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SPOP and HAUSP bidirectionally regulate LZTS2 ubiquitination

to modulate the Wnt pathway
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Colorectal cancer (CRC) is a highly deadly disease worldwide, often characterized by the overactivation of the Wnt pathway. LZTS2
is known to be a tumor suppressor by negatively regulating the Wnt pathway in CRC. However, the mechanisms that control the
stability of LZTS2 are not fully understood. In this study, we find that the E3 ligase SPOP promotes ubiquitination-mediated
degradation of LZTS2, which is counteracted by the deubiquitinase HAUSP. SPOP and HAUSP compete for binding to the same
region of LZTS2, leading to bidirectional regulation of LZTS2 stability. The regulation ultimately impacts the activity of the Wnt
pathway. Furthermore, functional analyses reveal that SPOP hinders the tumor-suppressive effects of LZTS2 on CRC cell
proliferation and metastasis, whereas HAUSP enhances LZTS2’s anti-tumor activity in CRC cells. Taken together, these findings
uncover a novel regulatory mechanism of LZTS2 stability, where SPOP and HAUSP play crucial roles in determining the behavior of
CRC cells by balancing the ubiquitination and deubiquitination of LZTS2. This discovery may offer new strategies for utilizing LZTS2

as a potential therapeutic target for cancer treatment.
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INTRODUCTION

Colorectal cancer (CRC) is among the most lethal and prevalent
malignancies globally and leads to about one million cancer-
related deaths every year [1]. Traditional treatment options for
CRC patients include surgery, chemotherapy and radiation, but
they face challenges such as cancer recurrence, toxicity and high
side effects [2]. The development of targeted therapy has shown
promising results in improving treatment outcomes for CRC
patients [3]. However, drug resistance and the lack of suitable
targeted drugs remain major obstacles in effective treatment [4].
Therefore, there is an urgent need to investigate the molecular
mechanisms of CRC progression and identify new targets for
clinical treatment.

Overactivation of the Wnt pathway is one of the important
mechanisms for the initiation and progression of CRC [5]. Wnt
serves as a ligand that binds to the transmembrane receptor
complex composed of Frizzled (FZD) and low-density lipoprotein
receptor-related protein (LRP), leading to signaling activation
[6, 7]. In the absence of the Wnt ligand, the transcription factor
[-catenin is tethered in the cytoplasm by a destruction complex,
containing AXIN, APC, GSK3B and CK1a”. In this state, B-catenin is
phosphorylated, ubiquitinated by B-TrCP and consequently
degraded through proteasome [8]. Without nuclear B-catenin, a
repressive complex with TCF/LEF and TLE/Groucho recruits HDACs
to suppress the expression of target genes [9]. Upon binding of
Wnt ligand to the FZD/LRP receptor, 3-catenin is released from the
destruction complex and enters the nucleus to destroy the

repressive complex, thereby activating target genes [10]. There-
fore, nuclear translocation of B-catenin is essential for Wnt
pathway activation. Inhibiting 3-catenin nuclear localization could
be a potential strategy to block the Wnt pathway and treat CRC. In
fact, several inhibitors of B-catenin nuclear localization are being
investigated for their possible anti-tumor effects [11-13].

LZTS2, a leucine zipper tumor suppressor 2, is originally
discovered as a homolog to LZTS1 [14]. LZTS2 gene is located
on human chromosome 10g24.3, a region frequently deleted in
various cancers, including prostate tumor and CRC [14]. Studies
have shown that ectopic expression of LZTS2 apparently inhibited
tumor cell proliferation, suggesting its role as a tumor suppressor
[14]. A yeast two-hybrid screen using human B-catenin as bait
identifies LZTS2 as an interacting partner [15]. In CRC, LZTS2
interacts with P-catenin to diminish its nuclear localization,
thereby inhibiting the activation of the Wnt pathway and
tumorigenesis [15]. Our recent study has revealed that the
oncogenic kinase PLK1 phosphorylates LZTS2 to decrease its
interaction with (-catenin, leading to Wnt pathway activation and
progression of lung adenocarcinoma [16]. LZTS2 is able to
collaborate with PTEN in suppressing prostate tumorigenesis by
reducing B-catenin-mediated transcription [17]. Additionally,
LZTS2 inhibits tumorigenesis and radioresistance in nasophar-
yngeal carcinoma through inhibiting the PI3K/AKT pathway [18].
Therefore, LZTS2 may employ different mechanisms for tumor
suppression depending on the context. Interestingly, LZTS2 has
been identified as an oncogene and an independent prognostic
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biomarker for clear cell renal cell carcinoma [19], indicating its
complex roles in tumorigenesis. While many studies are focusing
on the downstream effects of LZTS2, the regulation of its own
abundance remains unclear.

The ubiquitin-proteasome system (UPS) is a vital pathway for
the degradation of intracellular proteins, controlled by the
opposing actions of E3 ubiquitin ligases and deubiquitinating
enzymes (DUBs) [20]. Maintaining a balance between ubiquitina-
tion and deubiquitination is essential for proper protein levels, as
any disruption can lead to various diseases, including cancer [21].
The speckle-type pox virus and zinc finger (POZ) protein (SPOP) is
a well-known adaptor for CUL3-based E3 ligase complex,
determining which proteins are targeted for ubiquitination and
degradation [22, 23]. Structurally, SPOP consists of a MATH
domain for substrate recognition and a BTB domain for binding
CUL3 [22]. Increasing studies have shown that most of SPOP
substrates are oncoproteins [23-28], indicating its anti-tumor
roles. However, our previous study has revealed that SPOP can
also target the tumor suppressor IRF2BP2, leading to progression
of liver cancer [29]. After analyzing the mass spectrometry results
using SPOP as bait from our study [29] and another group [30], it
was found that LZTS2 could be a potential interacting partner of
SPOP. We carried out rigorous biochemical experiments and
confirmed that LZTS2 was a bona fide substrate of CUL3-SPOP E3
ligase. In addition, previous unbiased tandem affinity purification
and mass spectrometry studies have pinpointed HAUSP (also
known as USP7) as the most probable LZTS2-interacting protein,
ranking at the top of all potential candidates [18]. This suggests
that HAUSP may have the ability to reverse LZTS2 ubiquitination.
Nevertheless, it is still unclear whether LZTS2 is subject to
bidirectional regulation by both SPOP and HAUSP, as well as the
biological significance of this regulation.

In this study, we provide biochemical evidence to support that
LZTS2 is a substrate of both SPOP and HAUSP. SPOP binds to
LZTS2 through its N-terminal MATH domain and facilitates LZTS2
ubiquitination in a CUL3-dependent manner. HAUSP competes
with SPOP for binding to the same region of LZTS2, leading to
deubiquitination of LZTS2. Furthermore, LZTS2 restricts -catenin
in the cytoplasm and diminishes its transcriptional activity, which
is counteracted by SPOP and exacerbated by HAUSP. Functionally,
LZTS2 suppresses the proliferation and migration of CRC cells,
with these effects being attenuated by co-expression of SPOP but
strengthened by co-expressing HAUSP. Overall, these findings not
only uncover a bidirectional regulatory mechanism of LZTS2
abundance but also demonstrate that SPOP and HAUSP regulate
the Wnt pathway by modulating LZTS2.

RESULTS
LZTS2 is a binding protein of SPOP
Increasing studies have highlighted the important role of LZTS2 in
inhibiting tumorigenesis in various types of cancer, including CRC.
Understanding the regulatory mechanism of LZTS2 could provide
new therapeutic opportunities for CRC patients. In our previous
study, a coimmunoprecipitation coupled with mass spectrometry
(Co-IP/MS) approach was used to identify proteins that interact
with the E3 ligase SPOP in HEK-293T (293 T) cells, leading to the
discovery of LZTS2 as a potential interacting partner [29]. To
validate this finding, we expressed Fg-tagged SPOP and
Myc-tagged LZTS2 constructs in 293 T cells and carried out Co-IP
experiments. The results revealed that Fg-SPOP binds to
Myc-LZTS2 (Fig. 1A). Reciprocally, Myc-LZTS2 also pulled down
Fg-SPOP (Fig. 1B). In addition, the interaction between endogen-
ous SPOP and endogenous LZTS2 was observed in both HCT-116
(Fig. 1C) and HT-29 cells (Fig. 1D), indicating that LZTS2 is a
genuine interacting partner of SPOP in CRC cells.

In order to determine the domains responsible for the
interaction between SPOP and LZTS2, we generated truncated
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forms of both proteins for Co-IP assays (Fig. 1E-F). SPOP contains a
N-terminal MATH domain for substrate binding, and a C-terminal
BTB domain for recruiting CUL3 and self-oligomerization [22, 31].
We divided SPOP into SPOP-N and SPOP-C (Fig. 1E), and found
that only SPOP-N was able to pull down LZTS2, while SPOP-C was
not (Fig. 1G). Additionally, we constructed Fg-SPOP-MATH and
Fg-SPOP-AMATH plasmids to investigate the role of the MATH
domain for SPOP-LZTS2 interaction (Fig. 1E). It was revealed that
SPOP-MATH, but not SPOP-AMATH, interacted with LZTS2
(Fig. TH), demonstrating a MATH-dependent manner for SPOP to
bind LZTS2. On the other hand, we revealed that the C-terminus of
LZTS2, rather than the N-terminus was responsible for its
interaction with SPOP (Fig. 11). These findings collectively reveal
that SPOP binds the C-terminus of LZTS2 through its MATH
domain.

SPOP promotes the ubiquitination and degradation of LZTS2
The discovery that SPOP binds to LZTS2 through its MATH
domain, promoted us to investigate whether LZTS2 is a target for
ubiquitination by SPOP. To explore this, we introduced Myc-LZTS2
and increasing amounts of Fg-SPOP into 293 T cells. Western blot
analysis revealed that Fg-SPOP decreased the protein levels of
Myc-LZTS2 in a dose-dependent manner (Figs. 2A and S2A). In
HCT-116 cells, Fg-SPOP was able to reduce endogenous LZTS2,
which was reversed by treatment with the proteasome inhibitor
MG132 (Figs. 2B and S2B). Nevertheless, the degradation of Myc-
LZTS2 protein by Fg-SPOP was not affected by the lysosomal
inhibitor NH,Cl (Fig. S1A), indicating that SPOP facilitates LZTS2
destabilization through the proteasome. It is known that SPOP
requires the scaffold CUL3 to carry out its E3 ligase function [32].
The C-terminal of CUL3 associates with the RING-domain proteins
RBX1 or RBX2, which facilitate the transfer of Ubiquitin (Ub) from
the Ub-conjugating enzymes (E2s) to the substrates [33]. Through
its N-terminal domain, CUL3 interacts with specific adaptor-
substrate components [34]. Therefore, we tested whether SPOP-
mediated degradation of LZTS2 is dependent on CUL3. Notably,
LZTS2 protein displayed instability with a half-life of ~2h in the
presence of the translation inhibitor cycloheximide (CHX)
(Figs. 2C and S2C). This half-life was shortened when both CUL3
and SPOP were present (Figs. 2C and S2C). We created a truncated
version of CUL3, CUL3-aa1-595, which lacks the C-terminus and
cannot recruit E2s. This truncated version was labeled as CUL3-DN
because of its dominant-negative role, as it competes with
endogenous CUL3 for adaptor binding [35, 36]. When CUL3-DN
was co-transfected with SPOP, it successfully halted the degrada-
tion of LZTS2 (Figs. 2C and S2C), suggesting that SPOP targets
LZTS2 for degradation via the SPOP-CUL3 complex.

After demonstrating that SPOP-CUL3 promotes the degradation of
LZTS2, we proceeded to investigate the ubiquitination of LZTS2. As
expected, SPOP indeed enhanced the ubiquitination of LZTS2 both in
vivo and in vitro (Figs. 2D and S1B). Furthermore, this ubiquitination
was strengthened by wild-type CUL3, but weakened by CUL3-DN
(Fig. 2E), underscoring the crucial role of CUL3 in SPOP-induced
ubiquitination of LZTS2. As SPOP-mediated ubiquitination of LZTS2
leads to degradation, we then examined the type of polyubiquitina-
tion chain on LZTS2. Since K48-polyUb-modified proteins are typically
targeted for degradation, we utilized Ub-K48, where the lysines (Ks)
on Ub are substituted with arginines except for K48. Co-IP results
showed that SPOP promoted K48-linked ubiquitination on LZTS2 (Fig.
2F). While various types of polyubiquitin chains exist, K48- and K63-
linked polyubiquitination are the most common types of linkage [37].
Interestingly, Ub-K63 exhibited a similar effect to Ub-K48 on SPOP-
mediated LZTS2 ubiquitination (Fig. 2G). We also tested other types of
polyubiquitin chains. However, SPOP failed to ubiquitinate LZTS2 in
the presence of K6-, K11-, K27-, K29-, and K33-linked ubiquitin chains
(Fig. S1C-G). Taken together, our findings indicate that SPOP
recruits CUL3 to catalyze K48-linked polyubiquitination on
LZTS2, ultimately leading to proteasome-mediated degradation.
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Fig. 1

SPOP interacts with the C-terminus of LZTS2 via its MATH domain. A Immunoblots of immunoprecipitates (IP, top two panels) or

whole cell extracts (WCE, bottom two panels) from 293 T cells expressing indicated plasmids and treated with 25 pM of MG132 for 4 h before
cell harvesting. Of note, Fg-SPOP could pull down Myc-LZTS2. B Myc-LZTS2 was able to pull down Fg-SPOP. C Endogenous LZTS2 interacted
with endogenous SPOP in HCT-116 cells. D Endogenous SPOP immunoprecipitated endogenous LZTS2 in HT-29 cells. Schematic drawings
display the domains in SPOP (E) and LZTS2 (F), along with the truncated mutants utilized in the subsequent studies. G Fg-SPOP-N could, but
Fg-SPOP-C could not immunoprecipitate Myc-LZTS2. H Fg-SPOP-MATH, but not Fg-SPOP-AMATH interacted with Myc-LZTS2 in 293 T cells.

| Fg-SPOP interacted with Myc-LZTS2-C, not Myc-LZTS2-N.

LZTS2 interacts with HAUSP

Similar to other protein modifications, ubiquitination is also a
reversible process due to the presence of DUBs [38]. A previous
screen indicated HAUSP as the most probable LZTS2-interacting
protein, ranking highest among all potential candidates. This
suggests that HAUSP may have the ability to reverse the
ubiquitination of LZTS2. To investigate this, we first examined
the interaction between HAUSP and LZTS2. Co-IP assays revealed
that Myc-LZTS2 reciprocally bound to Fg-HAUSP in 293 T cells
(Fig. 3A-B). The interaction between HAUSP and LZTS2 was also
observed at endogenous levels in both HCT-116 and HT-29 cells
(Fig. 3C-D), confirming a reliable interaction between HAUSP and
LZTS2.

HAUSP contains a MATH domain at the N-terminus, a ubiquitin
specific protease (USP) domain in the middle, and five tandem
ubiquitin-like (UBL) domains in its C-terminus [39]. Previous
studies have revealed that HAUSP recognizes substrates through
the MATH and UBL domains [40-42]. To identify which domain of
HAUSP is involved in the interaction with LZTS2, we generated
three truncated constructs and performed Co-IP experiments
(Fig. 3E). The results showed that only the N-terminus of HAUSP
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could pull down LZTS2 (Fig. 3F), indicating the significance of the
MATH domain in this interaction. Consistently, deleting the MATH
domain of HAUSP abolished its binding to LZTS2 (Fig. 3G).
Additionally, LZTS2 bound to HAUSP via its C-terminal (Fig. 3H).

HAUSP deubiquitinates and stabilizes LZTS2
Given that HAUSP is a well-known deubiquitinating enzyme that
plays a pivotal role in controlling protein stability, we suspected
that LZTS2 might be a substrate of HAUSP. When Fg-HAUSP was
overexpressed in 293 T cells, there was a noticeable increase in the
levels of Myc-LZTS2 (Figs. 4A and S2D). Conversely, knocking
down endogenous HAUSP with siRNA reduced the protein levels
of LZTS2, as well as two well-characterized HAUSP substrates (YAP
and GLI3) (Fig. 4B). Moreover, HAUSP knockdown led to a shorter
half-life of LZTS2 protein compared to the control group (Fig. 4C).
As HAUSP typically interacts with the substrates to remove
ubiquitin chains from them, we conducted experiments to
investigate the importance of the deubiquitinase activity in
stabilizing LZTS2. We created a mutant form of HAUSP (HAUSP-
CA) with a deficiency in deubiquitinase activity by replacing the
cysteine residue at 250 with alanine [43]. Our results showed that

SPRINGER NATURE
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Fig. 2 SPOP ubiquitinates and degrades LZTS2. A SPOP decreased Myc-LZTS2 protein in a dose-dependent manner in 293 T cells. B SPOP
degraded endogenous LZTS2 in a dose-dependent manner in HCT-116 cells, which was restored by treatment with 25 pM of proteasome
inhibitor MG132 for 4 h. C 293 T cells were treated with CHX (20 pg/ml) to inhibit the protein synthesis for indicated times before harvesting.
Of note, CUL3 promoted, while CUL3-DN inhibited SPOP-mediated LZTS2 degradation. D Immunoblots of immunoprecipitates (top two
panels) or whole cell extracts (bottom three panels) from 293 T cells transfected with the indicated plasmids and treated with 25 uM of MG132
for 6 h before cell harvesting. SPOP enhanced ubiquitination of LZTS2. E CUL3 enhanced, while CUL3-DN inhibited SPOP-mediated LZTS2
ubiquitination. F SPOP promoted K48-linked polyubiquitination on LZTS2. G SPOP facilitated K63-linked polyubiquitination on LZTS2. Above

all, Actin acts as a loading control.

HAUSP-CA had a dominant negative effect, leading to a dose-
dependent decrease in Myc-LZTS2 levels (Figs. 4D and S2E).
Additionally, treatment with the HAUSP enzymatic activity
inhibitor P22077 [44] effectively blocked the ability of Fg-HAUSP
to increase endogenous LZTS2 abundance in HT-29 cells (Fig. 4E).

SPRINGER NATURE

Validation using two other HAUSP inhibitors, P5091 [45] and USP7-
IN-1 [46], also resulted in decreased endogenous LZTS2 protein
levels, without affecting HAUSP levels (Fig. 4F). These findings
highlight the essential role of deubiquitinase activity in HAUSP-
mediated stabilization of LZTS2 in CRC cells. Following this, we

Cell Death and Disease (2026)17:132
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Fig. 3 HAUSP binds to LZTS2 through its MATH domain. A Immunoblots of immunoprecipitates (IP, top two panels) or whole cell extracts
(WCE, bottom two panels) from 293 T cells expressing the indicated plasmids. Of note, Fg-HAUSP was able to pull down Myc-LZTS2. B Myc-
LZTS2 could immunoprecipitate Fg-HAUSP. C Endogenous LZTS2 interacted with endogenous HAUSP in HCT-116 cells. D Endogenous HAUSP
immunoprecipitated endogenous LZTS2 in HT-29 cells. E Schematic drawings show the domains in HAUSP and the truncated mutants used in
the following studies. F Fg-HAUSP-N could, but Fg-HAUSP-M and Fg-HAUSP-C could not pull down Myc-LZTS2. G Compared with Fg-HAUSP,
Fg-HAUSP-AMATH failed to interact with Myc-LZTS2. (H) Fg-HAUSP interacted with Myc-LZTS2-C, not Myc-LZTS2-N.

sought to determine if HAUSP deubiquitinates LZTS2 through cell-
based ubiquitination experiments. Given the above findings that
SPOP can enhance both K48- and K63-linked polyubiquitination of
LZTS2, we explored whether HAUSP can remove these two types
of polyubiquitin chains from LZTS2. Our findings indicated that
HAUSP reduced both K48- and K63-linked ubiquitination on LZTS2
(Fig. 4G). In summary, HAUSP interacts with LZTS2 to exert its
deubiquitination activity on LZTS2, leading to the stabilization of
LZTS2.

SPOP and HAUSP bidirectionally regulate LZTS2
ubiquitination

The results mentioned above have shown that both SPOP and
HAUSP interact with the C-terminus of LZTS2 (Figs. 11 and 3H),
suggesting a potential competition between SPOP and HAUSP for
binding to LZTS2. To test this possibility, we examined the
strength of the interaction between SPOP and LZTS2 in the
absence or presence of HAUSP, as well as vice versa. Our findings
revealed that the presence of HAUSP weakened the binding of
SPOP to LZTS2 (Fig. 5A), while overexpression of SPOP also
decreased the interaction between HAUSP and LZTS2 (Fig. 5B),
demonstrating that SPOP competes with HAUSP to interact with
LZTS2. To confirm that the competition takes place at the binding
level rather than affecting LZTS2 stability, we performed Co-IP

Cell Death and Disease (2026)17:132

assays using the N-terminal fragments of SPOP and HAUSP, both
of which bind LZTS2 without altering its stability. The findings
revealed that HAUSP-N and SPOP-N mutually interfere with each
other’s interaction with LZTS2 (Fig. S3A), providing direct evidence
of competitive binding. For a deeper examination of whether
SPOP and HAUSP compete for the same binding sites on LZTS2,
we utilized AlphaFold and PyMOL to predict the binding interfaces
of both SPOP-N and HAUSP-N with LZTS2-C. Structural modeling
revealed that the binding sites for SPOP-N and HAUSP-N on
LZTS2-C are spatially adjacent and both include residue Q106
(Fig. S3B-C). Furthermore, the ubiquitination of LZTS2 triggered by
SPOP was effectively reversed by co-transfecting HAUSP, rather
than HAUSP-CA (Fig. 5Q).

The delicate balance between ubiquitination and deubiquitina-
tion is often disturbed in various types of tumors [20]. Mutations in
the MATH domain of SPOP are frequently observed in human
cancer specimens, leading to changes in interactions between
SPOP and its substrates [47, 48]. Studies have shown that cancer-
associated mutations in SPOP can result in abnormal activation of
oncogenic pathways, resulting in cancer progression [26-29]. We
investigated whether cancer-derived mutations in SPOP affect its
interaction with LZTS2. Co-IP results showed that the endometrial
cancer (EC)-derived SPOP mutants (E47K, M117] and R121Q)
exhibited similar interactions with LZTS2 as wild-type SPOP
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Fig. 4 HAUSP removes ubiquitin chains from LZTS2 to stabilize it. A HAUSP increased Myc-LZTS2 protein in a dose-dependent manner in
293 T cells. B Knockdown of HAUSP decreased endogenous LZTS2, YAP and GLI3 protein levels in HCT-116 cells. € 293 T cells were treated with
CHX (20 pg/ml) for the indicated times. Of note, knockdown of HAUSP promoted the degradation of endogenous LZTS2. D The
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loading control.

(Fig. S3D). However, the hepatocellular carcinoma (HCC)-related
SPOP mutation, SPOP-M35L, showed a more robust affinity with
LZTS2 than wild-type SPOP (Fig. S3E). Furthermore, we identified
three CRC-related SPOP mutations (F32L, S54T and A61T) in The
Cancer Genome Atlas (TCGA). Subsequent binding experiments
confirmed that these mutants also exhibited a stronger affinity for
LZTS2 (Fig. S3F). These findings suggest that mutations in the
MATH domain of SPOP lead to distinct functional consequences in
a context-dependent manner. Additionally, we identified two
point-mutations, R93Q and M102L, in the MATH domain of HAUSP
in CRC patient samples from TCGA. Surprisingly, these mutations
weakened the binding of HAUSP to LZTS2 (Fig. S3G). Taken
together, tumor-derived mutations in SPOP and HAUSP alter their
interactions with the tumor suppressor LZTS2, potentially
contributing to tumor development.

SPOP and HAUSP regulate LZTS2's inhibitory effect on Wnt
pathway

The main function of LZTS2 is to bind B-catenin and prevent its
nuclear accumulation, thereby negatively impacting the Wnt
pathway [15]. Our above data showed that SPOP and HAUSP
modulate LZTS2 stability, so it is necessary to explore their roles in
the Wnt pathway. Immunofluorescence assays showed that co-
expression of Myc-LZTS2 with Fg-B-catenin led to cytoplasmic
accumulation of B-catenin (Fig. 6A). However, co-expression of a
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nuclear export signal deficient form of LZTS2 (LZTS2-L638/640 A)
attenuated the cytoplasmic localization of LZTS2 to B-catenin
(Fig. 6A), highlighting the role of LZTS2 in regulating the
subcellular localization of B-catenin.

Two sets of experiments were conducted to investigate the
involvement of SPOP and HAUSP in modulating the Wnt pathway.
In the first experiment, the TOP/FOP luciferase assay was carried
out using P-catenin to drive luciferase expression from a DNA
fragment containing TCF/LEF-responsive element. LZTS2 reduced
[-catenin-driven TOP/FOP activity, which was rescued by SPOP co-
expression (Fig. 6B). Conversely, co-transfection with HAUSP, but
not HAUSP-CA, exacerbated the effect of LZTS2 in decreasing
TOP/FOP activity (Fig. 6B). However, when LZTS2-L638/640 A
was co-expressed with B-catenin, it did not decrease TOP/FOP
activity. In the second experiment, RT-qPCR was conducted to
examine the expression of (3-catenin target genes Cyclin D1,
AXIN2 and c-Myc in HCT116 cells. As expected, B-catenin was
able to activate the expression of these target genes, which
was suppressed by co-expressing LZTS2 (Fig. 6C). The
inhibition of LZTS2 on B-catenin was relieved by SPOP, but
strengthened by HAUSP (Fig. 6C). On the other hand, treatment
with HAUSP inhibitors effectively removed LZTS2’s inhibition
on f-catenin-driven TOP/FOP activity (Fig. 6D). In conclusion,
SPOP and HAUSP regulate Wnt/B-catenin pathway activity
through LZTS2.
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SPOP and HAUSP control the anti-tumor capacity of LZTS2
To evaluate the functional relevance of SPOP-mediated LZTS2
ubiquitination, we selected colorectal cancer (CRC) since CRC cells
are known to be sensitive to the Wnt pathway [49, 50]. Previous
studies have demonstrated that LZTS2 plays a role in inhibiting
tumor growth in CRC by sequestering (3-catenin in the cytoplasm
[15, 51, 52]. Consistent with this, overexpression of LZTS2 reduced
EdU incorporation in HCT-116 cells (Fig. 7A), while knockdown of
LZTS2 increased EdU incorporation (Fig. S4A-B), indicating that
LZTS2 suppresses HCT-116 cell proliferation. Moreover, the
decrease in EdU incorporation caused by LZTS2 was reversed by
co-expressing SPOP (Fig. 7A). Nevertheless, overexpression of
SPOP alone did not influence cell proliferation, as it functions as an
E3 ubiquitin ligase adaptor whose function depends on the
presence and abundance of substrates. In line with this, high SPOP
expression was found to be linked to poorer overall survival in CRC
patients, particularly in the LZTS2-high (LZTS2") subgroup, but not
in the LZTS2-low (LZTS2Y) subgroup (Fig. S4C). In addition, the
colony formation assay was carried out to assess cell growth
capacity. LZTS2 suppressed colony formation of HCT-116 cells, but
this inhibition was rescued when SPOP was co-expressed (Fig. 7B).
This finding was confirmed in another CRC cell line, HT-29
(Fig. 7C). The transwell assay was utilized to evaluate cell
migration, another key feature of tumor cells. Overexpression of
LZTS2 suppressed cell migration in both HCT-116 and HT-29 cells,
which was completely reversed by co-expressing SPOP (Fig. 7D-E).
Taken together, these results demonstrate that SPOP counteracts
the suppression of CRC cell migration and proliferation caused by
LZTS2.

We next sought to examine the functional significance of
HAUSP-mediated LZTS2 stabilization in CRC cell proliferation and
migration. The EdU incorporation assay revealed that LZTS2-
induced cell arrest was aggravated by co-expressing HAUSP in
HCT-116 cells (Fig. 8A). Consistently, the colony formation assay
showed that HAUSP augmented LZTS2-caused decrease in colony
numbers in HCT-116 and HT-29 cells (Fig. 8B-C). In addition, the
inhibition of cell migration by LZTS2 was further strengthened
through co-expressing HAUSP in CRC cells (Fig. 8D-E), while this
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inhibition was rescued by treatment with HAUSP inhibitors
(Fig. S4D). Taken together, these findings suggest that SPOP and
HAUSP regulate the anti-tumor capacity of LZTS2 in CRC cell lines
possibly through modulating its stability.

DISCUSSION

CRC is a malignant tumor with an extremely high incidence and
mortality rate worldwide [1]. Its pathogenesis is still unclear, which
restricts clinical diagnosis and treatment. Overactivation of the
Wnt pathway is a key mechanism for CRC initiation and
progression [53]. Recently, several studies have uncovered that
LZTS2 suppresses the Wnt pathway through inhibiting the nuclear
localization of -catenin, an important transducer of this pathway
[15]. Thus, overexpression of LZTS2 is able to suppress Wnt-driven
CRC progression [52]. LZTS2 is phosphorylated by the kinase PLK1
to weaken its interaction with (3-catenin, culminating in activating
the Wnt pathway [16]. However, whether LZTS2 is underwent
regulation by other post-translation modifications is still unknown.
Here, we reveal that LZTS2 is reversibly ubiquitinated by the E3
ligase SPOP and the deubiquitinase HAUSP, together modulating
the stability of LZTS2. Moreover, SPOP and HAUSP compete for
LZTS2 binding, leading to opposing effects on the ubiquitination
and protein levels of LZTS2 (Fig. 9). This balance ultimately
determines LZTS2's ability to sequester (B-catenin in the cyto-
plasm, thereby influencing Wnt pathway activity. As a result, SPOP
counteracts while HAUSP boosts the tumor-suppressive properties
of LZTS2 in CRC cell proliferation and migration (Fig. 9).

LZTS2 and another tumor suppressor PTEN are both located on
chromosome 10, with a distance of ~15Mb, frequently deleted
concurrently in clinical tumor samples [54]. Compared with mice
lacking either PTEN or LZTS2 alone, mice with both LZTS2 and PTEN
knockout show earlier onset of prostate cancer and faster tumor
progression, suggesting that LZTS2 and PTEN exert a synergistic
tumor suppressor effect [17]. LZTS2 and PTEN may have functional
relevance in suppressing tumorigenesis. Previous research has
uncovered that SPOP contributes to tumorigenesis by ubiquitinat-
ing and destabilizing PTEN in clear cell renal cell carcinoma [55].
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Fig. 6 SPOP and HAUSP regulate the Wnt pathway activity through LZTS2. A 293 T cells expressing indicated constructs were stained to
show Fg-B-catenin (red), Myc-LZTS2 or LZTS2-L638/640 A (green), and DAPI (blue). Of note, Fg-p-catenin was mainly localized in the nucleus,
but this localization was blocked by LZTS2, not by LZTS2-L638/640 A. DAPI staining marks the cell nuclei. Scale bars: 20 pm for all images.
B The relative TOP/FOP luciferase activity was detected by dual luciferase reporter assays in 293 T cells expressing the indicated constructs.
C The relative mRNA levels of p-catenin target genes were detected by qRT-PCR. D The relative TOP/FOP luciferase activity was detected in
293 T cells expressing the indicated constructs with or without HAUSP inhibitors treatment.

Our study demonstrates that SPOP promotes CRC progression
through degrading LZTS2. These indicate that SPOP plays a dual
role in tumorigenesis, targeting both LZTS2 and PTEN, which may
collectively enhance the progression of tumors. It will be
interesting to explore how SPOP chooses between LZTS2 and
PTEN for degradation in tumorigenesis, and if LZTS2 and PTEN
compete for binding to the E3 ligase SPOP.

Maintaining a balance between ubiquitination and deubiquiti-
nation modifications in the ubiquitin-proteasome system is critical
for protein posttranslational regulation. Disruption of this balance
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has been connected to a variety of human cancers [56]. SPOP
shows a high frequency of somatic mutations in several types of
cancer [47, 48]. The majority of reported SPOP mutations are loss-
of-function, leading to decreased affinity for its oncogenic
substrates [26-29]. In our earlier research, we identify a gain-of-
function mutation in liver cancer, known as M35L. This mutation
reprograms SPOP from a tumor suppressor to an oncoprotein by
heightening its interaction with the anti-tumor substrate, IRF2BP2
[29]. SPOP-M35L and CRC-derived SPOP mutants (F32L, S54T and
A61T) display enhanced binding affinity to LZTS2, while EC-
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Fig. 7 SPOP blocks the inhibition of LZTS2 on CRC cell migration and proliferation. A EdU incorporation assay showed that SPOP co-
expression could restore LZTS2-suppressed HCT-116 cell proliferation. Quantitative analysis was shown on the right. The colony formation
assays showed the proliferation of HCT-116 (B) and HT-29 cells (C) expressing indicated constructs. Quantitative analyses were shown on the
right. The migrative abilities of HCT-116 (D) and HT-29 cells (E) transfected with the specified constructs were assessed by transwell assays. The
expressions of constructs were examined by immunoblotting. Quantitative analyses were shown on the right.

derived SPOP mutants (E47K, M1171 and R121Q) have interactions
with LZTS2 comparable to wild-type SPOP, indicating that distinct
mutations result in different outcomes. Besides, we have identified
two HAUSP mutants (R93Q, M102L) derived from CRC that show
decreased affinity towards LZTS2. In the TCGA mutation profiles,
we amazingly find that mutations on SPOP and HAUSP cluster in
the MATH domain, which is responsible for binding substrates.
Therefore, alterations in substrate affinity due to mutations in the
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substrate binding domain of SPOP and HAUSP are important
mechanisms leading to tumorigenesis.

The abnormal activation of the Wnt/B-catenin pathway plays a
key role in the initiation and progression of CRC [5]. In clinical CRC
patient samples, mutations in components of this pathway, such
as APC and [-catenin, result in enhanced transcription of target
genes that support cell proliferation and survival [57]. Therefore,
inhibiting the entry of B-catenin into the nucleus or reducing its
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Fig. 8 HAUSP enhances the LZTS2-inhibited CRC cell migration and proliferation. A The EdU incorporation assay revealed that HAUSP co-
expression could boost LZTS2-suppressed HCT-116 cell proliferation. Quantitative analysis was shown on the right. The colony formation
assays revealed the proliferation of HCT-116 (B) and HT-29 cells (C) with indicated transfection. Quantitative analyses were shown on the right.
The migration of HCT-116 (D) and HT-29 cells (E) transfected with the specified constructs was tested by transwell assays. The expressions of
constructs were examined by immunoblotting. Quantitative analyses were shown on the right.

level can be potential strategies for treating tumors caused by
excessive Wnt pathway activation. Direct pharmacological target-
ing of B-catenin faces challenges due to its crucial roles in various
physiological processes and the absence of clearly defined drug-
binding pockets [58]. Our study proposes an alternative strategy
to suppress [-catenin activity by increasing LZTS2 levels. By
targeting the SPOP-HAUSP axis to enhance LZTS2 stabilization, we
could potentially achieve a more feasible approach. Inhibiting
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SPOP pharmacologically or activating HAUSP may help restore
LZTS2 levels and its tumor-suppressive role. Moreover, determin-
ing the mutational status of SPOP (F32L, S54T and A61T) or HAUSP
(R93Q, M102L) may aid in identifying patients who are most
likely to benefit from these strategies. Therefore, future studies
should concentrate on developing specific disruptors of the
SPOP-LZTS2 interaction and stabilizers of the HAUSP-LZTS2
complex.
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MATERIALS AND METHODS
Cell lines, transfection and immunoblotting
HEK-293T (293 T), HCT-116 and HT-29 cell lines were purchased from the
American Type Culture Collection (ATCC). 293 T cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum (FBS). HCT-116 and HT-29 cells were cultured in RPMI-
1640 medium containing 10% FBS at 37°C and 5% CO,. All these cell lines
underwent routine testing to rule out any mycoplasma contamination.
293 T cells were transfected using PEI (Sigma), while HCT-116 and HT-29
cells were transfected via Lipofectamine 3000 (Thermo Fisher Scientific)
following the manufacturer’s instructions for 48 h. After transfection, the
cells were harvested and lysed for immunoprecipitation (IP) and
immunoblotting (IB) assays according to previous study described [59].
The antibodies used for IB or IP were as follows: rabbit anti-SPOP
(ProteinTech), rabbit anti-LZTS2 (Proteintech), rabbit anti-YAP (ABclonal),
rabbit anti-GLI3 (ABclonal), mouse anti-USP7 (ABclonal), mouse anti-Actin
(Genscript), mouse anti-Myc (Santa Cruz), mouse anti-Fg (Sigma) and
mouse anti-HA (Santa Cruz). In some experiments, MG132 (25 uM;
Calbiochem) was added to cultured cells to inhibit proteasome activity,
whereas NH,Cl (10 mM; Ambeed) was used to block lysosome function. For
HAUSP inhibitors treatment, cells were treated by P22077 (#HY-13865,
MedChemExpress), USP7-IN (#HY-16709, MedChemExpress) or P5091
(#SML0070, Sigma) at indicated concentrations for 24 h.

DNA constructs

To generate constructs for transfection of LZTS2, SPOP, HAUSP, B-catenin,
CUL3, RBX1 and Ub, the full-length coding sequences were amplified using
CRC cells ¢cDNA as the template, and cloned into the pcDNA3.1-Fg,
pcDNA3.1-Myc, pcDNA3.1-HA or pGEX-4T-3 backbone vectors. Truncated
fragments were amplified via PCR, and inserted into the corresponding
backbone vectors. Point mutation constructs utilized in this study were
generated through PCR-based site-directed mutagenesis in the context of
Fg-SPOP, Fg-HAUSP, Myc-LZTS2 or HA-Ub, as described in our previous
study [42]. Small interfering RNA (siRNA) for MOCK, LZTS2 and HAUSP were
purchased from Genepharma (Shanghai, China). The siRNA sequences
used were as follows: MOCK-siRNA, 5-UUC UCC GAA CGU GUC ACG UUU
dTdT-3', LZTS2-siRNAT1, 5-GGA GGA GAU CAC UGC UAC U dTdT-3', LZTS2-
siRNA2, 5-GCA GCA GCU GAA AGA GUC U dTdT-3/, HAUSP-siRNA1, 5-ACC
CUU GGA CAA UAU UCC U dTdT-3', HAUSP-siRNA2, 5'-AGU CGU UCA GUC
GUC GUA U dTdT-3".
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Immunofluorescence and confocal

Cell-based immunofluorescence assays were carried out as previously
described [29]. For EdU incorporation assays, HCT-116 cells were
transfected with indicated constructs and then seeded onto chamber
slides. These cells were next incubated with 10 uM EdU (CellorLab) for 2 h
before cell harvesting. The subsequent immunofluorescence steps were
performed following the same protocol as described above.

Luciferase reporter assay

The TOP and FOP TCF/LEF reporters were gifted from Prof. Chuyong Lin
[60]. 293 T cells were transfected with the indicated plasmids, luciferase
reporters, and Pol II-Renilla for 48 h. Luciferase activity was then measured
using the Dual-Luciferase Reporter assay (Vazyme). Data were presented as
means = SEM of values from at least three experiments.

RNA extraction and qRT-PCR

Total RNAs were isolated from HCT-116 cells after transfection with TRIzol
(Invitrogen) following standard protocols. The RNA was reverse transcribed
using HiScript® Q RT SuperMix with gDNA wiper (Vazyme) following the
manufacturer’s instructions. The primer pairs used were as follows: Cyclin
D1, 5'-CAT TGA ACA CTT CCT CTC CA-3' (forward) and 5-AAC TTC ACA TCT
GTG GCA C-3' (reverse); AXIN2, 5-TTA TGC TTT GCA CTA CGT CCC TCC A-3'
(forward) and 5-CGC AAC ATG GTC AAC CCT CAG AC-3’ (reverse); c-Myc, 5'-
AAA CCT CCT CAC AGC CCA CT-3' (forward) and 5-GTT CCG TAG CTG TTC
AAG TTT G-3' (reverse); ACTIN, 5'-TGA CAT TAA GGA GAA GCT GTG CTA C-3/
(forward) and 5-GAG TTG AAG GTA GTT TCG TGG ATG-3’ (reverse). Data
are presented as means + SEM of values from at least three repeats. Real-
time PCR was performed using ChamQ SYBR® Color qPCR Master Mix
(Vazyme) on ZY/VQ-100A (Yuanzan). Relative expressions of indicated
genes were detected using the 272" method.

In vitro ubiquitination assay

Briefly, GST-LZTS2 was expressed in and purified from E. coli BL21 by GSH
magnetic agarose beads (Beyotime). 293 T cells were co-transfected with
HA-SPOP, Fg-CUL3 and Myc-RBX1 for 48 h. These cells were next harvested
and lysed by sonication in IP buffer (20 mM Tris-HCI pH 7.4, 150 mM NadCl,
5% glycerol, 1 mM TCEP and 1 x protease inhibitor cocktail). The SPOP-
CUL3-RBX1 complex was purified by anti-HA M2 affinity gel and washed
with IP buffer. For the in vitro ubiquitination assay, purified GST-LZTS2 was
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incubated with the SPOP-CUL3-RBX1 complex, E1 (Ubbiotech), E2
(Ubbiotech) and ubiquitin (Ubbiotech) in reaction buffer (Ubbiotech)
supplemented with ATP at 30 °C for 2 h. The reaction products were then
analyzed by western blotting.

Transwell assay

At 48 h after transfection, a total of 2 x 10° cells were seeded in the upper
transwell chambers (BD Biosciences) containing 300 uL of serum-free
medium. The lower chambers of a 24-well plate (Corning) were filled with
500 pL of medium containing 10% FBS. The transwell chambers were then
incubated at 37 °C with 5% CO, for 24 h. After incubation, the cells that
migrated to the bottom surface were fixed with 20% methanol for 20 min.
The cells were stained with 0.1% crystal violet (Sangon Biotech), and the
cells on the upper surface of the inserts were carefully removed using
cotton swabs. Finally, the stained cells were photographed and quantified
under a microscope in 8 randomly chosen fields.

Colony formation assay

To conduct the colony formation assay, single-cell suspensions were
seeded into six-well plate at a density of 2000 cells per well and incubated
at 37°C with 5% CO, for 2 weeks. After incubation, the plates were washed
with PBS, fixed with 4% formaldehyde, and stained with 0.1% crystal violet
(Solarbio) for 1h. Colonies containing more than 50 cells were then
counted.

AlphaFold structural modeling

Structural models of the SPOP-N/LZTS2-C and HAUSP-N/LZTS2-C com-
plexes were predicted using AlphaFold3. Five models were generated for
each complex. The representative model for each complex was selected
based on optimal combined scores for the predicted local distance
difference test (pLDDT) and predicted alignment error (PAE). All structural
visualizations were performed using PyMOL.

Statistical analysis

Statistical analyses were performed using GraphPad Prism software
(GraphPad Software Inc, La Jolla, CA). All data presented in this study
were representative of three or more independent replicates and were
displayed as means + SEM. Statistical significance was determined through
a two-tailed unpaired Student’s t-test using Prism software (GraphPad),
with significance values set at *P<0.05, **P<0.01, ***P<0.001,
*¥*#%¥P < 0.0001 and ns (not significant, P > 0.05).

DATA AVAILABILITY
All relevant data are available from the corresponding author upon reasonable
request.
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