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Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood
flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis,
necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/
R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each
other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the
key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also
discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell
death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate
their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death
processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers’ understanding of the
mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the

development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
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FACT

® Myocardial reperfusion is the primary treatment for myocar-
dial ischemia.

® Multiple modes of cell death, such as apoptosis, necroptosis,
autophagy, pyroptosis, and ferroptosis, occur following
myocardial reperfusion.

® The intricate connections among these pathways reveal cross-
regulation.

OPEN QUESTIONS

® Exploring the mechanisms of cell death in myocardial I/R injury
in order to uncover novel cardioprotective interventions.

® The complex collaboration of different cell death pathways in
myocardial I/R injury requires a clearer explanation.

® Further development and evaluation are needed to determine
the potential of specific inhibitors or activators targeting cell
death pathways for clinical application.

INTRODUCTION

Myocardial ischemia-reperfusion (I/R) injury is a critical condition
that occurs when blood flow to the heart tissue is temporarily
interrupted and subsequently restored [1]. This phenomenon is

commonly observed in patients with coronary artery disease and
can lead to severe damage to the myocardium. The restoration of
blood flow during reperfusion, although essential for tissue
survival, paradoxically exacerbates the injury and leads to cell
death, resulting in adverse clinical outcomes [2]. Cardiomyocyte
death constitutes a fundamental aspect of myocardial I/R injury.
Comprehending the involvement and regulatory mechanisms of
various types of cell death in myocardial I/R injury is of utmost
importance for the development of effective interventions aimed
at protecting the heart.

After reperfusion, elevated oxidative stress and mitochondria
damage lead to increased cell death across various mechanisms.
These mechanisms include necroptosis caused by heightened
oxidative stress, protective autophagy triggered by mitochondria
damage, excessive damaging autophagy exacerbated by further
injury, pyroptosis initiated by inflammatory cascades and aggra-
vated cell damage, and oxidative ferroptosis induced by increased
oxidative stress and iron ion accumulation. Traditionally, these
forms of cell death were considered distinct and regulated by
separate signaling pathways [3]. However, emerging evidence
now indicates a significant crosstalk and intricate interplay among
these cell death mechanisms, blurring their traditional boundaries
[4]. For instance, necroptosis can activate the occurrence of
pyroptosis [5] and intracellular signal changes related to apoptosis
may also affect the activation of pyroptosis [6]. Autophagy can
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inhibit apoptosis by eliminating damaged mitochondria, yet
excessive autophagy may also induce apoptosis [7]. Furthermore,
reactive oxygen species (ROS) generated during these forms of
death can disrupt the intracellular oxidative balance, leading to
ferroptosis [8]. These findings underscore the necessity for a
comprehensive understanding of the interplay among different
types of cell death in myocardial I/R injury, in order to develop
targeted interventions that can effectively address this complex
process.

In this study, we aim to provide a thorough exploration of the
molecular mechanisms and regulatory patterns involved in these
diverse forms of cell death in myocardial I/R injury. By elucidating
the complex interactions and shared signaling pathways, we hope
to shed light on the collective contribution of these forms of cell
death to the pathogenesis of myocardial injury. This knowledge
will not only enhance our understanding of myocardial I/R injury
but also pave the way for the development of novel therapeutic
strategies aimed at preserving cardiac function and preventing
adverse outcomes in individuals with coronary artery disease.

PATHOPHYSIOLOGICAL MECHANISM OF MYOCARDIAL I/

R INJURY

Myocardial I/R injury obtains complex pathogenesis, including
oxidative stress, the opening of mitochondrial permeability
transition pore (MPTP), and local inflammatory response [9]. As
described, reperfusion serves as an effective mean to salvage the
myocardium, yet it also amplifies oxidative stress, leading to cell
injury and even death. Oxidative stress generates excess ROS
which causes lipid peroxidation, and subsequently induces
different types of cell death. Rapid restoration of pH, MPTP,
mitochondrial plasma membrane depolarization, and oxidative
phosphorylation during reperfusion result in ATP depletion and
further cell death. In addition, I/R can lead to myocardial stunning,
no-reflow phenomenon, reperfusion arrhythmia and potentially
lethal reperfusion injury [10]. The loss of cardiomyocytes is a
certainly outcome of reperfusion injury, which can occur through
apoptosis, necroptosis, autophagy, and other pathways, contribut-
ing to irreversible damage and cardiac dysfunction. The table
below (Table 1) outlines the roles of these various cell death forms
in I/R and identifies the crucial factors that initiate and regulate
each type of cell death.

A single form of death has received significant attention,
whereas, the form of death cannot be fully explored indepen-
dently. The appreciation for the cross-regulation of cell death is
steadily growing.

During I/R, different types of cell death occur in a specific
sequence, accompanied by distinct dynamic changes. Initially, to
cope with the hypoxia and energy metabolism disruptions during
ischemia, autophagy is activated as a protective mechanism [11].
Autophagy helps maintain intracellular environmental stability by
degrading damaged organelles and proteins through lysosomes.
However, during the reperfusion phase, the role of autophagy
shifts.

The restoration of blood flow introduces oxygen and nutrients
back to the tissue but also generates ROS and other oxidative
stressors [12]. These stressors activate autophagy-related protein
(ATG) molecules, but excessive autophagy can lead to autophagic
cell death, where cells essentially digest themselves [7]. As
ischemia time prolongs and reperfusion begins, apoptotic path-
ways may be activated [13]. ROS production increases during
reperfusion, and factors like intracellular calcium overload can
activate both extrinsic and intrinsic apoptotic pathways [14].
Cleaved caspase-3 levels rise as reperfusion continues [15]. Under
certain conditions, such as when the apoptotic pathway is
inhibited or under intense inflammatory signals, necroptosis
may occur [16]. Necroptosis shares some upstream signaling
molecules with apoptosis but has a different execution stage,
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leading to cell membrane rupture, release of intracellular contents,
and triggering an inflammatory response [17].

In the early stages of myocardial I/R injury, cells release
inflammatory mediators, activating inflammasome-like NOD-like
receptor family pyrin domain containing 3, which in turn activate
caspase-1 and lead to pyroptosis [18]. Pyroptosis releases
inflammatory factors like interleukin-1f (IL-1f) and interleukin-18
(IL-18), further exacerbating the inflammatory response [19].
Studies suggest that compared to apoptotic markers, pyroptosis
may occur earlier and be more beneficial in the early stages of
myocardial I/R injury [20].

Necroptosis is closely related to inflammation during myocar-
dial I/R. Inflammation can directly trigger necroptosis, which
typically occurs in the late phase of reperfusion [18]. Necroptosis
increased significantly after oxygen-glucose deprivation and
reoxygenation injury recovery. The phosphorylation of mixed
lineage kinase domain-like protein (MLKL) also increased, indicat-
ing necroptosis [21].

During reperfusion, oxidative stress intensifies, intracellular iron
metabolism is disrupted, and the antioxidant defense system, such
as glutathione peroxidase 4 (GPX4), is damaged. This leads to the
accumulation of lipid peroxidation products and the induction of
ferroptosis [8]. Ferroptosis may emerge during prolonged
reperfusion when intracellular redox state imbalance and lipid
metabolism abnormality reach a critical level [22].

In brief, during I/R injury, these distinct types of cell death occur
sequentially with unique dynamic characteristics, hinting at
potential interactions among them. Recognizing these processes
and their interplay is essential for the formulation of effective
therapeutic approaches aimed at alleviating I/R injury.

APOPTOSIS

Mechanisms of apoptosis

Morphologically, apoptosis is characterized by DNA fragmenta-
tion, chromatin condensation, cytoplasmic compaction following
plasma membrane blebbing, nuclear membrane rupture, elevated
mitochondrial membrane permeability, and apoptosome forma-
tion [23]. It can be initiated through two well-defined pathways:
extrinsic pathway mediated by death receptors and intrinsic
pathway mediated by mitochondria. In addition, endoplasmic
reticulum (ER) mediated apoptosis also plays an important role.
Endoplasmic reticulum stress (ERS) occurs when the unfolded or
misfolded proteins are accumulated in the ER [24].

Extrinsic pathway is triggered by transmembrane death
receptors belonging to the tumor necrosis factor (TNF) receptor
family (TNF-R, Fas, TNF-related apoptosis-inducing ligand (TRAIL)-
receptor 1/2) [25]. Subsequently, it results in the recruitment of
Fas-associated death domain protein (FADD) and activation of
caspase-8 [14]. Caspase-8 then triggers caspase-3, resulting in
apoptosis. In addition, the combination of TNF-a and TNF receptor
induces two complexes, complex IIA and complex IIB, which also
induce caspase-8/caspase-3-mediated apoptosis.

The formation of apoptosome (cytochrome ¢, apoptotic
protease-activating factor-1 (Apaf-1), and dATP/ATP) is the key
of the intrinsic pathway. Simultaneously, it will cause intracellular
homeostatic imbalance caused by stimuli [26]. Apaf-1 plays a
negative role in inhibiting myocardial I/R injury and attenuating
apoptosis in ischemic cardiomyocytes through activating proca-
sepase-9, triggering the cleavage and activation of caspase-9 and
caspase-3 [27].

The function of ER fails to recover under prolonged or
overwhelming ERS, resulting in apoptosis by influencing ER
membrane resident proteins: inositol-requiring protein 1a (IRE1a),
protein kinase RNA-like ER kinase (PERK), and activating transcrip-
tion factor (ATF) 6 [28]. Long-term activation of the IREla is
associated with the c-Jun N-terminal kinase (JNK) pathway to
induce apoptosis [29]. PERK is a transmembrane protein of ER,
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Fig.1 Mechanism of apoptosis in myocardial I/R injury. Apoptosis can be divided into an extrinsic pathway and an intrinsic pathway. TNF-a,
FASL, and TRAIL interact with the related death domain to activate caspase-8 and caspase-3, inducing extrinsic apoptosis during myocardial
ischemic injury. SIRT1 translocates to the nucleus to downregulate NF-kB, mediating TNF-a protein transcription. This process is impaired in
myocardial I/R injury. SIRT1 downregulation is accompanied by a lower ratio of Bcl-2 to Bax and a higher MOMP following myocardial I/R
injury. Activated caspase-8 cleavages cytosolic Bid to produce truncated Bid to increase BAX on mitochondria. Mitochondrial stress and
MOMP can produce cytochrome ¢, then activate caspase-9 and caspase-3 in intrinsic apoptosis. Apaf-1 can promote the expression of
procaspase-9 and facilitate the progression of apoptosis. Myocardial I/R injury can induce apoptosis by stimulating ERS, which induces the
IRE1a/JNK and PERK/CHOP pathways. At the same time, SIRT1 can directly inhibit myocardial I/R injury-induced CHOP upregulation. FasL Fas
ligand, TRAIL TNF-related apoptosis-inducing ligand, TNF-a tumor necrosis factor-a, FADD Fas-associated death domain protein, Casp caspase,
TRADD TNF receptor-associated death domain, RIPK1/3 receptor-interacting protein kinase 1/3, SIRT1 silent information regulator transcript 1,
NF-kB nuclear factor-kB, MOMP mitochondrial outer membrane permeabilization, Apaf-1 apoptotic protease-activating factor-1, tBid
truncated Bid, ERS endoplasmic reticulum stress, IRETa inositol-requiring protein 1a, PERK protein kinase RNA-like ER kinase, CHOP C/EBP

homologous protein.

which separates from 78 kDa glucose-regulated protein during
prolonged ER stress and phosphorylates the eukaryotic translation
initiator factor to activate the ATF4 and C/EBP homologous
protein (CHOP) to induce apoptosis [30].

Apoptosis in myocardial I/R injury

During the period of myocardial ischemia, the apoptotic process
proceeds slowly. However, upon entering the reperfusion phase,
oxidative stress, inflammatory responses, and mitochondrial
damage intensify, leading to the activation of death receptors
such as TNF-R and Fas. This activation triggers both the extrinsic
(via caspase-8/3) and intrinsic (via cytochrome c) apoptotic
pathways, thereby accelerating the apoptotic process [13, 14].
Apoptosis prevention has been shown to ameliorate I/R-related
tissue damage [31].

Nuclear factor-kB (NF-kB) is activated and translocated to the
nucleus, where it mediates the transcription of TNF-a and other
proteins [32]. During myocardial I/R, activated NF-kB binds to the
kB sites within the TNF-a gene promoter, enhancing its
transcription. Elevated TNF-a levels further activate NF-kB in a
positive feedback loop, augmenting the inflammatory response
and triggering the extrinsic apoptotic pathway [33, 34]. In the
pathological process of myocardial I/R injury, the nuclear
translocation of NF-kB increases the release of pro-inflammatory
cytokines, such as TNF-a and IL-6 [35, 36]. In the rat cardiomyocyte
I/R injury model, the elevation of cytoplasmic NF-kB levels,
coupled with a significant reduction in nuclear NF-kB levels
achieved through the knockout of ubiquitin-specific protease 47,
resulted in a decreased level of apoptosis in the cells subsequent
to I/R injury [37]. Another study reveals that Rosmarinic acid can
attenuate the infarct size and cardiomyocyte apoptosis in cardiac
I/R injury by downregulating the NF-kB-mediated signaling
pathway. This effect is achieved by inhibiting the levels of
inflammatory cytokines, such as TNF-a and IL-6 [38]. Thus, the NF-
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KB/TNF-a pathway holds promise as an effective therapeutic
target for myocardial I/R injury [39]. The TRAIL and FasL pathways
induce the formation of a death-inducing signaling complex and
activate caspase-8 through FADD, leading to apoptosis [40]. To
date, TRAIL and Fas have been implicated in the pathogenesis of
myocardial I/R [33, 41].

In the intrinsic apoptotic pathway, inhibiting cytochrome c has
been shown to suppress cardiomyocytes apoptosis during myocar-
dial I/R injury [42]. In addition, cytochrome c can also activate
procasepase-9. The release of cytochrome c is regulated by pro-
apoptotic proteins (e.g.,, Bax, Bak, Bid) and anti-apoptotic proteins
(e.g., Bcl-2). Bcl-2 can inhibit the expression of Bax, thereby reducing
the mitochondrial outer membrane permeability (MOMP). During
myocardial I/R injury, the expression level of pro-apoptotic protein
(Bax, caspase-3) increased significantly, while the expression of anti-
apoptotic protein (Bcl-2) decreased [43]. In myocardial I/R injury,
activated caspase-8 cleaves cytosolic Bid to produce truncated Bid,
which translocates to the mitochondrial outer membrane, recruiting
cytosolic Bax [44]. If a severe imbalance occurs between pro-
apoptotic and anti-apoptotic proteins on the mitochondrial
membrane, it can lead to mitochondrial depolarization and MOMP,
ultimately activating the mitochondria-dependent apoptosis path-
way [45]. Z-VAD.fmk, a pan-caspase inhibitor, binds to the catalytic
site of caspase proteases and leads to a decrease in caspase-3 levels
[46]. In a relevant study, it was demonstrated that in rats with
myocardial I/R injury, Z-VAD.fmk could effectively inhibit caspase-3
and 8 activities, which subsequently led to a reduction in infarct size
and an improvement in left ventricular function [47]. In addition, the
suppression of caspase-3 and caspase-9 by miR-484 protects
myocardial cells from I/R injury during cardiomyocyte apoptosis [48].

Post-I/R, ROS disrupts the balance between the oxidation and
antioxidant systems, resulting in oxidative stress and cell damage.
Preventing oxidative stress and ERS can protect against myocar-
dial I/R injury [49]. JNK is activated in cardiac I/R injury. The

Cell Death Discovery (2025)11:87
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Fig. 2 Mechanisms of necroptosis in myocardial I/R injury. Under normal conditions, TNF-a binding to its receptor promotes the
combination of TAK1 and RIPK1. After TAK1 inhibition, RIPK1 dissociates from TAK1 and forms the RIPK1-RIPK3 complex. The TNF-a/RIPK1/
RIPK3/MLKL pathway produces necrosomes and induces necroptosis. However, further studies have revealed that this process is not the only
necroptosis pathway. RIPK3 can bind to Drp1, causing mitochondrial fission and affecting mitochondrial function. SIRT3, mainly localized to
mitochondria, can act on CypD, inhibiting MPTP opening. Parkin inhibits MPTP opening by catalyzing the ubiquitination of CypD in the
necrotic cascade, thereby inhibiting necrosis and improve cardiac function. ARC inhibits MPTP opening by inhibiting CypD. However, ARC
expression is repressed by P53. CaMKIl plays an important stimulative role in inhibiting MPTP opening pathway. CaMKII-89, the most widely
distributed subtype of CaMKIl, can induce the activation of the inflammatory mediator NF-xB and aggravate the inflammatory injury of
myocardial I/R injury. TAK1 transforming growth factor-activated kinase 1, MLKL mixed lineage kinase domain-like protein, Drp1 dynamin-
related protein 1, CypD cyclophilin D, CaMKIl calmodulin-dependent protein kinase Il, MPTP mitochondrial permeability transition pore, ARC

CaMKII-59 T

apoptosis repressor with caspase recruitment domain.

inhibition of the IRE1a/JNK signaling axis exerts the function of
cardio-protection [50]. Furthermore, PERK, as one of the ERS
targets, is downregulated to alleviate ER stress-induced apoptosis
in cardiomyocytes [51]. ERS-induced apoptosis is significantly
increased following myocardial I/R injury. The expression of 78 kDa
glucose-regulated protein, ATF6, CHOP in the myocardial I/R injury
is significantly increased, which indicated that all three signal
pathways of ERS-induced apoptosis are activated in the myocar-
dial I/R injury [52]. The activation of silent information regulator
transcript (SIRT) 1/CHOP signaling pathway reverses ER stress-
dependent apoptosis of cardiomyocytes [53]. Meanwhile, SIRTT, a
number of sirtuins family, regulates important transcription factors
involved in myocardial I/R injury, such as p53 and forkhead box
transcription factor class O [54, 55]. Other sirtuins also exhibit
beneficial effects in myocardial I/R injury [56, 57] (Fig. 1).

NECROPTOSIS

Mechanisms of necroptosis

Necroptosis is a form of regulated cellular necrosis. It is mainly
characterized by organelle swelling, plasma membrane, and
organelle rupture, culminating in the leakage of cellular contents
[58]. Traditionally, the abatement of necroptosis is mainly down-
mediated by the TNF-a/receptor-interacting protein kinase (RIPK)
1/RIPK3/MLKL signaling pathway in myocardial I/R injury [59]. The
RIPK1-RIPK3 complex is formed following inhibiting transforming
growth factor-activated kinase 1 (TAK1) leading to cardiomyocyte
necroptosis [60]. At the same time, the opening of MPTP can result
in mitochondrial swelling and promote necroptosis.

Necroptosis in myocardial I/R injury

During the later reperfusion phase, necroptosis occurs [61]. The
process involves the production of massive amounts of inflam-
matory factors, such as TNF-a, which activate RIPK1. Upon

Cell Death Discovery (2025)11:87

interaction between RIPK3 and MLKL, MLKL gets phosphorylated
and subsequently translocates to the cell membrane, leading to
membrane damage [17]. In addition, the persisitent opening of
the mitochondrial MPTP releases cyclophilin D (CypD) and other
substances, which further promote the progression of necroptosis.

Traditionally, necroptosis is mainly mediated by the TNF-o/
RIPK1/RIPK3/MLKL signaling pathway. A recent study showed that
resveratrol can reduce necroptosis by inhibiting TNF-a/RIPK1/
RIPK3/MLKL signaling pathway in the experiment of myocardial I/R
[59]. A recent study also demonstrated that ginsenoside Rg2
enhances the interaction of TAK1 with RIPK1 by promoting the
phosphorylation of TAK1, subsequently diminishing the formation
of the RIPK1-RIPK3 complex [62]. Although necroptosis can be
regulated through the RIPK1/RIPK3/MLKL pathway, this pathway
exhibits non-conservative behavior in myocardial I/R injury. An
experiment showed that the inhibition of only RIPK3 can
attenuate cardiomyocyte necroptosis [63]. A study in 2018 showed
that RIPK3 does not require RIPK1 and MLKL in myocardial I/R
injury-induced necroptosis, but requires dynamin-related protein
1 (Drp1) [64], which is a protein related to mitochondrial division.
Inhibiting Drp1 can protect myocardial cells against damage
following reperfusion through the inhibition of necroptosis [65].
Another experiment also clearly showed that Drpl has an
increasing trend in myocardial I/R injury, and vitexin can reduce
myocardial damage by affecting mitochondrial function through
the reduction of Drp1 expression [66]. Similarly, afterward it was
found that the RIPK3/calmodulin-dependent protein kinase I
(CaMKIl) signaling pathway also plays an important role in
myocardial ischemia [67]. CaMKII activity is a central mechanism
for mitochondrial calcium influx in myocardial cell death, and
inhibiting mitochondrial-targeted CaMKIl can prevent or reduce
myocardial cell death and heart failure induced by various forms
of pathophysiological stress [68]. CaMKII also plays a crucial role in
myocardial I/R injury [69]. The most prevalent subtype of CaMKIl in
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the heart is CaMKII-8. A recent study has shown that inhibiting the
splicing variant CaMKII-69 of CaMKII-& can suppress the activation
of inflammatory mediator NF-kB and reduce the inflammatory
injury caused by myocardial I/R injury [70].

Research has demonstrated that inhibiting the opening of MPTP
during short-term ischemia has limited protective effects on
myocardial cells after reperfusion, but it plays a more significant
role in protecting against reperfusion injury after long-term
ischemia [71]. This opening leads to irreversible depolarization of
mitochondria, disrupts energy production, and triggers necroptosis.
Simultaneously, the opening of MPTP in necroptosis is regulated by
CypD, a factor associated with MPTP regulation. MPTP inhibitors
primarily target CypD. Overexpression of SIRT3 prevents CypD
acetylation, which limits the opening of MPTP and mitigates
necroptosis [72]. The apoptosis repressor with caspase recruitment
domain (ARC) prevents the opening of MPTP and reduce the rapid
loss of ATP by targeting CypD, thereby improving myocardial injury
and myocardial ischemia. ARC is a potential therapeutic target for
protecting the heart during ischemia and oxidative stress-related
heart disease [73]. It has been demonstrated that p53 inhibits ARC
at the transcriptional level in myocardial I/R injury [74]. Parkin, an E3
ubiquitin protein ligase, catalyzes the ubiquitination of CypD and
inhibits the opening of MPTP in the necrotic cascade [75]. In
addition, the opening of MPTP can also be activated by CaMKII [76].
The correlation between mitochondrial function and necroptosis is
highly significant. Therefore, exploring of mitochondrial-related
proteins in-depth can identify more targets for the treatment of
myocardial ischemia or cardiovascular diseases (Fig. 2).

Interactions between necroptosis and apoptosis in myocardial
I/R injury

Apoptosis and necroptosis are two significant forms of programmed
cell death, with a closely intertwined and complex relationship.
Caspase-8 plays a crucial regulatory role in this context. Upon
receiving apoptotic signals, caspase-8, as a key protease initiating
apoptosis, is activated [77]. The activation leads to the cleavage and
activation of a series of downstream caspases family members, such
as caspase-3. Simultaneously, activated caspase-8 also inhibits the
formation of the necrosome, a key structure in necroptosis [16]. The
formation of the necrosome, typically composed of RIPK1, RIPK3,
and MLKL through their mutual interactions and aggregations [78],
is a central step in the occurrence of necroptosis.

When caspase-8 is active, it cleaves key proteins such as RIPK1
and RIPK3, preventing their interactions and aggregations, thereby
effectively inhibiting the formation of the necrosome and blocking
the progression of necroptosis [79]. Conversely, when certain
cellular factors downregulate caspase-8 activity, a significant shift
in the cell death mode occurs. Since caspase-8 fails to effectively
inhibit necroptosis, proteins like RIPK1 and RIPK3 can interact and
aggregate to form the necrosome [77]. In this situation, due to the
insufficient activity of caspase-8, the downstream apoptosis-
related caspases cannot be fully activated, inhibiting the process
of apoptosis and making the cell more susceptible to necroptosis.
By targeting specific components of these pathways, such as
RIPK1, RIPK3, or caspase-8, it may be possible to develop new
therapeutic strategies to reduce myocardial damage and improve
outcomes in patients with myocardial I/R injury.

AUTOPHAGY

Mechanisms of autophagy

Autophagy is a crucial metabolic process that involves breaking
down aging or damaged proteins and organelles into amino acids
and fatty acids for energy generation and recycling. It serves as a
physiological mechanism for maintaining normal intracellular
activity. Macroautophagy, the most significant type of autophagy,
transports cytoplasmic components to lysosomes via autophago-
somes, which then fuse with lysosomes [80].
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Autophagy is regulated by ATG manipulation, with the ATG1
homolog UNC-51-like kinase (ULK) complex serving as the starting
material for autophagosome formation. ULK complex consists of
several individual components, including ATG13, family interact-
ing protein of 200-kDa (FIP200), and others like ULK1/2 and
ATG101, each playing specific functions and regulatory roles [81].
FIP200, serving as a scaffold protein, is required for the assembly
and stabilization of the ULK complex to ensure the proper
functioning of ULK1/2 and ATG13 in autophagosome formation
[82]. As an essential part of the ULK complex, ATG13 plays a crucial
role in regulating autophagosome formation by enhancing the
kinase activity of ULK1/2 and interacting with other ATG proteins
[83]. Experimental evidence, both from cellular studies and in vitro
reconstituted reaction, has demonstrated that both FIP200 and
ATG13 can independently augment the kinase activity of ULK1.
However, the maximal stimulation of ULK1 kinase activity requires
the presence of both FIP200 and ATG13 [84].

ULK1 is regulated by various signal kinases, including AMP-
activated protein kinase (AMPK) and phosphatidylinositol-3-kinase
(PI3K), which act as an upstream inhibitor and activator of
mammalian target of rapamycin (mTOR). Essentially, mTOR
inhibits autophagy activation by suppressing the formation of
autophagy complex of FIP200-ULK1-ATG13 [85]. The phosphoryla-
tion state of ATG13 is closely regulated by mTOR complex 1.
Under nutrient-rich conditions, mTOR complex 1 phosphorylates
ATG13, which weakens its interaction with ULK1/2 and disrupts
the formation of the ULK complex [86]. This phosphorylation
event effectively inhibits the initiation of autophagy. Conversely,
during conditions of nutrient deprivation or treatment with
rapamycin, mTOR complex 1 activity is suppressed. This leads to
a reduction in ATG13 phosphorylation, which in turn enhances its
affinity for ULK1/2, triggering the initiation of autophagy [86].

In addition to regulating the signaling pathway of autophagy,
the formation process of autophagy itself also affects its
expression level. Beclin1 participates in the formation of Complex
| (vacuolar protein sorting-associated protein 15-vacuolar protein
sorting-associated protein 34-ATG14-Beclin1) [87]. Complex | plays
a critical role in the regulation of autophagosome biogenesis,
which localizes to the pre-autophagosome structure [88]. Further-
more, three ER membrane resident proteins (IRE1a, PERK, ATF6)
not only regulate the protein folding ability of ER, but also
modulate the process of autophagy [43, 89, 90]. Additionally,
mitophagy is an effective means to maintain mitochondrial quality
control to eliminate damaged and dysfunctional mitochondria.
PTEN-induced kinase 1 (PINK1)-Parkin pathway is the classical way
of mitophagy [91].

Autophagy in myocardial I/R injury

During the ischemia period, autophagy gets activated as a result
of the imbalance in intracellular energy metabolism and the build-
up of metabolic waste [7]. At this point, the activity of mTOR is
suppressed, and the ULK1 complex starts the autophagy process,
clearing damaged organelles and proteins. Simultaneously, signals
associated with ERS are turned on. During the reperfusion stage,
autophagy turns into a double-edged sword. While moderate
autophagy remains protective, excessive autophagy can speed up
cell death [7].

It has been suggested that targeting upregulated autophagy
could be a potential therapeutic approach for myocardial I/R injury
[92]. The AMPK signaling pathway has been identified as an
important target in autophagy. Activation of the AMPK/mTOR
pathway can effectively increase autophagy and protect myocar-
dial cells following I/R [93]. For example, melatonin, through AMPK
signaling pathway, can act on optic atrophy 1 to improve
mitochondrial fusion/mitophagy and reduce myocardial I/R injury
[94]. Liraglutide, for instance, acted on the AMPK/mTOR pathway
to enhance autophagy, improve autophagy flow, and alleviate
myocardial cell damage [95]. A recent study on myocardial I/R
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Fig. 3 Mechanisms of autophagy in myocardial I/R injury. Autophagy is a physiological activity dependent on lysosomal degradation, but
excessive autophagy can also lead to cell death. When the injury is mild, activating the autophagy pathway through activating the AMPK/
mTOR signaling pathways can protect cardiomyocytes and alleviate myocardial I/R injury. AMPK also acts on OPA1 of mitochondria to improve
mitochondrial fusion and alleviate myocardial I/R injury. BNIP3, localized only to mitochondria in cardiomyocytes, can activate the HIF-10/
BNIP3 pathway, increasing Beclin1 and promoting autophagy to protect cardiomyocytes. However, excessive autophagy can cause
cardiomyocyte injury when the injury is aggravated. The PI3K/AKT/mTOR pathway is an important signal pathway for downregulating
autophagy. The PINK1/Parkin pathway can activate cell autophagy and play an important protective role, but VDACT can strongly activate the
PINK1/Parkin, inducing excessive autophagy, which can cause cell death. ERS can induce autophagy. PERK/ATF4/CHOP and ATF6/CHOP
pathways are activated to induce autophagy after myocardial I/R injury. AMPK AMP-activated protein kinase, OPA1 optic atrophy 1, VDAC1
voltage-dependent anion channel 1, PINK1 PTEN-induced kinase 1, HIF-1a hypoxia-inducible factor-1a, BNIP3 Bcl-2/adenovirus E1B 19-kDa
interacting protein 3, PI3K phosphatidylinositol-3-kinase, AKT protein kinase B, ATG13 autophagy-related protein 13, ULK1/2 UNC-51-like
kinase 1/2, mTOR mammalian target of rapamycin, FIP200 family interacting protein of 200 kD, LC3II light chain 3 I, PERK protein kinase RNA-
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like ER kinase, ATF4/6 activating transcription factor 4/6.

showed that hypoxia-inducible factor-1a (HIF-10)/Bcl-2/adeno-
virus E1B 19-kDa interacting protein 3 (BNIP3) pathway promotes
autophagy to alleviate myocardial I/R injury [96]. BNIP3 is located
in mitochondria in cardiomyocytes, which can release autophagy
proteins such as light chain 3 and Beclin1, thus promoting
mitophagy [97]. In a myocardial I/R injury rat model, western blot
and immunofluorescence analyses confirmed significant elevation
of HIF-1a and BNIP3 expression and a notable increase in the
LC3II/LC3I ratio, and qPCR further verified significant upregulation
of HIF-1a, BNIP3, and LC3 mRNA, while activation of the HIF-1a/
BNIP3 pathway mediates mitophagy regulation to effectively
reduce apoptosis in rat H9C2 cardiomyocytes [98]. A study has
shown that directly activated autophagic flux reduces I/R-induced
ROS levels and increases mitochondrial homeostasis during
myocardial I/R injury [99].

However, some argue that an abnormal increase in autophagy
during reperfusion could worsen myocardial injury [100]. In
addition, autophagy becomes a damaging mechanism when
autophagy occurs excessively. Reducing autophagy levels can
mitigate oxidative stress, safeguard cardiac function, and alleviate
cardiac remodeling [101]. PI3K/protein kinase B (AKT) is an
important negative feedback regulatory signal pathway in
myocardial I/R injury [102]. At the same time, promoting PI3K/
AKT/mTOR phosphorylation can also inhibit expression of pro-
inflammatory-related genes after myocardial I/R injury [73].
Several studies have shown that activating PI3K/AKT pathway
can suppress autophagy, thereby improving cardiac function in I/R
rats, alleviating oxidative stress injury, and exerting cardioprotec-
tive effect following myocardial I/R injury [103].

Mitophagy is the selective autophagy of damaged mitochon-
dria. Stimulated regulators of mitophagy may alleviate myocardial
I/R injury by promoting mitochondrial quality control [104]. The
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main pathways implicated include those mediated by PINK1 and
parkin proteins. PINK1 can improve mitochondrial dysfunction by
alleviating cell hypoxia-reoxygenation (H/R) injury [105]. Later,
several studies showed that PINK1/Parkin-mediated autophagy
pathway played an important role in myocardial I/R injury
[106, 107]. Voltage-dependent anion channel 1 (VDAC1) can
strongly activate PINK1/Parkin pathway to induce autophagy, thus
causing cell death. Furthermore, VDAC1 is a channel protein
located in the outer membrane of mitochondria, which can
regulate mitochondrial function [108]. When VDACT was knocked
out, PINK1/Parkin pathway could be effectively inhibited. There-
fore, it is considered to be a trigger of myocyte autophagy in the
center of H/R injury [89]. ERS can induce autophagy. The
interaction between the ER and mitochondria is closely linked,
involving decreased expression of ATF6 and phosphorylation of
PERK to lower CHOP expression, thus countering myocardial I/R
injury by inhibiting ERS-induced autophagy [109]. PERK is an
excellent and classical target related to ERS and autophagy. ER
stress-activated autophagy through the PERK signaling. The PERK/
ATF4/Beclin1 signaling is suppressed to inhibit ER stress-induced
autophagy to alleviate myocardial injury [109] (Fig. 3).

Interactions between autophagy and other forms of cell death
in myocardial I/R injury
In myocardial I/R injury, autophagy interacts with other forms of cell
death, such as apoptosis, necroptosis, and pyroptosis, in complex
and often context-dependent manners. These interactions play a
crucial role in determining the fate of cardiomyocytes and the
overall outcome of myocardial I/R injury.

When the myocardial injury is mild, autophagy act as a
protective mechanism by degrading non-functional cytoplasmic
proteins and damaged organelles, such as mitochondria, which
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are major sources of ROS [99]. This process supplies essential
nutrients for cell growth and survival and effectively inhibits
apoptosis. By reducing ROS production, autophagy can prevent
oxidative stress-induced apoptosis. Autophagy also directly
modulates apoptotic signaling pathways by sequestering and
degrading pro-apoptotic proteins, such as p53 and Bax, thereby
inhibiting the activation of caspases and the execution of
apoptosis [110]. Recent studies have shown that impaired
autophagy induces cardiomyocytes apoptosis and necroptosis,
and enhancing autophagic flux can inhibit them in myocardial I/R
injury [111].

Autophagy dysfunction-mediated necroptosis mechanistically
contributes to the loss of cardiomyocytes, adverse ventricular
remodeling, and progressive heart failure following myocardial
infarction [112]. Another study suggests that impaired autophagic
flux during reperfusion resulted in p62 accumulation, while
knockdown of p62 attenuated necroptosis during H/R injury
[113]. It indicates that necroptosis and autophagy can regulate
each other through mutual interference in myocardial I/R injury.
Mechanistically, activation of necroptosis suppresses the fusion of
autophagosomes with lysosomes [114]. Moreover, a study has also
demonstrated that in the context of myocardial I/R injury, HSP70
can mitigate necroptosis of cardiomyocytes by suppressing
autophagy during the myocardial I/R process [115].

However, during severe I/R injury, autophagy can switch from a
protective to a pro-apoptotic role. Beclin1, a key component of the
PI3K complex I, plays an important role in myocardial I/R injury.
Normally, Beclin1 is involved in the formation of autophagosome.
However, in the reperfusion period, its mutual inhibitory interac-
tion with Bcl-2 reduces the function of Bcl-2, which promotes the
formation of apoptosome and thereby makes autophagy change
from a protective role to a pro-apoptotic one [116]. Down-
regulating Beclin1 can protects myocardium against myocardial I/
R injury through inhibiting autophagy [117]. There is literature
indicating downregulating Beclin1 and upregulating Bcl-2 expres-
sion to inhibit excessive autophagy and reduce apoptosis [118].

The roles of autophagy and pyroptosis are described in detail
below.

PYROPTOSIS

Mechanisms of pyroptosis

Pyroptosis is an inflammatory programmed cell death character-
ized by chromatin concentration, DNA breakage, cell swelling,
osmotic dissolution, plasma membrane rupture, and the release of
pro-inflammatory cytokines such as IL-1 and IL-18 [19]. It can be
induced through two pathways: the caspase-1-dependent classical
pathway and the caspase-4/5/11-dependent non-classical path-
way [119].

The caspase-1-dependent pathway typically involves the
activation of caspase-1 through the formation of inflammasomes,
such as the NLRP3 inflammasome [120]. Inflammasomes are multi-
protein complexes that assemble in response to pathogen-
associated molecular patterns or danger-associated molecular
patterns. The NLRP3 inflammasome, composed of NLRP3,
apoptosis-associated speck-like protein containing CARD (ASC),
and procaspase-1, is particularly well-studied in innate immunity
[121]. When activated, caspase-1 cleaves the gasdermin D
(GSDMD) protein, causing pore formation in the cell membrane.
This leads to cell swelling and lysis, as well as the processing and
release of pro-inflammatory cytokines [122].

The activation of caspase-1 and the NLRP3 inflammasome can
be initiated by various stimuli, including lipopolysaccharide (LPS)
binding to toll-like receptor 4 (TLR4) on the cell surface.
Mechanically, LPS binds to TLR4 on the cell surface, initiating
the activation of myeloid differentiation primary response 88
(MyD88), a critical adapter protein in the TLR signaling cascade.
MyD88 then interacts with interleukin-1 receptor-associated
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kinase and TNF receptor-associated factor 6, leading to the
activation of NF-kB [123]. This, in turn, upregulates various pro-
inflammatory cytokines and activates the NLRP3 inflammasome
[124]. Therefore, the LPS-TLR4/MyD88/NF-kB/NLRP3 pathway
initiates a cascade of molecular interactions that ultimately
triggers pyroptosis through the activation of caspase-1 and the
formation of pores in the cell membrane.

The non-classical pathway of pyroptosis involves direct
recognition of cytoplasmic LPS by caspase-4/5/11, which leads
to oligomerization and activation of these caspases. This, in turn,
results in GSDMD cleavage and pore formation in the cell
membrane [124], similar to the classical pathway. However, in
this case, the activation of caspase-4/5/11 does not require the
formation of inflammasomes or upstream signaling cascade
involving TLR4, MyD88, and NF-kB [125]. Both the two main
pathways ultimately result in GSDMD cleavage, pore formation in
the cell membrane, and the release of inflammatory cytokines.

Pyroptosis in myocardial I/R injury

Pyroptosis initiates during the early stages of reperfusion,
triggering acute I/R injury. Both during the myocardial ischemia
phase and reperfusion phase, the inflammatory response leads to
an elevation of intracellular ROS levels [126, 127]. This increase, in
turn, activates the NLRP3 inflammasome, which subsequently
triggers the activation of caspase-1. The activation of the NLRP3
inflammasome-mediated caspase-1 signaling pathway plays a
pivotal role in pyroptosis, exacerbating I/R injury [128]. Mitochon-
drial dysfunction further contributes to the release of ROS,
activating the NLRP3 pathway and leading to pyroptosis in
myocardial I/R injury [129]. Antioxidants, such as ethyl pyruvate,
can mitigate this damage by scavenging ROS and reducing NLRP3
inflammasome-mediated pyroptosis [130]. Uric acid has been
identified as another factor that aggravates myocardial I/R injury
through the ROS/NLRP3 pathway [127]. Conversely, periostin has
been shown to activate NLRP3, promoting caspase-1-mediated
pyroptosis in myocardial I/R injury [131]. However, inhibiting
NLRP3, a crucial protein in pyroptosis, can alleviate this process
[132]. Hydroxysafflor Yellow A, for example, inhibits NLRP3
inflammasome activation, providing a protective effect against
myocardial I/R injury [133]. The inositol 1,4,5-triphosphate
receptor, an intracellular ion channel, plays a role in calcium
homeostasis by releasing Ca®" from the ER into the cytoplasm
[134]. Inhibiting this receptor can reduce calcium overload and
NLRP3/caspase-1 pathway activation in myocardial I/R injury [134].
In addition, the TLR4/MyD88/NF-kB/NLRP3 pathway is involved in
myocardial I/R injury. Drugs like trimetazidine can alleviate
myocardial I/R injury by preventing the upregulation of TLR4,
MyD88, phospho-NF-kB p65, and the NLRP3 inflammasome [135].
Certain microRNAs, such as miR-148a carried by M2 macrophage-
derived exosomes, can also mitigate myocardial I/R injury by
downregulating thioredoxin-interacting protein and inactivating
the TLR4/NF-kB/NLRP3 inflammasome signaling pathway [136].

The non-classical pyroptosis pathway, which is distinct from the
classical pathway involving caspase-1, has garnered less attention
in the context of myocardial I/R injury. However, recent research
has shed light on its potential role in mitigating myocardial
damage by demonstrating that reducing caspase-11-dependent
pyroptosis can be beneficial in myocardial I/R injury [137]. In
addition, the findings from other I/R injury models, such as retina,
provide a compelling rationale to further investigate this pathway
in the heart [138].

As the executor of pyroptosis, GSDMD plays a critical role in
cardiomyocyte pyroptosis under oxidative stress conditions [139].
Elevated serum GSDMD levels may serve as a diagnostic marker
for myocardial I/R injury [140]. Recently, a new drug targeting
GSDMD has been identified for the treatment of myocardial I/R
injury [141]. In summary, these findings offer new insights into the
treatment of myocardial I/R injury, as illustrated in Fig. 4.
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Fig. 4 Mechanisms of pyroptosis in myocardial I/R injury. The caspase-1-dependent pathway involves the activation of caspase-1 through
the formation of inflammasomes, such as the NLRP3 inflammasome. After injury, the inflammasome formed by NLRP3, ASC, and procaspase-1
is activated. Procaspase-1 is activated as caspase-1 to cleave GSDMD, causing pore formation in the cell membrane, leading to cell swelling
and lysis. The GSDMD executes the inflammasome, inducing the release of inflammatory markers associated with mﬂammasome activation,
such as IL-1p and IL-18, ultimately Ieadlng to pyroptosis. NLRP3 is activated by ROS burst from myocardial I/R injury and Ca>" overload.
Extracellular LPS activates pyroptosis via the TLR4/MyD88/NF-kB/NLRP3 inflammasome pathway, aggravating myocardial I/R injury. The non-
classical pathway involves direct recognition of cytoplasmic LPS by caspase-4/5/11, resulting in oligomerization and activation, leading to
GSDMD cleavage and pore formation in the cell membrane. LPS lipopolysaccharide, TLR4 toll-like receptor 4, MyD88 myeloid differentiation
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Interactions between pyroptosis and other forms of cell death
in myocardial I/R injury

Pyroptosis and other forms of cell death exhibit complex
interactions in myocardial I/R injury. Both apoptosis and autop-
hagy interact with pyroptosis. Recent reports have also revealed
the role of PANoptosis in myocardial I/R injury, clarifying the
interaction mechanisms among pyroptosis, apoptosis, and
necroptosis during myocardial I/R injury.

Previously, the mechanisms of action of apoptosis and
pyroptosis in myocardial I/R injury have been elucidated. However,
pyroptosis and apoptosis exhibit complex and profound connec-
tions, and they interact with each other. IL-1B-treated cells showed
transient phosphorylation of NF-kB, p65 and p105, suggesting the
activation of NF-kB in cardiac fibroblasts [142]. It shows that IL-1p,
which may be released by pyroptosis through activating the
NLRP3 inflammasome, can activate the NF-kB signaling pathway,
thereby influencing the apoptotic pathway of cells. Caspase-3, a
key protease in programmed cell death, is of great significance in
both apoptosis and pyroptosis. During apoptosis, caspase-3 can
be activated through the intrinsic and extrinsic pathways. In the
context of pyroptosis, caspase-3 also plays a crucial part in
participating in the cleavage of inflammatory proteins during this
process [143]. Doxorubicin-induced caspase-3 activation triggered
gasdermin E-dependent pyroptosis [144]. However, it was
indicated in another article that caspase-3 cleavage at the Asp26
site in mice may interfere with caspase-1-mediated sequential
cleavage, thereby inhibiting the production of mature IL-1(3 [145].
The two different outcomes of the above-mentioned functions
emphasize the dual role of caspase-3 in the switch between
apoptosis and pyroptosis. Future research is required to further
clarify the mechanism by which caspase-3 mediates the switch
between these two cell death pathways.

The regulation of pyroptosis and autophagy is interlinked. For
instance, when mitophagy is inhibited, damaged mitochondria are
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unable to clear and release ROS, which can directly activate the
NLRP3 inflammasome [146]. However, the precise balance
between these two processes determines the cellular fate.
Mitophagy pathway plays a role in inhibiting caspase-1 and
alleviating pyroptosis [146]. Conversely, excessive autophagy can
lead to cell death through autophagic cell death. The inflamma-
tory signaling cascades activated during pyroptosis can also
influence autophagy. For example, the NLPR3 inflammasome
restricts autophagy through activated caspase-1 in prion peptide-
infected microglia [147]. Activation of autophagy also leads to the
degradation of the components of NLRP3, reducing the release of
IL-18 and IL-18 in myocardial I/R injury [148]. In other words,
inhibition of autophagy-dependent pyroptosis can exert myocar-
dial protective effect including alleviating myocardial I/R injury
and reducing infarct size in mice [149].

The concept of PANoptosis was officially proposed in 2019, due
to the crosstalk of pyroptosis, apoptosis, and necroptosis [150].
PANoptosis has the characteristics of apoptosis, necroptosis, and
pyroptosis. Subsequently, PANoptosome was identified as the
interaction of RIPK1/3, caspase-8, NLRP3, ASC, and FADD [151].
PANoptosome was a momentous regulator in immune and
inflammatory responses and a scoring method of immune cells
in pan-cancer [152]. TAK1-deficient macrophages drive activation
of PANopotsome [153]. The study explains that TAK1 is a switch of
PANoptosis. Another switch is Z-DNA binding protein 1 (ZBP1),
which could induce macrophage necroptosis [154]. Influenza A
virus-induced PANoptosis through the ZBP1-PANoptosome, which
is independent of MLKL [155]. However, unlike in macrophages,
ZBP1 attenuates inflammation in cardiomyocytes by suppressing
the RIPK3/NF-kB pathway [156]. The recent discovery of PANop-
tosis in cerebral I/R injury suggests that PANoptosis may exist in I/
R models [157]. The latest results show that penehyclidine
hydrochloride can reduce PANoptosis in myocardial I/R injury by
decreasing ZBP1 [158]. Piezo1, as a novel cardiac mechanosensor,
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potentially promotes cardiac I/R injury. This might be achieved
through the activation of cardiomyocyte PANoptosis mediated by
caspase-8 [159].

FERROPTOSIS

Mechanisms of ferroptosis

Ferroptosis is an emerging concept in cell death biology,
characterized as an iron-dependent, programmed form of cell
death distinct from classical apoptosis and autophagy. Ferroptosis
was first described in 2012 as a regulated form of cell death driven
by iron-dependent lipid peroxidation [160]. Lipid peroxidation
refers to the oxidative degradation of lipids, particularly poly-
unsaturated fatty acids (PUFAs), in cellular membranes [161]. This
process results in membrane damage and ultimately cell death
[161]. Ferroptosis is characterized by shrinkage of mitochondria,
increased membrane density, and the preservation of nuclear
integrity [160]. The mechanisms underlying ferroptosis involve
complex interactions between iron accumulation, lipid peroxida-
tion, and antioxidant system dysfunction [162].

Excess iron, whether from dietary intake, genetic mutations, or
other sources, can accumulate in cells and tissues. Normally,
transferrin binds to transferrin receptor on cell membrane and is
internalized into endosomes. Within endosomes, Fe*" is con-
verted to Fe®" by the six transmembrane epithelial antigen of the
prostate-3 [163]. Ferritinophagy is a selective autophagy process.
That is, cells recognize and enwrap ferritin through the autophagy
mechanism to form autophagosomes [164]. After the autophago-
somes fuse with lysosomes, the ferritin is degraded under the
action of lysosomal hydrolases, and iron ions are released. The
related mechanism mainly involves the mediation of nuclear
receptor coactivator 4 (NCOA4). The C-terminal domain of NCOA4
can interact with the ferritin heavy chain 1 to transport ferritin to
autophagosomes for degradation [165].

Free iron ions can directly oxidize lipids, particularly PUFAs,
leading to the formation of lipid peroxides [166]. Lipid peroxides
are unstable and can decompose to form additional ROS, further
exacerbating oxidative stress. This iron overload can catalyze the
Fenton reaction, which involves the conversion of hydrogen
peroxide (H,0,) into highly reactive hydroxyl radicals (OH-).
Hydroxyl radicals are powerful oxidizing agents that can damage
lipids, proteins, and DNA, leading to cellular dysfunction and
promoting the initiation and progression of ferroptosis. PUFAs
could react with iron, leading to peroxidation of iron-dependent
PUFA causes ferroptosis [166]. Acyl-CoA synthetase long-chain
family member 4 (ACSL4) promotes PUFAs converted to PUFA-
CoAs. Further, PUFA-CoAs are esterified to L-PUFAs, which are
oxidized by lipoxygenases leading to the generation of lipid
peroxidation [167]. Nuclear factor erythroid 2-related factor 2
(Nrf2) is regarded as a predominant regulator in the antioxidant
response, since a multitude of its downstream target genes
participate in averting or rectifying redox imbalances within the
cell [168]. An upregulation of Nrf2-regulated gene transcription to
counteract enhanced ROS generation and sustained oxidative
stress [169]. The Nrf2 target plays a critical role in mediating the
enzymes associated with the synthesis and metabolism of
glutathione (GSH) and in the process of iron/heme metabolism
[170-172].

The imbalance of antioxidant functions within cells is a
significant contributor to ferroptosis. There are three major
antioxidant systems associated with ferroptosis in vivo: the
cystine/glutamate  antiporter  system  (system  Xc-)/GSH/
GPX4 system, the nicotinamide adenine dinucleotide phosphate/
ferroptosis suppressor protein 1/coenzyme Q10 system, and the
guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/
dihydrofolate reductase system [173]. The latter two systems are
less well extensively studied, and current research on ferroptosis
in MIRI primarily focuses on the first system. In the Xc-/GSH/
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GPX4 system, GPX4 acts to scavenge membrane lipid hydroper-
oxides. However, when GPX4 is inactivated or when GSH is
depleted, peroxides accumulate within the cell, triggering
ferroptosis. The heterodimeric system Xc-, consisting of SLC7A11
and SLC3A2 [174], serves as a glutamate cystine antiporter
responsible for intracellularly GSH synthesis. As a key inhibitor of
ferroptosis, the light chain subunit SLC7A11 facilitates the import
of cystine from the extracellular environment into the cell and
synthesizing GSH. Inhibition of SLC7A11 activity or expression can
lead to a depletion of GSH and an accumulation of ROS, ultimately
inducing ferroptosis [175]. In contrast, the heavy chain subunit
SLC3A2 mainly serves as a chaperone protein of SLC7A11 to
provide SLC7A11 recruitment to the plasma membrane [176]. By
supporting the function of SLC7A11, SLC3A2 indirectly contributes
to the inhibition of ferroptosis. Inhibition of this system leads to
GSH depletion. Moreover, inhibiting system Xc- causes excessive
intracellular accumulation of glutamate, which affects the
mitochondrial tricarboxylic acid cycle to stimulate mitochondrial
ROS generation [177].

Ferroptosis in myocardial I/R injury

Ferroptosis is the predominant form of cell death in the prolonged
reperfusion phase of myocardial I/R Injury [22]. During the
reperfusion period, the burst of ROS leads to an imbalance in
intracellular antioxidant systems, like the system Xc-/GSH/
GPX4 system [8]. This further promotes lipid peroxidation,
especially intensifying the peroxidation of PUFAs on the cell
membrane [8]. As a result, more iron ions within the cell are
involved in the Fenton reaction, and ferroptosis consequently
continues to progress, worsening the myocardial injury.

Transferrin-mediated iron is required for ferroptosis in myocar-
dial I/R injury. A recent study revealed the relationship between
transferrin and myocardial I/R injury. Resveratrol can effectively
reduce the content of Fe?" in cells and tissues by downregulating
the expression of transferrin receptor 1, reduce cellular oxidative
stress and upregulate GPX4 [132]. Cells acquire resistance against
ferroptosis by Nrf2 pathway, thus enhancing iron storage capacity
(elevates iron storage protein ferritin) and mitigating the decrease
in GSH level [178]. In myocardial I/R injury, ferritinophagy also
plays an important role in the release of iron ions. This part is
detailed in “Interactions between ferroptosis and other forms of
cell death in myocardial I/R injury”.

ACSL4, a key enzyme that regulates lipid composition, is
activated to facilitate ferroptosis and myocardial I/R injury [179].
Inhibition of ACSL4 can effectively reduce myocardial I/R injury
[180]. Imbalance of cellular antioxidant functions is a significant
contributor to ferroptosis in myocardial I/R injury, mainly inhibited
by the antioxidant system: system Xc-/GSH/GPX4 [181]. The
heterodimeric system Xc-, consisting of SLC7A11 and SLC3A2,
serves as a glutamate cystine antiporter responsible for intracellu-
larly GSH synthesis. A study showed that overexpressed
SLC7A11 selectively in cardiomyocytes could increase GSH levels
and prevent cardiac ferroptosis [182]. Moreover, the low-level GSH
in cell can inactivate GSH-dependent GPX4 to potentiating
ferroptosis [183]. The SLC7A11/GSH/GPX4 pathway was repressed
in myocardial I/R injury rat to induce ferroptosis, inducing
myocardial injury [184]. GPX4 functions by scavenging membrane
lipid hydroperoxides. However, when GPX4 is inactivated or it is
depleted, peroxides are accumulated within the cell, triggering
ferroptosis in myocardial I/R injury [185]. Naringenin can inhibit
ferroptosis by regulating Nrf2/system Xc-/GPX4 axis, thus alleviat-
ing myocardial I/R injury [186]. Isoliquiritigenin has the ability to
alleviate oxidative stress, mitochondrial damage and cardiomyo-
cyte ferroptosis induced by I/R, thus reducing myocardial injury,
and a key mechanism of which is triggering the Nrf2 pathway to
prevent oxidative stress damage and cardiomyocyte ferroptosis
resulting from I/R [187]. Moreover, the inhibition of Mucosa-
associated lymphoid tissue lymphoma translocation gene 1 is
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Fig. 5 Mechanisms of ferroptosis in myocardial I/R injury. Ferroptosis is an oxidative death resulting from lipid peroxidation and iron
overload. The system Xc-/GSH/GPX4 system is the main antioxidant system involved in the onset of myocardial I/R injury ferroptosis, inhibiting
the increase in ROS and attenuating ferroptosis. Inhibition of this pathway can stimulate the onset of ferroptosis. Excessive labile iron ions
generated after autophagy of ferritin can undergo a Fenton reaction with intracellular lipid peroxidation, leading to ferroptosis. PUFAs could
react with iron, leading to peroxidation of iron-dependent PUFA causes ferroptosis. ACSL4 promotes PUFAs converted to PUFA-CoAs. PUFA-
CoAs are esterified to L-PUFAs, which are oxidized by lipoxygenases leading to the generation of lipid peroxidation. System Xc- cystine/
glutamate antiporter system, GSH glutathione, GPX4 glutathione peroxidase 4, Nrf2 nuclear factor erythroid 2-related factor 2, NCOA4 nuclear
receptor coactivator 4, STEAP3 six transmembrane epithelial antigen of the prostate-3, TF transferrin, TFR transferrin receptor, PUFAs
polyunsaturated fatty acids, ACSL4 Acyl-CoA synthetase long-chain family member 4, LOXs lipoxygenases.

capable of reducing myocardial ferroptosis induced by I/R via the
enhancement of the Nrf2/SLC7A11 pathway [188]. A recently
discovered antioxidant system has been found to play a role in
ferroptosis. Ferroptosis suppressor protein 1 reduces coenzyme
Q10 to dihydro-Q10, which can act as antioxidants to inhibit the
accumulation of lipid peroxidation [157].

Other antioxidants such as antioxidants (vitamin C, vitamin E, etc.),
iron complexing agents (deferoxamine), iron inhibitors (lipoxstatin-1,
ter-1) can also hinder ferroptosis. Antioxidant vitamin E can react
with peroxyl free radicals to prevent the formation of lipid
hydroperoxides and reduce damage. There is one experiment in
which a-tocopherol, the strongest antioxidant form of vitamin E, was
administered to mice with cardiac I/R injury, and the results showed
that a-tocopherol significantly reduced infarct size and improved
cardiac-related parameters such as ejection fraction, cardiac output
[189]. This illustrates that a-tocopherol can inhibit oxidative and
inflammatory responses and alleviate reperfusion injury. A previous
study showed that deferoxamine as a chelating agent can reduce
myocardial I/R injury [190]. In a recent study, there was no significant
change in myocardial injury in ischemic-treated rats in the presence
of deferoxamine; in the I/R group, ferroptosis and myocardial injury
were significantly reduced in the presence of deferoxamine [191]
(Fig. 5).

Interactions between ferroptosis and other forms of cell death
in myocardial I/R injury
In the complex landscape of cellular biology, ferroptosis, a distinct
form of regulated cell death characterized by iron-dependent lipid
peroxidation, exhibits intricate crosstalk with other important
cellular processes such as apoptosis, necroptosis, and autophagy.
Ferroptosis can induce ERS-triggered apoptosis. The small-
molecule inhibitors of system Xc- induce ERS, as indicated by the
transcriptional upregulation of genes associated with the ERS
response [192]. ERS is one of the major ways to induce apoptosis.
The ERS caused by ferroptosis may lead to the occurrence of
apoptosis. This mechanism of action has been verified in diabetic
myocardial ischemia/reperfusion injury [193].
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Ferroptosis and necroptosis are alternative. Ferroptosis is linked
to necroptosis through the antagonistic relationship between
ACSL4 and MLKL in acute kidney failure. After MLKL knockout, the
expression of ACSL4 increases, and there is a strong correlation
between them [194]. The deficiency of ACSL4 makes cells more
susceptible to necroptosis and is associated with an elevation in
MLKL activation [194]. However, this mechanism of action has not
been demonstrated in myocardial I/R injury. Nevertheless, it still
holds some suggestive significance. Heat shock protein 90, an
evolutionary conserved and ubiquitously expressed molecular
chaperone, serves as a common regulatory node connecting
necroptosis and ferroptosis. Knockdown of heat shock protein 90
in HT-22 cells inhibits necroptosis induced by TNF-a/SM-164/z-
VAD.fmk and TNF-a/cycloheximide/z-VAD.fmk, as well as ferrop-
tosis induced by glutamate and erastin [195]. The role of heat
shock protein 90 in cardiac inflammation and apoptosis has been
investigated in the context of myocardial I/R injury [196]. However,
its relationships with ferroptosis and pyroptosis remain
unexplored.

The relationship between ferroptosis and autophagy is also very
close except for apoptosis and necroptosis. Ferroptosis could be
induced by the activation of autophagy in myocardial I/R injury. A
study showed that autophagy-dependent ferroptosis contributes
to myocardial I/R injury by overproduction of lipid signaling [1971.
Conversely, inhibition of ferroptosis could be regulated by
ubiquitin-specific protease 19/Beclin1-induced autophagy [132].
One of the interrelated mechanisms of ferroptosis and autophagy
is the liberation of iron reservoir within ferritin proteins through
ferritinophagy. NCOAA4 is a crucial component of the intracellular
iron homeostasis mechanism. When the cell is iron-deficient,
NCOA4 can selectively recognize the ferritin heavy chain 1 in
ferritin, and NCOA4 combines with the ferritin heavy chain 1 to
form a complex that mediates ferritinophagy and releases ions
[165]. The release of large amounts of iron by ferritin after
autophagy can induce ferroptosis, causing oxidative cellular injury
[198]. NCOA4-mediated ferritinophagy regulates intracellular iron
levels. The overexpression of NCOA4 augments ferritin
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Fig. 6 Cross-regulation of cell death pathways in myocardial I/R injury. Drp1 is phosphorylated to promote mitochondrial fission in
myocardial I/R injury. The combination of Drp1 and RIPK3 exacerbates necroptosis. The excessive fission induces mito-apoptosis and the
overactivation of autophagy. The later accelerating the progression of ferroptosis. However, as the autophagy promoter, AMPK could inhibit
phosphorylation of Drp1 at Ser616 to exert the protective effects in myocardial I/R injury. Moreover, AMPK can inhibit apoptosis, necroptosis,
pyroptosis and ferroptosis though increasing GPX4. GPX4 as one of the major antioxidant enzymes, plays a key role of ferroptosis. On the
other hand, GPX4 blocks mitochondrial release of cytochrome ¢ to reduce mito-apoptosis. GPX4 can inhibit pyroptosis in other disease
models, instead of myocardial I/R injury. Beclin1 can inhibit pyroptosis by suppressing caspase-4 and control ferroptosis by directly blocking
system Xc- activity. In other diseases models, Beclin1 binds to MLKL in the necroptosis process, preventing subsequent necroptosis. Drp1
dynamin-related protein 1, RIPK3 receptor-interacting protein kinase 3, AMPK AMP-activated protein kinase, System Xc- cystine/glutamate
antiporter system, GPX4 glutathione peroxidase 4, NLRP3 NOD-like receptor family pyrin domain containing 3, ASC apoptosis-associated
speck-like protein containing CARD, Casp caspase.

degradation and promotes ferroptosis [199]. One study showed inhibiting Drp1 can protect myocardial cells following myocardial
that erastin-induced ferroptosis was promoted by increased I/R injury by suppressing necroptosis [65]. As can be seen, these
intracellular iron content and ROS following NCOA4-mediated findings highlight the importance of Drp1 as a key player in
autophagy of ferritin [200]. This view has also been proved during multiple death pathways and emphasize its status as an important
myocardial I/R injury in diabetes [201]. and extensively studied research target.
As autophagy promoter, AMPK activation has been proven to
decrease ROS generation and prevent apoptosis and necrosis
THE KEY MOLECULES MEDIATING THE INTERACTION BETWEEN during reperfusion [206, 207]. Notably, activated AMPK can also
DIFFERENT FORMS OF CELL DEATH IN MYOCARDIAL I/R INJURY exert a cardioprotective effect against pyroptosis. A study
Cell death is a complex process with significant crosstalk between demonstrated that oxytocin can enhance cardiac protection and
different modalities. Exploring therapies that concurrently inhibit against myocardial I/R injury by suppressing pyroptosis through
multiple cell death forms holds great promise in myocardial I/R the AMPK signaling pathway [208]. These protective effects are
injury. For instance, caspase-8 coordinates necroptosis and partially attributed to the activation of AMPK signaling pathway.
apoptosis [77], while Beclin1 and Bcl-2 interaction influences Activation of the AMPK signaling pathway can protect against
autophagy and apoptosis [116]. Caspase-3 is involved in both ferroptosis-mediated myocardial I/R injury [209].

apoptosis and pyroptosis [143], and PANoptosis links pyroptosis, Studies have shown that Beclin1 was a closely related protein
apoptosis, and necroptosis [159]. Moreover, autophagy and between autophagy and apoptosis [210]. Beclin1 interacts with
ferroptosis are connected in myocardial I/R injury [165]. Therefore, Bcl-2 leads to inhibition of autophagy by forming Beclin1-Bcl-2
we further explored the impacts of several molecular targets on complex. However, rapid Bcl-2 phosphorylation disrupt the
multiple forms of cell death in myocardial I/R injury. Beclin1-Bcl-2 complex and activate autophagy [211]. Besides

Drp1 plays a crucial role in mitochondrial fission. In the cytosol, autophagy, Beclin1 can inhibit pyroptosis by suppressing caspase-
Drp1 is recruited to mitochondria through outer membrane 4, thereby preventing microvascular injury caused by reperfusion
proteins to regulate mitochondrial dynamics via Drp1 oligomer- [212]. Moreover, a study demonstrated that the system Xc

ization [202]. Studies have demonstrated that phosphorylation of inhibitor erastin promotes the binding of Beclin1 to SLC7A11, an
Drp1 at Ser616 can promote the recruitment of Drp1 to early step in initiating ferroptosis [213]. In other words, Beclin1
mitochondria, while AMPK agonists can prevent this process actively controls ferroptosis by directly blocking system Xc
[203]. After mitochondrial division, the damaged portions are activity. Additionally, phosphorylation of MLKL is a critical step
engulfed by autophagosomes. Drp1 controls autophagic flux, in the process of necroptosis. Beclinl binds to MLKL in the
particularly at the level of autophagosome formation. Inhibition of necroptosis process, preventing the plasma membrane rupture
Drp1 downregulates global autophagy rather than mitophagy and subsequent necroptosis [214]. However, there are no relevant
[204]. In addition, increased phosphorylation of Drp1 at Ser616 reports regarding the myocardial I/R injury model.

enhance its recruitment to mitochondria following myocardial I/R GPX4 protects myocardial cells against ROS damage-induced
injury, damaging mitochondrial respiratory function and exacer- ferroptosis. Since both ferroptosis and mitochondrial-mediated
bating mitochondrial apoptosis [205]. As mentioned -earlier, apoptosis are caused by ROS-induced peroxides accumulation,
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there may be crosstalk between these two forms of cell death. In
fact, inhibition of GPX4 leads to increasing mitochondrial ROS
production and subsequent apoptosis in myocardial I/R injury
[215]. Conversely, overexpression of GPX4 blocks mitochondrial
release of cytochrome ¢, thereby inactivating caspase-3 [216].
GPX4 inhibition has been shown to induce increased expression of
pyroptosis-related genes, including NLRP3, caspase-1, IL-18, and
IL-18 in kidney injury [217]. However, there are currently no
relevant research reports regarding GPX4 and pyroptosis in
myocardial I/R injury, which may represent a new mechanism.
Excessive activation of autophagy can also regulate ferroptosis. A
recent review highlighted transmembrane protein 164-mediated
autophagy as a mechanism for degrading ferritin and GPX4,
thereby promoting ferroptosis [218]. Therefore, inhibition of
autophagic ferroptosis would be a recent viewpoint in the
treatment of myocardial I/R injury (Fig. 6).

EXPECTATION AND DISCUSSION
As indicated above, an intricate web of connections exists among
different forms of cell death. It is possible that different death
inhibitors may have a synergistic effect in the treatment of
myocardial I/R injury. When administered before and after
ischemia, the combined use of ponatinib (necroptosis inhibitor)
and deferoxamine (ferroptosis inhibitor) can suppress necroptosis
and ferroptosis in the hearts of rats undergoing I/R treatment. This
reduces the area of myocardial infarction and the release of
creatine kinase, and the effect is more potent than using either
drug alone [219]. The concurrent inhibition of necroptosis and
apoptosis by means of Necrostatin-1 (necroptosis inhibitor) and
Z-VAD.fmk (apoptosis inhibitor) augments the cardioprotective
effect against myocardial I/R injury [220]. Recombinant apyrase
(AZD3366) remarkably diminished the elevation of RIPK1, RIPK3,
and p-MLKL following 1h of reperfusion and effectively curbed
the increase in IL-6 and GSDMD-N. And AZD3366 exhibited the
capacity to mitigate the augmentation of these markers 24 h
subsequent to reperfusion, with their effects being cumulative
[221]. The results demonstrated that AZD3366 could suppress
necroptosis and pyroptosis, while reducing the area of myocardial
infarction. The latest research reveals that AZD3366 has entered
phase | clinical trials and is well-tolerated among healthy
participants [222]. The above experimental results indicate that
cell deaths are interconnected due to unique factors and
mechanisms, and therapies targeting multiple forms of regulated
cell death hold significant clinical application prospects.
Furthermore, some key molecules have been regarded as the
connections between different forms of cell death in myocardial I/
R injury. For example, Drp1 links autophagy, apoptosis and
necroptosis [65, 204, 205]. Inhibiting Drp1 can reduce the
occurrence of autophagy, apoptosis, and necroptosis in myocar-
dial I/R injury. In myocardial I/R injury, multiple forms of cell death
such as apoptosis and necroptosis often coexist and interact with
each other. Drp1 can participate in the regulation of these cell
death processes through different signaling pathways. Polypep-
tide Globular Adiponectin, a crucial component of both the
endocrine and immune systems, can suppress H/R-induced
cardiomyocyte necroptosis and apoptosis through attenuating
the formation of ROS, oxidative stress, and p38 MAPK and NF-kB
signaling [223]. Polypeptide globular adiponectin can enhance
insulin sensitivity and exert anti-inflammatory effects [224]. It can
also regulate apoptosis and necroptosis during myocardial I/R
injury. Since cardiovascular diseases often occur concurrently, the
cumulative effects of its actions may play a more extensive
protective role in patients with complex diseases. At present, it is
still necessary to explore more molecules that can connect
multiple forms of cell death and establish a precise interaction
network, thereby enhancing the potential for developing treat-
ment modalities by targeting key molecules.
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Whether it is the combination of multiple cell death inhibitors
or the targeting of molecules involved in various cell death
pathways, both approaches can maximize the efficacy of
therapeutic strategies, thereby effectively reducing myocardial
injury and ultimately improving patient prognosis. This approach
holds great promise in revolutionizing the current therapeutic
landscape for myocardial-related disorders. However, there may
be significant differences in the cell death regulatory mechanisms
among different patients with myocardial I/R injury, which makes
the precise treatment plan based on the synergy of cell death
pathways highly individualized and increases the complexity of
treatment.
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