-49] and can be induced by
HGF stimulation in cells expressing the WT form of MET [32, 50].
SMAD3 phosphorylation can also be ERK-dependent, on serine
residues within the linker domain [51] and plays different roles
depending on the cell context [52]. As expected, direct blockade
of the MET receptor with capmatinib did not allow HGF/MET to
induce these stimulations and blocking only the RAS-ERK signaling
pathway with trametinib prevented the activation of some specific
HGF-activated DIRs and the expression of related target genes
involved in cell motility and invasion. Lung cancer regulatory
networks from trametinib-treated cells confirmed the strong
involvement of the RAS-ERK signaling pathway and its positive
influence on ETS1, FOSL1 and SMAD3. However, METex14Del is
able to induce sustained activation of other signaling pathways
including PI3K/AKT, which should also be investigated. The
network also highlights the potential involvement of a variety of
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other TFs, such as YAP1 of the HIPPO pathway, which is known to
be involved in tumorigenesis [53]. Epithelial-to-mesenchymal
transition (EMT) is an important step in cell migration and
invasion, specifically through reduction of intercellular adhesion,
loss of apical-basal polarity and gain of motility [54] notably upon
binding of TGFB, HGF and EGF to their respective receptors. ETS1,
FOSL1 and especially SMAD3 are known to induce EMT [55-57]. In
our study, several EMT target genes tested (VIM, SERPINE2, PTX3
and ITGA2) were found to be regulated by HGF and their
expression was reduced by knockdown of the combination of the
3 TFs. Functionally, significant inhibition of METex14Del-induced
cell motility and invasion was achieved by knocked down of ETS1,
FOSL1 and SMAD3, suggesting that these three regulators work
together to regulate migration and invasion. However, additional
transcription factors may be involved including HMGA2, ZEB1 and
TWIST2, known to be involved in lung cancer [54, 58].

Taken together, our transcriptomics-based regulatory network
and the functional experiments performed to support our
interpretations highlight a number of key transcription factors
that act together to regulate the biological responses induced by
METex14Del. In particular, inhibition of a single TF of the node did
not perturb the biological responses, and only simultaneous
knockdown of three of them resulted in significant but not
complete, inhibition. Furthermore, inhibition or restoration of
target gene expression required knockdown of two or three of
them. Thus, the regulation of genes by multiple TFs forming an
interconnected node could ensure the robustness of the network,
with the knock-out of one regulator being insufficient to disrupt
the biological outcome. To go further, we interpreted “influence”
as post-transcriptional activation, i.e. phosphorylation, of the
transcription factors, rather than simply increased expression. This
led us to identify the RAS-ERK pathway as an important signaling
pathway that can positively regulate both the entire major
regulatory node and associated biological responses. Interestingly,
activation of ETS1, FOSL1 or SMAD3 was also observed in several
cell lines harboring mutation of EGFR. However, activation of these
three transcription factors was not found together in the same cell
type. This suggests that the complexity and specificity of the
regulatory network activated by an oncogene driver depends on
the expression or availability of key regulatory factors. Therefore,
importantly, unlike the TFs, this pathway is readily targeted by
pharmacological approaches, opening the way to novel thera-
peutic strategies, particularly in the context of incomplete
response to MET TKIs in patients harboring METex14Del
mutations.

MATERIALS AND METHODS

Cell lines

The parental 16HBE cell line (MET WT) and derived cells (METex14Del) [11]
were maintained in GIBCO MEM. The ZORG cell line was derived from a
pleural effusion of a MET-TKI resistant patient and were maintained in
RPMI1640 [59]. The H596, PCO (EGFR del E746_A750), HCC0827 (EGFR del
E746_A750), H1975 (EGFR T790M L858R) and H3255 (EGFR L858R) cell lines
were obtained from the American Type Culture Collection (Manassas, VA)
and were maintained in RPMI1640. All media were supplemented with 10%
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FBS (Sigma-Aldrich, Merck KGaA, Darmstadt). All cells were routinely tested
for mycoplasma using MycoAlertTM (Lonza, Basel, Switzerland). Cells were
cultured at 37 °C under a humidified controlled atmosphere of 5% CO2 in air.
For MET activation experiments, cells were starved in serum-free medium for
16 h after overnight adherence. Cells were then pretreated with inhibitors for
3 h before activation by HGF for 30 min, 8 h or 24 h.
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RNA interference

The ETS1 (VHS40612 and VHS40614), FOSL1 (HS5188462 and s15585), and
SMAD3 (VHS41114 and VHS41111) siRNAs and the Stealth siRNA negative
control Lo GC (12935200) and Silencer® Select Negative Control #1 siRNA
(#4390843) were purchased from Thermo Fischer Scientific. Transfections
were performed using Lipofectamine™ RNAIMAX (Thermo Fisher Scientific)
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Fig. 7 Effect of MET and MEK inhibitors on the transcriptional program induced by HGF and on the predicted regulatory network.
A Heatmaps of differentially expressed genes (adj. p-value < 0.05 and absolute fold change > 1.5) in 16HBE METex14Del cells treated with
capmatinib (CAPM) or trametinib (TRAM) and stimulated or not with HGF are shown (n = 4 per condition). B Zooms on the major regulatory
node of the co-regulatory network of METex14Del cells in the presence and absence of inhibitors (CAPM, TRAM) upon stimulation with HGF.
The radius of the circle is proportional to the number of target genes of the respective DIR. Co-regulatory interactions between transcription
factors are indicated: protein-protein interactions with published evidence (blue line), transcriptional regulation interactions with published
evidence (red arrow), and interactions defined only by the h-LICORN algorithm (gray line). C Expression of selected target genes regulated by
ETS1, FOSL1, SMAD3 are shown in box-and-whisker plots. The box plot shows the 25th, 50", and 75th percentiles, while the blue dots show
the variant stabilization transformation (VST) of gene expression for each sample (n =4 per condition). The median is indicated by the line

across the box.

with 50 nM siRNA per well according to manufacturer’s protocol. Cells were
used for further experiments 48 h after transfection.

Immunoblotting

The Nucleospin RNA/Protein Kit (Macherey-Nagel, Dirren, DE) was used to
extract RNA and proteins from siRNA validation experiments. All other
proteins were extracted with RIPA buffer supplemented with protease and
phosphatase inhibitor cocktail (1% aprotinin, 1 mM PMSF, 1 uM leupeptine,
1mM Na3VO4, 20mM B-glycerophosphate), sonicated for 20s, and
centrifuged at 15000 rcf for 15 min. Protein samples was quantified using
BCA protein assay kit (Thermo Fischer Scientific) and equal amounts of
protein were resolved on NUPAGE Bis-Tris polyacrylamide gel (Invitrogen,
Thermo Fischer Scientific) and transferred to Immobilon-P polyvinylidene
fluoride membranes (Merk Millipore, Darmstadt, DE). After blocking with
casein buffer (0.2% casein in PBS containing 0.1% Tween 20), the membranes
were sequentially incubated with the indicated primary antibodies and HRP-
conjugated secondary antibodies for 1h before detection (Supplementary
Table 5). The chemiluminescence signal was detected using SuperSignal
West Dura or Femto (ThermoFisher Scientific) and captured using LAS 3000
(Fujifilm, Ratingen, DE). For reprobing, primary antibodies were removed
from membranes using Antibody stripping buffer (Gene Bio-Application,
Israel) according to manufacturer’s instructions. Representative results of
n=3 independent experiments are shown. The full length uncropped
original western blots used in the manuscript are provide as part of their
original submission (Supplemental Material file).

RT-qPCR analysis

After total RNA extraction using the Nucleospin RNA/Protein Kit (Macherey-
Nagel) and quantification using NanoDrop™ 2000 (Thermo Scientific),
cDNA was reverse transcribed using the High Capacity cDNA Reverse
Transcriptase Kit (Invitrogen). Quantitative PCR was performed using Fast
SYBR Green Master Mix on QuantStudio3 (Applied Biosystems, Thermo
Fisher Scientific). All conditions were performed in triplicate of n=2,3 or 4
independent experiments (see figure comments). Cycle threshold (AACt)
values were calculated by normalization to 2 m and the gene expression
levels were compared using the 2-AACt method. Primers sequenced are
listed in Supplementary Table 6.

Scratch wound healing assay

After 24 h of attachment, cells (transfected or not) were either starved with
0.1% FBS medium for 4 h or treated with mitomycin C (Sigma-Aldrich) for
2h (ZORG) before scratch wounds were made using a 96-well Wound-
Maker (Essen BioScience, Sartorius, Gottingen, Germany) according to
manufacturer’s instructions. For the invasion assay, 50 ul of Matrigel matrix
was added to each well and allowed to solidify for 30 min in a 37 °C CO2
incubator. Cells were then treated with or without inhibitor in the presence
or absence of HGF in 0.1% FBS medium or in 10% FBS medium (ZORG)
(n =3 to 4 independent experiments; see figure comments). Images of the
wounds were captured automatically in the CO2 incubator using IncuCyte
Zoom or SX5 software (Essen BioScience) every 2 h. Data were analyzed for
wound confluence and calculated using the IncuCyte software package.

Proliferation and scattering cell imaging

After 24 h of attachment, cells (transfected or not) were starved for 4 h in
0.1% FBS medium before treatment or not with inhibitor in the presence or
absence of HGF for 16 h. Cell growth and viability were quantified using
AlamarBlue Cell Viability Reagent (Invitrogen) and fluorescence was
measured using a Multiskan RC Microplate Reader (ThermoLabsystems)
with 560/590 (ex/em) wavelength filter settings. Each result was expressed
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as the average optical density (6 replicates of n=3 to 4 independent
experiments; see figure comments). For scattering, images were acquired
automatically in the CO2 incubator using the IncuCyte system every 2 h.

Inference of gene regulatory networks

The Cancer Cell Line Encyclopedia project [60] provides transcriptomic
data for lung cancer cell lines. The Human Transcription Factor Catalog [61]
and the TcoF-DB v2 database [62] provided a list of 2 375 regulators
corresponding to 1 639 TFs with experimentally validated DNA binding
specificity and 752 co-TFs. Human transcription factor binding sites were
modeled using MotifDB R/Bioconductor [63] and promoter sequences
were searched using the PWMEnrich R/Bioconductor package [64]. ChIP-
seq data from the ChEA2 database [65] and the tftargets R package and
various databases (e.g. TRED, ITFP, ENCODE, BEDOPS, TRRUST) provided all
regulatory evidence from TF to target gene, resulting in a list of 2 256 674
TF-target interactions. The list of TF-TF cooperation containing 1 257 053
protein-protein interactions from different databases (e.g. BioGrid, HIPPIE,
STRING, and HPRD) was obtained using the R package iRefR [66]. Gene
regulatory networks were inferred using the bioconductor package
CoRegNet [23]. Starting with transcriptomic data and a list of human
regulators, CoRegNet uses the hLICORN algorithm [37] to capture
regulatory interactions between regulators and target genes.

Quantification of regulatory influence signals

The regulatory network structure provides a set of genes that are activated
or repressed under reference conditions. Based on this structure, we can
capture the influence of each regulator, a latent signal of regulator activity
in each sample based on its observed effect on downstream entities. For
each regulator, Welch’s t-test was performed to compare the distribution
of activated (A") and repressed (I) genes. The influence of a regulator r is
calculated as Influence(r) = (((E(AAN)-"(EAAN)/A((U_(AANA2)/AAYr +(u_(IAr)
A2)/IAr) where E(A") and E(I') are the expressions of the activated and
repressed genes in the samples, respectively, "(E(AAr)A™(E(IAr)) are their
respective means, and pA” and ul” are their standard deviations. A regulator
is active only if it activates A" and represses I” according to the expectations
of the regulatory network model, resulting in a positive t-value in the
Welch t-test. The influence of a regulator is only present if it activates or
represses at least five genes. In the case that expression values of target
genes might be missing in some of the tumor samples, their expression
values were estimated using the LatNet method [67], with expression
levels in cell lines as a reference dataset.

Identification of group-specific regulators and target genes
Gene expression analysis was performed on the normalized gene
expression dataset and DIRs were identified using the linear models for
microarray data (LIMMA) R package [68], and p-values were adjusted using
the Benjamini-Hochberg method. Regulators with an adj. p-value < 0.05
were considered DIRs.

Functional enrichment analysis of DEGs

GO enrichment analysis was performed on Hallmarks, Molecular Function
and Reactome using the R package msigdbr [69], with overrepresentation
analysis methods using the R packages clusterProfiler [70] and enrichR [71].

Library construction and sequencing

3'RNA-Seq libraries were prepared using the QuantSeq 3" mRNA-Seq Library
Prep Kit FWD (Lexogen, Greenland, US) with 200 ng of total RNA according to
manufacturer’s instructions. Libraries are purified and loaded onto a High
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Sensitivity DNA Chip controlled by an Agilent Bioanalyzer 2100 (Agilent, Santa
Clara, CA). The concentration and size distribution of the libraries are checked.
Each library is pooled equimolarly, and the final pool is sequenced on a Nova
6000 instrument (lllumina, San Diego, CA) with 100 cycles of chemistry.

Data analysis for transcriptome data

The fastp program was used to remove poor quality regions and poly(A)
from the reads, and only reads with quality score threshold of 20 and reads
above 25 pb were retained. Read alignments were performed using the
STAR program with the human genome reference (GRCh38) and reference
gene annotations (Ensembl). The UMI (Unique Molecular Index) allowed us
to reduce errors and biases in the PCRs, which were processed using fastp
and umi tools. Based on the read alignments and the UMI, we counted the
number of molecules per gene using FeatureCount (from 3.73 M to 11.9M
molecules, average 6.82 M). Other programs used for read quality control
and workflow were Qualimap, fastp, FastQC and MultiQC. Differential gene
expression of RNA-seq was performed using the R/Bioconductor package
DESeq2. The cut-off for differentially expressed genes was adj. p-value <
0.05 and absolute fold change >1.5.

Statistics

All results except Network inference and transcriptomic analysis are
expressed as mean = SEM. or SD for the indicated number of independent
experiments. Data were analyzed using GraphPad Prism® 9 (San Diego, CA).

DATA AVAILABILITY

Transcriptomic data from 16HBE cells expressing MET WT or METex14Del, stimulated
or not by HGF, are available in the Sequence Read Archive under accession number
PRINA764905 (GSE184514, raw data). The RNAseq data from 16HBE with or without
treatment (CAPM/TRAM) were deposit in the Sequence Read Archive (SRA) under
accession number PRINA1123466.
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