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The TRIM3/TLR3 axis overrides IFN-f3 feedback inhibition to

suppress NSCLC progression
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Interferon-beta (IFN-B) has potent antitumor activity, but its clinical therapeutic potential is undermined by intrinsic negative
feedback loops that suppress IFN- production. However, the feedback mechanisms regulating IFN-B homeostasis in non-small cell
lung cancer (NSCLC) remain unclear. We found that tripartite motif containing 3 (TRIM3) promotes the transcription and mRNA
expression of IFNB1. Conversely, excessive IFN-B inhibits expression of TRIM3, creating their reciprocal feedback loop. Mass
spectrometry revealed that toll-like receptor 3 (TLR3), a key sensor that triggers IFN-B production, is the interacting partner of
TRIM3. Following the elucidation of the interactive mode between TRIM3 and TLR3, we found that activation of the TRIM3/TLR3 axis
induced IFN- secretion and overrode the feedback inhibition. Sustained IFN-3 secretion subsequently inhibits NSCLC cell
proliferation and reprograms the tumor microenvironment by increasing the infiltration levels of CD4" T cells, M1 macrophages and
NK cells. Our findings revealed a reciprocal negative feedback loop in the regulation of IFN-f signaling, highlighting the role of the
TRIM3/TLR3 axis in the suppression of NSCLC progression and offering a promising strategy to suppress tumor growth and enhance

immunotherapy efficacy in NSCLC.
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INTRODUCTION

Non-small cell lung cancer (NSCLC) remains a leading cause of
cancer-related mortality worldwide, accounting for 85% of all lung
malignancies. Despite advances in targeted therapies and
immunotherapies, the 5-year survival rate for advanced NSCLC
remains below 20%, underscoring the urgent need to elucidate
novel molecular targets involved in tumor progression [1-3].
Emerging evidence suggests that dysregulation of tumor immune
microenvironment signaling, particularly involving cytokine net-
works, plays a pivotal role in NSCLC pathogenesis and therapeutic
resistance [4-6].

Interferons (IFNs) are potent cytokines with tumor-suppressive
properties that function as critical coordinators of anticancer
immunity [7, 8]. As a subclass of type | IFNs, IFN-B directly inhibits
tumor cell proliferation and survival while mobilizing systemic
immune responses through enhanced antigen presentation,
natural killer (NK) cell activation, and T-cell effector function
[9-11]. However, its clinical efficacy in oncology remains
suboptimal. In a Phase Il clinical trial in patients with NSCLC,
compared with a control treatment, IFN-B therapy did not yield a
statistically significant survival advantage [12]. This result could
arise from the negative feedback inhibition, which modulates IFN-
[ signaling to prevent hyperactivation [13, 14]. IFN-B secretion is
governed primarily by toll-like receptors (TLRs) [15]. However, the
feedback and molecular mechanisms governing IFN-f3 signaling in
NSCLC remain unclear.

The ubiquitin-proteasome system is a key posttranslational
modification pathway in cellular processes. E3 ubiquitin ligases
and deubiquitinating enzymes alter protein localization and
stability within cells [16]. Dysregulation of this system is closely
linked to the development and progression of cancer. Many
studies have indicated an interplay between ubiquitin-
modifying enzymes and interferons, where proteins such as
ubiquitin-specific peptidase 18 (USP18), an interferon-inducible
protein, offer negative feedback on type | interferon signaling
[17-19].

Tripartite motif containing 3 (TRIM3), a highly conserved E3
ubiquitin ligase within the TRIM protein family, has garnered
increasing attention in cancer research. Studies have demon-
strated that TRIM3 suppresses glioblastoma by inhibiting c-Myc
transcription, impedes hepatocellular carcinoma metastasis, and
curbs cervical cancer progression [20, 21]. However, its molecular
mechanisms in NSCLC remain poorly defined, particularly regard-
ing interactions with immune modulation.

In this study, we identified the TRIM3/TLR3 axis as a critical
regulator of IFN-B signaling in NSCLC. Although TRIM3 promotes
the expression of IFNBT, excessive IFN-3 may ultimately suppress
TRIM3 expression, leading to feedback inhibition. Notably,
activation of the TRIM3/TLR3 axis induced sustained IFN-B
secretion, overriding the feedback inhibition. Increased IFN-f
secretion inhibits NSCLC cell proliferation and increases the
infiltration levels of CD4" T cells, M1 macrophages and NK cells
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into the tumor microenvironment, consequently inhibiting NSCLC
progression. Our study reveals a novel therapeutic theory for IFN-
B-based antitumor therapy, suggesting that disrupting this
reciprocal negative feedback loop enables new NSCLC treatment
strategies.

MATERIALS AND METHODS

Cell culture and treatment

Human NSCLC cell lines (A549, NCI-H1299, PC-9, NCI-H2030, NCI-H2228,
95-D, and NCI-H1944), BEAS-2B cells, HEK293T cells, and murine lewis lung
carcinoma (LLC) cells were obtained from the Cell Bank of the Chinese
Academy of Sciences. All the cell lines were authenticated by short tandem
repeat (STR) profiling and tested for mycoplasma contamination. Cells
were cultured in RPMI-1640 or DMEM medium supplemented with 10%
fetal bovine serum and maintained at 37 °C in a humidified atmosphere
containing 5% CO,. CRISPR-Cas9 knockout and overexpression were
performed using custom-designed constructs. For knockout, sgRNA
sequences (Tables S1, 2) were cloned and inserted into the lentiguide
backbone vector. For overexpression, target genes were inserted into the
pLV3 expression vector. Viruses were packaged using the 2nd-generation
vector system, with HEK293T cells transfected with psPAX2, pMD2.G
retroviral packaging plasmids. Lentivirus-infected cells were selected using
hygromycin for knockout and puromycin for overexpression to establish
stable genetic models. The knockout and overexpression efficiency were
verified by western blotting. Cultured cells were treated with IFN-3 (TMPY-
03145, TargetMol, Massachusetts, USA), poly(l:C) (T12516, TargetMol) and
BMS-986165 (T14687, TargetMol).

RNA extraction and quantitative real-time PCR (qPCR)

Total RNA was isolated from cultured cells using TRIzol reagent
(15596026CN, Invitrogen, California, USA) following the manufacturer’s
protocol. For cDNA synthesis, 1 ug of total RNA was reverse transcribed
using a PrimeScript RT Reagent Kit (R212-01, Vazyme, Nanjing, China).
qPCR was performed using a qPCR Master Mix Kit (Q712-02, Vazyme) with
species-specific primers. The primer sequences are listed in Table S3.

Western blotting (WB)

Western blotting was performed in A549 and NCI-H1299 cell lines as
previously described [22]. The primary antibodies used for incubation
included those against GAPDH (#2118, Cell Signaling Technology,
Massachusetts, USA), TRIM3 (PU791217, Abmart, Shanghai, China), DDDDK
tag (#14793, Cell Signaling Technology), Myc tag (#2276, Cell Signaling
Technology), HA tag (#3724, Cell Signaling Technology), IRF3 (T55779,
Abmart), phospho-IRF3 (TA2436, Abmart), TBK1 (TD7026, Abmart),
phospho-TBK1 (T58364, Abmart), TLR3 (ab307442, Abcam) and IFN-f
(PA6218, Abmart).

Colony formation and cell counting kit-8 (CCK-8) assays
Cellular proliferation was assessed using a cell counting kit-8 (CK04,
Dojindo, Kumamoto, Japan) according to the manufacturer’s protocol. For
the colony formation assays, A549, NCI-H1299 and LLC cells were
trypsinized, resuspended in complete medium, and seeded at a density
of 1000 cells per well in 6-well plates. The cells were maintained under
standard culture conditions (37°C, 5% CO,) for 7-10 days until visible
colonies formed. Colonies were fixed with 4% paraformaldehyde and
stained using a Wright-Giemsa Stain Kit purchased from Nanjing Jiancheng
Bioengineering Institute (D010-1, Nanjing, China). Stained colonies (>50
cells per cluster) were quantified.

Proximity ligation assay (PLA)

A549 and NCI-H1299 cells were seeded into confocal dishes and cultured
under standard conditions. The cells were fixed with 4% paraformalde-
hyde, permeabilized with 0.1% Triton X-100, and subsequently blocked
with 5% BSA. For primary antibody incubation, the cells were treated
overnight at 4 °C with primary antibodies against TRIM3 (rabbit polyclonal,
1:200) and TLR3 (mouse monoclonal, 1:200). The following day, the
samples were incubated at 37°C for 60 min with the Mirus PLA probe
(DU0O92004, Sigma-Aldrich, State of Missouri, USA) and the Plus PLA probe
(DU092002, Sigma-Aldrich). Ligation was performed at 37 °C for 30 min,
and amplification was performed for 100 min. The nuclei were labeled
with DAPI.
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Immunohistochemistry (IHC)

Six primary NSCLC and adjacent normal tissue samples were obtained
after acquiring informed consent from patients in the Affiliated Suzhou
Hospital of Nanjing Medical University, excluding samples that are
necrotic or have insufficient tumor content. The criteria were pre-
established in previous study [22]. The samples were incubated with
antibodies against CD4 (TB6525, Abmart), IFN-3 (PA6218, Abmart), CD49b
(PK22887, Abmart), CD86 (755238, Abmart) and CD163 (#93498, Cell
Signaling Technology) overnight at 4 °C. Sections were visualized using
DAB chromogen. Two independent experts were blinded to assess each
result.

Syngeneic mouse model

A syngeneic mouse model was established by injecting 0.5 x 10° LLC cells
subcutaneously into the flanks of female 6-week-old C57BL/6 mice. Tumor-
bearing mice received intraperitoneal poly(:C) (1 mg/kg) injections every
3 days, with daily monitoring of body weight and tumor dimensions
(volume = length x width” x 0.5). Mice were euthanized before the max-
imal tumor size reached 1500 mm?>. After 15 days, mice were euthanized,
tumors were excised, weighed and photographed. Sample size was chosen
based on ethical considerations to minimize animal use, while ensuring
feasibility. Mice were randomly assigned to each group, ensuring equal
distribution based on body weight. All measurements were in a blinded
manner.

Bioinformatic analysis

Bioinformatic analysis was conducted using public databases. GSE226667
(GEO datasets, https://www.ncbi.nlm.nih.gov/) was analyzed for differen-
tial expression, with the top 500 genes intersecting 655 ubiquitin-
proteasome system genes [23]. TRIM3 expression in cytokine-stimulated
mouse tumor models was retrieved from TISMO (http://
tismo.cistrome.org/) [24], and mRNA expression, clinicopathological
associations (UALCAN, https://ualcan.path.uab.edu/) [25], and survival
curves (KM plotter, https://kmplot.com/) were evaluated [26]. Immune
infiltration levels and pancancer expression patterns were explored via
TIMER2.0  (http://timer.cistrome.org/) [27]. The prediction of
ubiquitination-specific lysine residues was conducted via GPS-Uber
(https://gpsuber.biocuckoo.cn/) [28].

Statistical analysis

All data were obtained from at least four independently repeated
experiments. Statistical analyses were performed using GraphPad Prism
9.0. Two-tailed Student’s t test were used for comparisons between two
groups, and one-way ANOVA was used for comparisons among more than
two groups. Numerical data are presented as the means + standard error
(SEM) to reflect data variability. Statistical significance was assigned to
p values < 0.05.

RESULTS

Identification of TRIM3 as a target for the interferon-
stimulated response in NSCLC

To identify potential ubiquitin-modifying enzymes associated with
interferon secretion, we screened RNA sequencing datasets from
interferon-stimulated lung cancer cells in the GEO database. The
GSE226667 dataset revealed genome-wide expression profiles of
A549 lung cancer cells treated with composite IFNs [23]. We
selected the top 500 differentially expressed genes (DEGs) and
intersected them with 655 known ubiquitin-proteasome system-
related genes, yielding seven interferon-responsive candidates
(Fig. 1A, B). Among these genes, TRIM3 was prioritized for further
study because of its most pronounced difference in expression in
NSCLC (Fig. S1). The expression of TRIM3 mRNA was also
significantly downregulated in most cancer types, including lung
adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) (Fig.
1Q). In subcutaneous tumor models of diverse tumors, unlike the
responses to PD-1, PD-L1 and CTLA-4 inhibitors or other cytokines,
TRIM3 mRNA expression decreased specifically upon IFN-$
stimulation in the LLC lung cancer model (Fig. 1D, E). These
findings suggest that TRIM3 exhibits a distinct response to IFN-f3
stimulation in NSCLC.
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Identification of TRIM3 as a target for the interferon-stimulated response in NSCLC. A Venn diagram illustrating the intersection of

the top 500 DEGs from GSE226667 with 655 known ubiquitin—proteasome system (UPS) genes. B Volcano plot showing DEGs from the
GSE226667 dataset. C Box plot analysis of TRIM3 mRNA levels across cancers from the TCGA database. D Box plot showing changes of TRIM3
mRNA expression in mouse tumor models treated with PD-1, PD-L1 and CTLA-4 inhibitors. E Box plot showing changes in TRIM3 mRNA
expression in mouse tumor models following cytokine treatment. *p < 0.05; **p < 0.01; ***p < 0.001.

Interaction between TRIM3 and IFN-f establishes a reciprocal
feedback loop in NSCLC

Based on the finding that TRIM3 mRNA expression was down-
regulated in response to IFN-f stimulation in LLC mouse models,
we next performed in vitro experiments to validate the impact of
IFN-B on TRIM3 expression. Following IFN-B stimulation, TRIM3
mMRNA expression was downregulated in H1299, PC-9, and A549
cells (Fig. 2A). The inhibition of the type | IFN pathway using the
tyrosine kinase 2 (TYK2) inhibitor BMS-986165, as well as genetic
knockout of interferon alpha and beta receptor subunit 1 (IFNART)
and IFNAR2, reversed this suppression, restoring both TRIM3
protein and mRNA levels in A549, H1299 and PC-9 cells (Figs.

Cell Death and Disease (2026)17:44

2B-D and S2A-C). Building on reported negative feedback
between type | IFNs and ubiquitin-modifying enzymes [17-19],
we hypothesized that TRIM3 might reciprocally regulate IFN-B
production. Lentiviral knockout or overexpression of TRIM3 (Fig.
S2D-F) demonstrated that increased TRIM3 expression increased
IFNB1T mRNA levels, whereas its depletion reduced IFNBT levels in
A549, H1299 and PC-9 cells (Figs. 2E-H and S2G). Luciferase
reporter assays further confirmed the TRIM3-dependent transcrip-
tional activation of the IFNBT promoter (Figs. 2I-L and S2H). These
findings demonstrate that although TRIM3 enhances IFNB1T
transcription in NSCLC, excessive IFN-f3 suppresses TRIM3 expres-
sion via its feedback inhibition.

SPRINGER NATURE
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test. *p < 0.05; **p < 0.01.

Reduced TRIM3 expression in NSCLC cells compared with
normal cells

To investigate the role of TRIM3 in NSCLC progression, we first
analyzed its mRNA levels in patients with LUAD and LUSC across
tumor stages and lymph node metastasis status (N stage). TRIM3
MRNA expression progressively decreased with increasing tumor
stage and N stage in LUAD and LUSC (Fig. 3A-F). WB and gqPCR

SPRINGER NATURE

analyses confirmed that TRIM3 expression was lower in lung cancer
cells than in normal BEAS-2B bronchial epithelial cells (Fig. 3G, H).
Consistent with these findings, immunohistochemistry of human
NSCLC tissues revealed lower TRIM3 protein levels in tumors than
in adjacent normal tissues (Fig. 3l). Notably, reduced TRIM3
expression was positively correlated with adverse clinical outcomes
in patients with NSCLC (Fig. 3J). Furthermore, TRIM3 expression

Cell Death and Disease (2026)17:44
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Fig. 3 TRIM3 expression is lower in NSCLC cells than in normal cells. A-F TRIM3 mRNA levels were analyzed in patients with LUAD and LUSC
across paired tumor-normal samples, tumor stages and lymph node metastasis status. G, H TRIM3 protein and mRNA levels were evaluated in
NSCLC cell lines (H1299, PC-9, H2030, H2228, H1944, 95-D and A549) and BEAS-2B cells (n =4), as assessed by one-way ANOVA. I TRIM3
protein levels were analyzed in human NSCLC samples by immunohistochemistry. J Kaplan-Meier survival curves were plotted to correlate
TRIM3 mRNA expression with the overall survival of patients with NSCLC in GSE157011 and GSE30219. K-P The TIMER2.0 database was used to
analyze the correlations between TRIM3 mRNA expression and the infiltration levels of CD4" T cells, NK cells and macrophages in LUAD and
LUSC. *p < 0.05; **p < 0.01; ***p < 0.001.

correlated positively with the numbers of tumor-infiltrating CD4* T knockout of TRIM3 affected the proliferation capability of H1299
cells, macrophages, and NK cells in LUAD and LUSC, suggesting and A549 cells, as evidenced by the results of the CCK-8 and colony
that TRIM3 plays a role in promoting immune cell recruitment to formation assays (Fig. S4). Taken together, these findings suggest
the tumor microenvironment (Figs. 3K-P and S3). Collectively, the feedback inhibition on TRIM3 by IFN-B, as mentioned above,
these data suggest that TRIM3 plays a tumor-suppressive role in likely inhibits the suppressive effect of TRIM3 on NSCLC
NSCLC progression. Nevertheless, neither overexpression nor progression.
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Fig. 4 TRIM3 ubiquitinates TLR3 to induce IFN-B secretion. A Co-IP coupled with mass spectrometry (IP-MS) was performed in TRIM3-
overexpressing H1299 cells. Immunoprecipitated proteins were quantified by unique peptide counts to identify the top 100 candidates
against IFNB1-associated proteins. B, C Co-IP analysis (IP-Flag) validated the physical interaction between TRIM3 and TLR3 in A549 and H1299
cells. D, E Co-IP analysis (IP-Myc) validated the physical interaction between TRIM3 and TLR3 in A549 and H1299 cells. F The interaction

between TRIM3 and TLR3 (TRIM3/TLR3; red) was analyzed by PLA in A

549 and H1299 cells. G Domain mapping of TRIM3 was pictured. Co-IP

between TRIM3 deletion mutants (ARING, AB-box, ACC and ANHL) and TLR3 was performed in H1299 cells. H Ubiquitination assays using HA-

ubiquitin and TRIM3 catalytic mutants (C22/25S) were performed in A

549 and H1299 cells. | WB was performed to detect TBK1 (Ser172) and

IRF3 (Ser396) phosphorylation in WT TRIM3 vs. mutant-expressing cells under 20 ng/mL poly(l:C) stimulation. J ELISA was performed to

quantify TRIM3-dependent IFN-B induction in A549 and H1299 cells (
multiple comparisons. *p < 0.05; **p < 0.01; ***p < 0.001.

TRIM3 ubiquitinates TLR3 to induce IFN-B secretion

To investigate the mechanisms regulating IFN-B secretion and
disrupting feedback inhibition, we performed a coimmunopreci-
pitation (Co-IP) assay coupled with mass spectrometry analysis
following TRIM3 overexpression in H1299 cells, thereby system-
atically mapping the TRIM3 interactome [29]. Proteins enriched in
the immunoprecipitates were ranked by unique peptide counts,
and the top 100 candidates were cross-referenced with the top
100 IFNB1-associated proteins identified via GeneCards (Fig. 4A).

SPRINGER NATURE

n = 4). Statistical significance was analyzed using one-way ANOVA for

TLR3, a key sensor of dsRNA that triggers IFN-f production and is
known to undergo ubiquitin-dependent regulation, emerged as
the sole overlapping gene. TLR3 is activated by poly(l:C), a
synthetic dsRNA analog [30]. Bidirectional Co-IP assays validated
the in vitro physical interaction between TRIM3 and TLR3 in A549
and H1299 cells (Figs. 4B-E and S5). PLA signals (red) confirmed
the interaction between TRIM3 and TLR3 in A549 and H1299 cells
(Fig. 4F). Like other TRIM family ubiquitin ligases, TRIM3 contains
conserved RING, B-box, and coiled-coil domains alongside a
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variable C-terminal region [20]. Co-IP assays demonstrated that
the RING domain is essential for the TRIM3-TLR3 interaction (Fig.
4G). Crucially, compared with wild-type (WT) TRIM3, neither the
RING-deleted TRIM3 mutant nor the catalytically inactive mutant
(C22/25S) exhibited TLR3 ubiquitination activity (Fig. 4H). Given
that TLR3-driven IFN-B production requires TBK1 and IRF3
phosphorylation [31], we also observed concomitant upregulation
of phosphorylated TBK1 and IRF3 in the WT TRIM3 groups (but not
C22/25S mutant). (Fig. 4l). Complementary qPCR and ELISA
analyses in A549 and H1299 cells confirmed that TRIM3
upregulates IFNBT transcription and enhances IFN-B secretion
under poly(l:C) stimulation. Notably, TLR3 modulation reversed
these effects, restoring baseline IFNBT mRNA and IFN-B levels
(Figs. 4J and S6). Bioinformatic analysis of TLR3 expression in the
NSCLC cohort revealed its progressive downregulation with
advanced tumor stage and N stage (Fig. S7A-F). Reduced TLR3
expression was positively correlated with poor prognosis in
patients with NSCLC (Fig. S7G). These results demonstrate that
TRIM3 facilitates TLR3 ubiquitination via its RING domain, thereby
inducing IFN-B secretion in NSCLC.

TRIM3 catalyzes the K63-linked ubiquitination of TLR3 at
lysine 808

To elucidate the ubiquitination mechanism, we performed
ubiquitination-specific Co-IP assays. Cotransfection with linkage-
specific ubiquitin constructs demonstrated that TRIM3 selectively
catalyzes the K63-linked ubiquitination of TLR3 (Fig. 5A). In follow-
up experiments, we demonstrated that TRIM3 promotes TLR3
ubiquitination through K63-linked (but not K63R mutant) ubiqui-
tination in a dose-dependent manner (Fig. 5B, C). Activation of the
TLR3/TBK1/IRF3 signaling axis leading to IFN- secretion strictly
requires the cleavage of TLR3 [32]. Our results also indicated that
poly(l:C) stimulation enhanced both TLR3 ubiquitination and
cleaved-TLR3 accumulation, and these effects were amplified by
TRIM3 overexpression (Fig. 5D). Domain mapping revealed that
residues 633-904 in TLR3 were essential for TRIM3 binding (Fig.
5E). Using the GPS-Uber platform, we predicted four candidate
lysine ubiquitination sites within this region. Mutation of the TLR3
K808 residue abolished the TRIM3-mediated ubiquitination of
TLR3 (Fig. 5F). WT TLR3 significantly increased IFNBT mRNA
expression and IFN-f secretion, whereas the K808R mutation did
not have these effects (Fig. 5G). Taken together, these findings
suggest that TRIM3 catalyzes the K63-linked ubiquitination of TLR3
at K808, enabling the activation of IFN-3 secretion in NSCLC.

The TRIM3/TLR3 axis suppresses NSCLC progression

To investigate the functional role of the TRIM3/TLR3 axis in NSCLC
progression, we conducted in vitro and in vivo experiments.
Proliferation assays (CCK-8 and colony formation) were performed
under poly(:C) stimulation to activate TLR3 signaling. TRIM3
overexpression suppressed A549 cell proliferation, which was
reversed by TLR3 knockout (Fig. 6A, B). Moreover, TRIM3 knockout
enhanced H1299 proliferation, whereas TLR3 overexpression
reversed this effect (Fig. 6C, D). Consistent results were observed
in LLC cells (Figs. 6E, F and S8). In our syngeneic mouse models,
poly(l:C) was administered intraperitoneally every 3 days. After
15 days, the tumors were excised, weighed and photographed
(Fig. 6G). We found that TRIM3 overexpression significantly
attenuated tumor growth, but TLR3 knockout reversed this effect
(Fig. 6H-J). Immunohistochemistry of tumor tissues revealed that
TRIM3 overexpression increased IFN-f3 levels and increased the
infiltration levels of CD4* T cells, CD49b* NK cells, and CD86* M1
macrophages, but the infiltration levels of CD163* M2 macro-
phages decreased (Fig. 6K), which is consistent with the results of
prior immune infiltration analyses (Fig. 3K-P). Bioinformatic
analysis also confirmed the correlations between TLR3 expression
and CD4* T cell, macrophage, NK cell (Fig. 7A-H), CD8"* T-cell and
dendritic cell infiltration (Fig. S9) in LUAD and LUSC. Clinically,
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downregulation of TRIM3 and TLR3 was positively correlated with
poor prognosis in patients with NSCLC (Fig. 71). Overall, the TRIM3/
TLR3 axis suppressed NSCLC progression by directly inhibiting
tumor cell proliferation and modulating the infiltration levels of
immune cells via IFN-B secretion (Fig. 7J).

DISCUSSION

IFN-B has garnered significant attention in recent years due to its
dual role in suppressing tumor growth and remodeling the
immunosuppressive tumor microenvironment [33]. As a proto-
typic immunotherapeutic agent, IFN-f improves clinical outcomes
in malignant tumors [34-36]. However, the therapeutic efficacy of
interferon-B is undermined by interference from negative feed-
back regulatory mechanisms [12]. Our study revealed that TRIM3/
TLR3 is involved in a reciprocal negative feedback loop that
regulates IFN-B secretion. Mechanistically, TRIM3 promotes TLR3
cleavage via K63 ubiquitination, thereby inducing IFN- secretion.
Both in vitro and in vivo experiments revealed that IFN-3 secretion
driven by the TRIM3/TLR3 axis suppressed NSCLC cell proliferation
and tumor growth. These findings underscore the therapeutic
potential of targeting the IFN-{3 regulatory axis to suppress NSCLC
progression, offering novel strategic insights for clinical therapy.

Previous studies have indicated that sustained IFN-f3 secretion
limited by negative feedback regulation could result from the
suppression of cytokine signaling (SOCS). SOCS suppresses
sustained IFN-B activation by directly inhibiting JAK2 activity,
thereby maintaining immune homeostasis [13, 14, 37]. Our study
uncovered the TRIM3/TLR3 axis as a previously unknown axis of
IFN-B signaling regulation in NSCLC. TRIM3 was found to promote
IFNB1 transcription and expression, while excessive IFN-B sup-
presses TRIM3 expression via feedback inhibition. Additionally, we
found that overexpression of TRIM3 did not inhibit the NSCLC cell
proliferation, suggesting the existence of feedback inhibition by
IFN-B. Notably, activation of the TRIM3/TLR3 axis drove persistent
IFN-B production, thereby overriding the feedback inhibition
triggered by excessive IFN-B levels. Our murine studies demon-
strated sustained tumor suppression via the TRIM3/TLR3 axis over
a 15-day period. Nevertheless, since sustained TRIM3 overexpres-
sion is clinically unfeasible, negative feedback regulation may
ultimately attenuate IFN-B secretion. Intriguingly, inhibition of
TYK2 or knockout of IFNART and IFNAR2, the upstream regulators
of the janus kinase-signal transducer and activator of transcription
(JAK-STAT) pathway, restored TRIM3 expression. These findings
suggest that TRIM3 expression may be suppressed by upstream
regulators whose transcription is promoted by STAT signaling. Our
future studies will clarify the reciprocal feedback loop between
IFN-B and TRIM3 and explore therapeutic strategies targeting key
regulators to overcome resistance.

The effects of IFN-B on tumor proliferation are determined by the
cellular context. Previous studies have demonstrated that activation
of the TBK1/IRF3 pathway restrains NSCLC progression and
enhances antitumor immunity [38]. However, the precise mechan-
isms controlling IRF3-mediated IFN-3 secretion remain poorly
characterized. Our study revealed that the TRIM3/TLR3 axis mediates
TBK1/IRF3 pathway activation and drives IFN-{3 secretion, conferring
antiproliferative effects against NSCLC. IFN-B inhibits tumor cell
proliferation and survival while mobilizing systemic immune
responses through enhanced M1-polarized macrophage phenotype,
NK cell proliferation, and T-cell effector function [39-41]. Notably,
our bioinformatic and in vivo data demonstrated that TRIM3 and
TLR3 expression increased the infiltration levels of CD4* T cells, M1
macrophages, and NK cells but decreased the infiltration level of M2
macrophages. These results indicate that compromised TRIM3/
TLR3 signaling shapes an immunosuppressive tumor microenviron-
ment that facilitates tumor immune evasion. In future studies, the
functional mechanisms through which TRIM3-induced IFN-B affects
tumor immune cells remain to be fully elucidated.
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Fig.5 TRIM3 catalyzes the K63-linked ubiquitination of TLR3 at K808. A Ubiquitination assays were performed in H1299 cells cotransfected
with TRIM3-Flag, TLR3-Myc, and linkage-specific ubiquitin constructs (K6, K11, K27, K33, K48, and K63). B Ubiquitination assays were performed
to determine the dose-dependent effects of WT and mutant TRIM3 on the K63-linked ubiquitination of TLR3 in A549 and H1299 cells.
C Ubiquitination assays were performed in A549 and H1299 cells cotransfected with TRIM3-Flag, TLR3-Myc, and linkage-specific ubiquitin
constructs (K63, K63R). D Ubiquitination assays were performed to examine the enrichment of cleaved TLR3 in A549 and H1299 cells following
TRIM3 overexpression and stimulation with or without 20 ng/mL poly(l:C). E Domain mapping of TLR3 was pictured. Co-IP between TLR3
deletion mutants (1-632, 633-904) and TRIM3 was performed in H1299 cells. F Ubiquitination assays were performed to verify the lysine sites
of TLR3 ubiquitinated by TRIM3 in H1299 cells. G ELISA was performed to analyze IFN-B secretion levels in A549 and H1299 cells transfected
with WT TLR3 or K808R TLR3 (n = 4). Statistical significance was analyzed using one-way ANOVA. *p < 0.05; **p < 0.01.

TRIM3, a RING domain-containing E3 ubiquitin ligase initially
characterized for its ability to regulate intracellular trafficking
[42], has recently been shown to have tumor-suppressive effects
across multiple cancers [43, 44]. Here, we demonstrated that
TRIM3 expression is significantly downregulated and is corre-
lated with prognosis in patients with NSCLC. This study revealed
that TRIM3 catalyzes the K63-linked ubiquitination of TLR3 at
K808 via its RING domain, inducing IFN-{3 secretion to suppress

SPRINGER NATURE

NSCLC progression. These findings expand the known immu-
nomodulatory roles of TRIM family proteins and highlight the
catalytic necessity of the Cys22/Cys25 residues in TRIM3,
providing a structural basis for the development of small-
molecule agonists targeting TRIM3.

While this study elucidated the role of the TRIM3/TLR3 axis in
NSCLC suppression, the mechanistic details of its immunomodu-
latory effects, including its regulation of CD4* T-cell priming, NK
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Fig. 6 The TRIM3/TLR3 axis suppresses NSCLC progression. A-F CCK-8 and colony formation assays were performed to validate the effect of
the TRIM3/TLR3 axis on A549, H1299 and LLC cell proliferation following 10 ng/mL poly(l:C) stimulation (n = 4). Statistical significance was
analyzed using one-way ANOVA. G Schematic diagram depicting the experimental workflow of the in vivo experiments. H-J Syngeneic mouse
models were established to evaluate the effect of the TRIM3/TLR3 axis on tumor growth, with intraperitoneal poly(l:C) (1 mg/kg) injections
administered every 3 days. Representative images (H) and tumor weights (I) and volumes (J) are shown (n = 8). Statistical significance was
analyzed using one-way ANOVA. K IHC analysis was performed to evaluate IFN-p, CD4, CD49b, CD86, and CD163 expression in mouse tumors.

*p < 0.05; **p < 0.01; ***p < 0.001.

cell cytotoxicity, and macrophage polarization, remain to be fully
elucidated. Additionally, the limited clinical cohort size warrants
validation in expanded cohorts of patients treated with immu-
notherapy. Finally, we aimed to elucidate JAK-STAT downstream
effectors that repress TRIM3 expression, and pharmacological
targeting holds promise for overcoming IFN-B therapeutic
resistance.
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CONCLUSION

In summary, our study reveals a reciprocal feedback loop
governing IFN-B secretion in NSCLC. TRIM3 promotes IFNBIT
expression, whereas excessive IFN-B induces TRIM3 down-
regulation via feedback inhibition. Notably, the TRIM3/TLR3 axis
overrides this feedback inhibition through TRIM3-mediated K63-
linked ubiquitination of TLR3 at K808, thereby suppressing
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Fig. 7 Association of TLR3 with immune infiltration and prognostic value of combined TRIM3/TLR3 expression in NSCLC.
A-H Bioinformatic analysis was conducted to evaluate the correlations between TLR3 expression and the immune infiltration levels of
CD4* T cells, M1 macrophages, M2 macrophages and NK cells in LUAD and LUSC. I Kaplan-Meier survival curves were plotted to correlate the
combined TRIM3 and TLR3 mRNA expression with the overall survival of patients with NSCLC. The log-rank test was used for statistical analysis.
J Schematic diagram depicting the mechanism by which the TRIM3/TLR3 axis overrides IFN-p feedback inhibition to suppress NSCLC

progression.

NSCLC cell proliferation and inhibiting tumor growth. These
findings deepen mechanistic insights into IFN-B signaling
dynamics and identify the TRIM3/TLR3 axis as a promising
therapeutic target in NSCLC.
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